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An extension of the Liouville theorem for

Fourier multipliers to sub-exponentially

growing solutions

David Berger, René L. Schilling, Eugene Shargorodsky, and Teo Sharia

Abstract. We study the equation m(D)f = 0 in a large class of sub-
exponentially growing functions. Under appropriate restrictions on m ∈
C(Rn), we show that every such solution can be analytically continued to
a sub-exponentially growing entire function on Cn if and only if m(ξ) 6= 0
for ξ 6= 0.

1. Introduction

The classical Liouville theorem for the Laplace operator ∆ :=
∑n

k=1
∂2

∂x2
k
on

Rn says that every bounded (polynomially bounded) solution of the equation
∆f = 0 is in fact constant (is a polynomial). Recently, similar results have
been obtained for solutions of more general equations of the form m(D)f = 0,
where m(D) := F−1m(ξ)F , and

Fφ(ξ) = φ̂(ξ) =

∫

Rn

e−ix·ξφ(x) dx and F−1u(x) = (2π)−n

∫

Rn

eix·ξu(ξ) dξ

are the Fourier and the inverse Fourier transforms (see [1], [2], [3], [11], and the
references therein). Namely, it was shown that, under appropriate restrictions
on m ∈ C(Rn), the implication

f is bounded (polynomially bounded) and m(D)f = 0

=⇒ f is constant (is a polynomial)

holds if and only if m(ξ) 6= 0 for ξ 6= 0. Much of this research has been
motivated by applications to infinitesimal generators of Lévy processes.
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In this paper, we deal with solutions of m(D)f = 0 that can grow faster than
any polynomial. Of course, one cannot expect such solutions to have simple
structure, not even in the case of ∆f = 0 in R2 (see, e.g., [21, Ch. I, §2]). We
consider sub-exponentially growing solutions whose growth is controlled by a
submultiplicative function (see (1)) satisfying the Beurling-Domar condition
(3), and show that, under appropriate restrictions on m ∈ C(Rn), every such
solution admits analytic continuation to a sub-exponentially growing entire
function on Cn if and only if m(ξ) 6= 0 for ξ 6= 0 (see Corollary 4.5). Results
of this type have been obtained for solutions of partial differential equations
with constant coefficients by A. Kaneko and G.E. Šilov (see [16], [17], [26],
[7, Ch. 10, Sect. 2, Theorem 2], and Section 5 below).

Keeping in mind applications to infinitesimal generators of Lévy processes, we
do not assume that m is the Fourier transform of a distribution with compact
support, so our setting is different from that in, e.g., [6], [15, Ch. XVI].

The paper is organized as follows. In Chapter 2, we consider submultiplicative
functions satisfuing the Beurling-Domar condition and, for every such function
g, introduce an auxiliary function Sg (see (14), (15)), which appears in our main
estimates. Chapter 3 contains weighted Lp estimates for entire functions on
Cn, which are a key ingredient in the proof of our main results in Chapter 4.
Another key ingredient is the Tauberian theorem 4.1, which is similar to [3,
Theorem 7] and [23, Theorem 9.3]. The main difference is that the function f
in Theorem 4.1 is not assumed to be polynomially bounded, and hence it might

not be a tempered distribution. So, we avoid using the Fourier transform f̂ =
Ff and its support (and non-quasianalytic type ultradistributions). Although
we are mainly interested in the case m(ξ) 6= 0 for ξ 6= 0, we also prove a
Liouville type result for m with compact zero set {ξ ∈ Rn | m(ξ) = 0} (see
Theorem 4.4). Finally, we discuss in Section 5 A. Kaneko’s Liouville type
results for partial differential equations with constant coefficients ([16], [17]),
which show that the Beurling-Domar condition is in a sense optimal in our
setting.

2. Submultiplicative functions and the Beurling-Domar condition

Let g : Rn → (0,∞) be a locally bounded, measurable submultiplicative func-
tion, i.e. a locally bounded measurable function satisfying

g(x+ y) ≤ Cg(x)g(y) for all x, y ∈ Rn,

where the constant C ∈ [1,∞) does not depend on x and y. Without loss of
generality, we will always assume that g ≥ 1, as otherwise one can replace g
with g + 1. Also, replacing g with Cg, one can assume that

g(x+ y) ≤ g(x)g(y) for all x, y ∈ Rn. (1)

A locally bounded submultiplicative function is exponentially bounded, i.e.

|g(x)| ≤ Cea|x| (2)
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for suitable constants C, a > 0 (see [24, Section 25] or [13, Ch. VII]).

We will say that g satisfies the Beurling-Domar condition if
∞∑

l=1

log g(lx)

l2
< ∞ for all x ∈ Rn. (3)

If g satisfies the Beurling-Domar condition, then it also satisfies the Gelfand-
Raikov-Shilov condition

lim
l→∞

g(lx)1/l = 1 for all x ∈ Rn,

while g(x) = e|x|/ log(e+|x|) satisfies the latter but not the former (see [9]). It is
also easy to see that g(x) = e|x|/ log

γ(e+|x|) satisfies the Beurling-Domar condi-
tion if and only if γ > 1. The function

g(x) = ea|x|
b

(1 + |x|)s(log(e+ |x|))t

satisfies the Beurling-Domar condition for any a, s, t ≥ 0 and b ∈ [0, 1) (see
[9]).

Lemma 2.1. Let g : Rn → [1,∞) be a locally bounded, measurable submulti-
plicative function satisfying the Beurling-Domar condition (3). Then for every
ε > 0, there exists Rε ∈ (0,∞) such that

∫ ∞

Rε

log g(τx)

τ 2
dτ < ε for all x ∈ Sn−1 := {y ∈ Rn : |y| = 1} . (4)

Proof. Since g ≥ 1 is locally bounded,

0 ≤ M := sup
|y|≤1

log g(y) < ∞. (5)

Take any x ∈ Sn−1. It follows from (1) that

log g((l + 1)x)−M ≤ log g(τx) ≤ log g(lx) +M for all τ ∈ [l, l + 1].

Hence
∞∑

l=L

log g((l + 1)x)−M

(l + 1)2
≤

∞∑

l=L

∫ l+1

l

log g(τx)

τ 2
dτ ≤

∞∑

l=L

log g(lx) +M

l2

=⇒
∞∑

l=L+1

log g(lx)

l2
− M

L
≤
∫ ∞

L

log g(τx)

τ 2
dτ ≤

∞∑

l=L

log g(lx)

l2
+

M

L− 1
(6)

for L ∈ N.

Let

ej := (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0), j = 1, . . . , n, e0 :=

(
1√
n
, . . . ,

1√
n

)
, (7)

Q :=

{
y = (y1, . . . , yn) ∈ Rn :

1

2
√
n
< yj <

2√
n
, j = 1, . . . , n

}
.
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For every x ∈ Sn−1 there exists an orthogonal matrix Ax ∈ O(n) such that
x = Axe0. Hence {AQ}A∈O(n) is an open cover of Sn−1. Let {AkQ}k=1,...,K be
a finite subcover. Take an arbitrary ε > 0. It follows from (3) and (6) that
there exists Rε > 0 for which

∫ ∞

Rε
2
√

n

log g(τAkej)

τ 2
dτ <

ε

2
√
n
, k = 1, . . . , K, j = 1, . . . , n.

For any x ∈ Sn−1, there exist k = 1, . . . , K and aj ∈
(

1
2
√
n
, 2√

n

)
, j = 1, . . . , n

such that

x =
n∑

j=1

ajAkej.

Using (1), one gets
∫ ∞

Rε

log g(τx)

τ 2
dτ ≤

n∑

j=1

∫ ∞

Rε

log g(τajAkej)

τ 2
dτ =

n∑

j=1

aj

∫ ∞

ajRε

log g(rAkej)

r2
dr

≤
n∑

j=1

2√
n

∫ ∞

Rε
2
√

n

log g(rAkej)

r2
dr <

n∑

j=1

2√
n
· ε

2
√
n
= n

ε

n
= ε.

�

Let

Ig,x(r) :=

∫ ∞

max{r,1}

log g(τx)

τ 2
dτ < ∞,

Jg,x(r) :=
1

max{r, 1}2
∫ r

0

log g(τx) dτ < ∞,

Sg,x(r) :=
1

π

∫ ∞

−∞

log g(τx)

τ 2 +max{r, 1}2 dτ r ≥ 0, x ∈ Sn−1.

One has, for r > 1 and any β ∈ (0, 1),

Jg,x(r) =
1

r2

∫ r

0

log g(τx) dτ =
1

r2

∫ 1

0

log g(τx) dτ

+
1

r2(1−β)

∫ rβ

1

log g(τx)

r2β
dτ +

∫ r

rβ

log g(τx)

r2
dτ

≤ M

r2
+

1

r2(1−β)

∫ rβ

1

log g(τx)

τ 2
dτ +

∫ r

rβ

log g(τx)

τ 2
dτ

≤ M

r2
+

Ig,x(1)

r2(1−β)
+ Ig,x(r

β) (8)

(see (5)). Further, if r > 1, then

πSg,x(r) =

∫ ∞

0

log g(τx)

τ 2 + r2
dτ +

∫ ∞

0

log g(−τx)

τ 2 + r2
dτ
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≤
∫ r

0

log g(τx)

r2
dτ +

∫ ∞

r

log g(τx)

τ 2
dτ

+

∫ r

0

log g(−τx)

r2
dτ +

∫ ∞

r

log g(−τx)

τ 2
dτ

= Ig,x(r) + Jg,x(r) + Ig,−x(r) + Jg,−x(r), (9)

πSg,x(r) ≥
∫ r

0

log g(τx)

2r2
dτ +

∫ ∞

r

log g(τx)

2τ 2
dτ

+

∫ r

0

log g(−τx)

2r2
dτ +

∫ ∞

r

log g(−τx)

2τ 2
dτ

=
1

2
(Ig,x(r) + Jg,x(r) + Ig,−x(r) + Jg,−x(r)) . (10)

Since g is locally bounded, it follows from Lemma 2.1 that Ig defined by

Ig(r) := sup
x∈Sn−1

Ig,x(r) = sup
x∈Sn−1

∫ ∞

max{r,1}

log g(τx)

τ 2
dτ < ∞, (11)

is a decreasing function such that

Ig(r) → 0 as r → ∞. (12)

Let

Jg(r) := sup
x∈Sn−1

Jg,x(r) = sup
x∈Sn−1

1

max{r, 1}2
∫ r

0

log g(τx) dτ, (13)

Sg(r) := sup
x∈Sn−1

Sg,x(r) = sup
x∈Sn−1

1

π

∫ ∞

−∞

log g(τx)

τ 2 +max{r, 1}2 dτ. (14)

Then

Jg(r) ≤
M

r2
+

Ig(1)

r2(1−β)
+ Ig(r

β),

1

2π
max {Ig(r), Jg(r)} ≤ Sg(r) ≤

2

π
(Ig(r) + Jg(r))

(see (8), (9), (10)). So, Jg(r) → 0, and

Sg(r) → 0 as r → ∞ (15)

(see (12)). It is clear that

Sg(r) = Sg(1) for r ∈ [0, 1], and Sg is a decreasing function. (16)

Examples.

1) If g(x) = (1 + |x|)s, s ≥ 0, then

Sg(r) =
1

π

∫ ∞

−∞

s log (1 + |τ |)
τ 2 + r2

dτ =
s

πr

∫ ∞

−∞

log (1 + r|λ|)
λ2 + 1

dλ

≤ s

πr

∫ ∞

−∞

log (1 + |λ|)
λ2 + 1

dλ+
s log (1 + r)

πr

∫ ∞

−∞

1

λ2 + 1
dλ
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=
c1s

r
+

s log (1 + r)

r
, r ≥ 1, (17)

where

c1 :=
1

π

∫ ∞

−∞

log (1 + |λ|)
λ2 + 1

dλ < ∞.

2) If g(x) = (log(e+ |x|))t, t ≥ 0, then using the obvious inequality

u+ v ≤ 2uv, u, v ≥ 1,

one gets

Sg(r) =
1

π

∫ ∞

−∞

t log log (e+ |τ |)
τ 2 + r2

dτ =
t

πr

∫ ∞

−∞

log log (e+ r|λ|)
λ2 + 1

dλ

≤ t

πr

∫ ∞

−∞

log
(
log (e+ |λ|) + log (e+ r)

)

λ2 + 1
dλ

≤ t

πr

∫ ∞

−∞

log
(
2 log (e + |λ|)

)

λ2 + 1
dλ+

t log log (e+ r)

πr

∫ ∞

−∞

1

λ2 + 1
dλ

=
c2t

r
+

t log log (e+ r)

r
, r ≥ 1, (18)

where

c2 :=
1

π

∫ ∞

−∞

log
(
2 log (e+ |λ|)

)

λ2 + 1
dλ < ∞.

3) If g(x) = ea|x|
b
, a ≥ 0, b ∈ [0, 1), then

Sg(r) =
1

π

∫ ∞

−∞

a|τ |b
τ 2 + r2

dτ =
arb−1

π

∫ ∞

−∞

|λ|b
λ2 + 1

dλ =
2arb−1

π

∫ ∞

0

tb

t2 + 1
dt

=
arb−1

π

∫ ∞

0

s
b−1
2

s + 1
ds =

arb−1

sin
(
1−b
2
π
) , r ≥ 1 (19)

(see, e.g., [4, Ch. V, Example 2.12]).

4) Finally, let g(x) = e|x|/ log
γ(e+|x|), γ > 1. Since

τ(e + τ)

τ 2 + r2
=

1 + e
τ

1 + r2

τ2

≤ 1 +
e

τ
≤ 1 +

e

r
for τ ≥ r,

then for any β ∈ (0, 1),

Sg(r) =
1

π

∫ ∞

−∞

|τ |
(τ 2 + r2) logγ(e+ |τ |) dτ =

2

π

∫ ∞

0

τ

(τ 2 + r2) logγ(e + τ)
dτ

=
2

π

∫ rβ

0

+

∫ r

rβ
+

∫ ∞

r

τ

(τ 2 + r2) logγ(e+ τ)
dτ

≤ 2

π

∫ rβ

0

τ

τ 2 + r2
dτ +

2

π logγ(e+ rβ)

∫ r

rβ

τ

τ 2 + r2
dτ

+
2

π

(
1 +

e

r

)∫ ∞

r

1

(e+ τ) logγ(e+ τ)
dτ
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=
1

π
log(τ 2 + r2)

∣∣rβ
0

+
1

π logγ(e+ rβ)
log(τ 2 + r2)

∣∣r
rβ

+
2

π

(
1 +

e

r

) 1

1− γ
log1−γ(e+ τ)

∣∣∞
r

≤ 1

π
log(1 + r2(β−1)) +

log 2

π logγ(e+ rβ)
+

2

π

(
1 +

e

r

) 1

γ − 1
log1−γ(e + r)

≤ r2(β−1)

π
+

log 2

π logγ(e+ rβ)
+

2

π

(
1 +

e

r

) 1

γ − 1
log1−γ(e+ r), r ≥ 1.

Since

lim
r→∞

r2(β−1) + (log 2) log−γ(e+ rβ)

log−γ(e+ r)
=

log 2

βγ
for all β ∈ (0, 1),

one gets, upon taking β ∈
(
(log 2)1/γ , 1

)
, the following estimate

Sg(r) ≤
log−γ(e+ r)

π
+

2

π

(
1 +

e

r

) 1

γ − 1
log1−γ(e+ r) (20)

for sufficiently large r.

3. Estimates for entire functions

Let 1 ≤ p ≤ ∞ and let ω : Rn → [0,∞) be a measurable function such that
ω > 0 Lebesgue almost everywhere. We set

‖f‖Lp
ω
:= ‖ωf‖Lp and (21)

Lp
ω(R

n) := {f : Rn → C | f measurable, ‖f‖Lp
ω
< ∞} .

Lemma 3.1. Let g : Rn → [1,∞) be a locally bounded, measurable submulti-
plicative function satisfying the Beurling-Domar condition (3). Let ϕ be a mea-
surable function such that for almost every x′ = (x2, . . . , xn) ∈ Rn−1, ϕ(z1, x

′)
is analytic in z1 for Im z1 > 0 and continuous up to R. Suppose also that
log |ϕ(z1, x′)| = O(|z1|) for |z1| large, Im z1 ≥ 0, and that the restriction of ϕ
to Rn belongs to Lp

g±1(R
n), 1 ≤ p ≤ ∞. Finally, suppose that

kϕ := ess sup
x′∈Rn−1

(
lim sup
0<y1→∞

log |ϕ(iy1, x′)|
y1

)
< ∞. (22)

Then

‖ϕ(·+ iy1, ·)‖Lp

g±1(R
n) ≤ Cge

(kϕ+Sg(y1))y1‖ϕ‖Lp

g±1 (R
n), y1 > 0 (23)

(see (14), (15)), where the constant Cg < ∞ depends only on g.

Proof. Let a+ := max{a, 0} for a ∈ R. It follows from (1) that
∫ ∞

−∞

log+ (g∓1(t, x′))

1 + t2
dt ≤

∫ ∞

−∞

log (g(t, x′))

1 + t2
dt

≤
∫ ∞

−∞

log(g(t, 0)) + log(g(0, x′))

1 + t2
dt ≤ π ((Sg(1) + log(g(0, x′))) < +∞.
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Since g±1ϕ ∈ Lp(Rn), Fubini’s theorem implies that

g±1(·, x′)ϕ(·, x′) ∈ Lp(R)

for almost all x′ ∈ Rn−1. For such x′ ∈ Rn−1,
∫ ∞

−∞

log+ |ϕ(t, x′)|
1 + t2

dt

≤
∫ ∞

−∞

log+ (g±1(t, x′)|ϕ(t, x′)|)
1 + t2

dt +

∫ ∞

−∞

log+ (g∓1(t, x′))

1 + t2
dt < ∞.

Then

log |ϕ(x1 + iy1, x
′)| ≤ kϕy1 +

y1
π

∫ ∞

−∞

log |ϕ(t, x′)|
(t− x1)2 + y21

dt, x1 ∈ R, y1 > 0

([19, Ch. III, G, 2], see also [21, Ch. V, Theorems 5 and 7]).

Applying (1) again, one gets

log g(x) ≤ log g(t, x′) + log g(x1 − t, 0),

log g(t, x′) ≤ log g(x) + log g(t− x1, 0) for all x = (x1, x
′) ∈ Rn, t ∈ R.

The latter inequality can be rewritten as follows

log g−1(x) ≤ log g−1(t, x′) + log g(t− x1, 0).

Hence

log g±1(x) ≤ log g±1(t, x′)+log g(±(x1 − t), 0) for all x = (x1, x
′) ∈ Rn, t ∈ R,

and

log
(
|ϕ(x1 + iy1, x

′)|g±1(x)
)
≤ kϕy1 +

y1
π

∫ ∞

−∞

log |ϕ(t, x′)|
(t− x1)2 + y21

dt+ log g±1(x)

= kϕy1 +
y1
π

∫ ∞

−∞

log |ϕ(t, x′)|+ log g±1(x)

(t− x1)2 + y21
dt

≤ kϕy1 +
y1
π

∫ ∞

−∞

log
(
|ϕ(t, x′)|g±1(t, x′)

)

(t− x1)2 + y21
dt+

y1
π

∫ ∞

−∞

log g(±(x1 − t), 0)

(t− x1)2 + y21
dt

= kϕy1 +
y1
π

∫ ∞

−∞

log
(
|ϕ(t, x′)|g±1(t, x′)

)

(t− x1)2 + y21
dt+

y1
π

∫ ∞

−∞

log g(τ, 0)

τ 2 + y21
dτ.

If y1 ∈ [0, 1], then

y1
π

∫ ∞

0

log g(τ, 0)

τ 2 + y21
dτ ≤ M

y1
π

∫ 1

0

1

τ 2 + y21
dτ +

y1
π

∫ ∞

1

log g(τ, 0)

τ 2 + y21
dτ

≤ M
y1
π

∫

R

1

τ 2 + y21
dτ +

1

π

∫ ∞

1

log g(τ, 0)

τ 2
dτ ≤ M +

Ig(1)

π
. (24)

It follows from (14) that for y1 > 1,

y1
π

∫ ∞

−∞

log g(τ, 0)

τ 2 + y21
dτ ≤ y1Sg(y1).
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So,

log
(
|ϕ(x1 + iy1, x

′)|g±1(x)
)
≤ cg + (kϕ + Sg(y1)) y1

+
y1
π

∫ ∞

−∞

log
(
|ϕ(t, x′)|g±1(t, x′)

)

(t− x1)2 + y21
dt,

where cg := M + Ig(1)
π

. Using Jensen’s inequality, one gets

|ϕ(x1 + iy1, x
′)|g±1(x) ≤ Cge

(kϕ+Sg(y1))y1
y1
π

∫ ∞

−∞

|ϕ(t, x′)|g±1(t, x′)

(t− x1)2 + y21
dt,

where

Cg := eM+
Ig(1)

π . (25)

Estimate (23) now follows from Young’s convolution inequality and (21). �

Remark 3.2. Let n = 1, g : R → [1,∞) be a Hölder continuous submulti-
plicative function satisfying the Beurling-Domar condition, and let

w(x+ iy) :=
y

π

∫ ∞

−∞

log g(t)

(t− x)2 + y2
dt

+
i

π

∫ ∞

−∞

(
x− t

(t− x)2 + y2
+

t

t2 + 1

)
log g(t) dt, x ∈ R, y > 0.

Then ϕ(z) := ew(z) is analytic in z for Im z > 0 and continuous up to R,

|ϕ(x)| = eRe(w(x)) = elog g(x) = g(x), x ∈ R

(see, e.g., [8, Ch. III, §1]), and

|ϕ(iy)| = eRe(w(iy)) = exp

(
y

π

∫ ∞

−∞

log g(t)

t2 + y2
d

)
= eSg(y)y , y > 0.

So,

kϕ = lim sup
0<y→∞

log |ϕ(iy)|
y

= lim sup
y→∞

Sg(y) = 0

(see (15)), and

‖ϕ(·+ iy)‖L∞
g−1(R)

≥ |ϕ(iy)|
g(0)

≥ |ϕ(iy)| = eSg(y)y = eSg(y)y‖1‖L∞(R)

= eSg(y)y‖g−1ϕ‖L∞(R) = eSg(y)y‖ϕ‖L∞
g−1(R)

,

which shows that the factor eSg(y1)y1 in the right-hand side of (23) is optimal
in this case.

Clearly,

Sğ = Sg, Cğ = Cg, (26)

where ğ(x) := g(Ax) and A ∈ O(n) is an arbitrary orthogonal matrix (see
(14), (25) and (5)).
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Theorem 3.3. Let g : Rn → [1,∞) be a locally bounded, measurable submulti-
plicative function satisfying the Beurling-Domar condition (3). Let ϕ : Cn → C

be an entire function such that log |ϕ(z)| = O(|z|) for |z| large, z ∈ Cn, and
that the restriction of ϕ to Rn belongs to Lp

g±1(R
n), 1 ≤ p ≤ ∞. Then for

every multi-index α ∈ Zn
+,

‖(∂αϕ) (·+ iy)‖Lp

g±1 (R
n) ≤ Cαe

(κϕ(y/|y|)+Sg(|y|))|y|‖ϕ‖Lp

g±1(R
n), y ∈ Rn, (27)

where

κϕ(ω) := sup
x∈Rn

(
lim sup
0<t→∞

log |ϕ(x+ itω)|
t

)
< ∞, ω ∈ Sn−1, (28)

and the constant Cα ∈ (0,∞) depends only on α and g.

Proof. (Cf. the proof of Lemma 9.29 in [20].) Take any y ∈ Rn \ {0}.
There exist an orthogonal matrix A ∈ O(n) such that Ae1 = ω := y/|y|
(see (7)). Let ϕ̆(z) := ϕ(Az), z ∈ Cn, and ğ(x) := g(Ax), x ∈ Rn. Then
ϕ̆ : Cn → C is an entire function, and one can apply to it Lemma 3.1 with ğ
in place of g (see (26)).

For any x ∈ Rn, one has ϕ(x+ iy) = ϕ̆ (x̃+ i|y|e1) = ϕ̆ (x̃1 + i|y|, x̃2, . . . , x̃n),
where x̃ := A−1x. Hence

‖ϕ(·+ iy)‖Lp

g±1(R
n) = ‖ϕ̆(·+ i|y|, ·)‖Lp

ğ±1 (R
n) ≤ Cğe

(kϕ̆+Sğ(|y|))|y| ‖ϕ̆‖Lp

ğ±1 (R
n)

≤ Cge
(κϕ(y/|y|)+Sg(|y|))|y| ‖ϕ̆‖Lp

ğ±1 (R
n) = Cge

(κϕ(y/|y|)+Sg(|y|))|y|‖ϕ‖Lp

g±1(R
n)

(see (26)), which proves (27) for α = 0 and y 6= 0. This estimate is trivial for
α = 0 and y = 0.

Iterating the standard Cauchy integral formula for one complex variable, one
gets

ϕ(ζ) =
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

ϕ(z1 + eiθ1, . . . , zn + eiθn)∏n
k=1(zk + eiθk − ζk)

(
n∏

k=1

eiθk

)
dθ1 · · ·dθn,

ζ ∈ ∆(z) := {η ∈ Cn : |ηk − zk| < 1, k = 1, . . . , n} , z ∈ Cn

(cf. [20, Ch. 1, §1]), which implies

∂αϕ(ζ) =
α!

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

ϕ(z1 + eiθ1 , . . . , zn + eiθn)∏n
k=1(zk + eiθk − ζk)αk+1

(
n∏

k=1

eiθk

)
dθ1 · · · dθn.

Hence

∂αϕ(z) =
α!

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

ϕ(z1 + eiθ1 , . . . , zn + eiθn)∏n
k=1 e

iαkθk
dθ1 · · · dθn,

and

|∂αϕ(z)| ≤ α!

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

∣∣ϕ(z1 + eiθ1 , . . . , zn + eiθn)
∣∣ dθ1 · · ·dθn. (29)
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Since g ≥ 1 is locally bounded,

1 ≤ M1 := sup
|sk|≤1, k=1,...,n

g(s) < ∞.

Then it follows from (1) that

g±1(x1 − cos θ1, . . . , xn − cos θn) ≤ M1g
±1(x). (30)

According to the conditions of the theorem, there exists a constant cϕ ∈ (0,∞)
such that log |ϕ(ζ)| ≤ cϕ|ζ | for |ζ | large. Then κϕ(ω) ≤ cϕ (see (28)). Let
ϕy := ϕ(·+ iy), y = (Im z1, . . . , Im zn). Then, similarly to the above inequality,
κϕy(ω) ≤ cϕ. Applying (27) with α = 0 to the function ϕy in place of ϕ and
using (16), (30), one derives from (29)

‖(∂αϕ) (·+ iy)‖Lp

g±1 (R
n)

≤ α!

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

∥∥ϕ(·+ iy1 + eiθ1 , . . . , ·+ iyn + eiθn)
∥∥
Lp

g±1(R
n)

dθ1 · · · dθn

≤ α!

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

M1 ‖ϕ(·+ iy1 + i sin θ1, . . . , ·+ iyn + i sin θn)‖Lp

g±1 (R
n) dθ1 · · · dθn

≤ α!

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

M1C0e
(cϕ+Sg(1))

√
n‖ϕ(·+ iy)‖Lp

g±1(R
n) dθ1 · · · dθn

= α!M1C0e
(cϕ+Sg(1))

√
n‖ϕ(·+ iy)‖Lp

g±1(R
n).

Applying (27) with α = 0 again, one gets

‖(∂αϕ) (·+ iy)‖Lp

g±1(R
n) ≤ α!M1C

2
0e

(cϕ+Sg(1))
√
ne(κϕ(y/|y|)+Sg(|y|))|y|‖ϕ‖Lp

g±1 (R
n).

�

Corollary 3.4. Let g : Rn → [1,∞) be a locally bounded, measurable submul-
tiplicative function satisfying the Beurling-Domar condition (3). Let ϕ : Cn →
C be an entire function such that log |ϕ(z)| = O(|z|) for |z| large, z ∈ Cn, and
that the restriction of ϕ to Rn belongs to Lp

g±1(R
n), 1 ≤ p ≤ ∞. Then for

every multi-index α ∈ Zn
+ and every ε > 0,

‖(∂αϕ) (·+ iy)‖Lp

g±1 (R
n) ≤ Cα,εe

(κϕ(y/|y|)+ε)|y|‖ϕ‖Lp

g±1(R
n), y ∈ Rn, (31)

where κϕ is defined by (28), and the constant Cα,ε ∈ (0,∞) depends only on
α, ε, and g.

Proof. It follows from (15) that for every ε > 0, there exists cε such that

Sg(|y|)|y| ≤ cε + ε|y| for all y ∈ Rn.

Hence (27) implies (31). �
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4. Main results

We will use the notation g̃(x) := g(−x), x ∈ Rn.

Taking y − x in place of y in (1) and rearranging, one gets

1

g(x)
≤ g(y − x)

g(y)
. (32)

Using this inequality, one can easily show that f ∗ u ∈ L∞
g−1(Rn) for every

f ∈ L∞
g−1(Rn) and u ∈ L1

g̃(R
n). The Fubini-Tonelli theorem implies that

f ∗ (v ∗ u) = (f ∗ v) ∗ u for all f ∈ L∞
g−1(Rn) and v, u ∈ L1

g̃(R
n). (33)

Theorem 4.1. Let g : Rn → [1,∞) be a locally bounded, measurable submulti-
plicative function satisfying the Beurling-Domar condition (3), f ∈ L∞

g−1(Rn),

and Y be a linear subspace of L1
g̃(R

n) such that

f ∗ v = 0 for every v ∈ Y. (34)

Suppose the set

Z(Y ) :=
⋂

v∈Y
{ξ ∈ Rn | v̂(ξ) = 0} (35)

is bounded, and u ∈ L1
g̃(R

n) is such that û = 1 in a neighbourhood of Z(Y ).
Then f = f ∗ u.

Proof. It is sufficient to show that

〈f, h〉 = 〈f ∗ u, h〉 for every h ∈ L1
g(R

n). (36)

Since the set of functions h with compactly supported Fourier transforms ĥ is
dense in L1

g(R
n) (see [5, Theorems 1.52 and 2.11]), it is sufficient to prove (36)

for such h. Further,

〈f, h〉 =
(
f ∗ h̃

)
(0).

So, it is sufficient to show that

f ∗ w = f ∗ u ∗ w (37)

for every w ∈ L1
g̃(R

n) with compactly supported Fourier transform ŵ. Take
any such w and choose R > 0 such that the support of ŵ lies in BR :=
{ξ ∈ Rn : |ξ| ≤ R}. It is clear that g̃ satisfies the Beurling-Domar condition.
Then there exists uR ∈ L1

g̃(R
n) such that 0 ≤ ûR ≤ 1, ûR(ξ) = 1 for |ξ| ≤ R,

and ûR(ξ) = 0 for |ξ| ≥ R + 1 (see [5, Lemma 1.24]).

Let V be an open neighbourhood of Z(Y ) such that û = 1 in V . Similarly
to the above, there exists u0 ∈ L1

g̃(R
n) such that 0 ≤ û0 ≤ 1, û0 = 1 in a

neighbourhood V0 ⊂ V of Z(Y ), and û0 = 0 outside V (see [5, Lemma 1.24]).

Since Y is a linear subspace, for every η ∈ BR+1 \ V0 ⊂ Rn \ Z(Y ), there
exists vη ∈ Y such that v̂η(η) = 1. Since vη ∈ L1(Rn), v̂η is continuous, and
there is a neighbourhood Vη of η such that |v̂η(ξ)− 1| < 1/2 for all ξ ∈ Vη.
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Similarly to the above, there exists uη ∈ L1
g̃(R

n) such that Re (v̂ηûη) ≥ 0, and

Re (v̂ηûη) >
1
2
in a neighbourhood V 0

η ⊂ Vη of η.

Since BR+1 \V0 is compact, its open cover {V 0
η }η∈BR+1\V0

has a finite subcover.

So, there exist functions vj ∈ Y and uj ∈ L1
g̃(R

n), j = 1, . . . , N such that

Re (σ) >
1

2
, where σ := û0 +

N∑

j=1

v̂j ûj + 1− ûR.

Then there exists υ ∈ L1
g̃(R

n) such that υ̂ = 1/σ (see [5, Theorem 1.53]).

Since û0(1− û) = 0 and (1− ûR) ŵ = 0, one has

(
û+

N∑

j=1

v̂j ûjυ̂ (1− û)

)
ŵ =

(
û+ (σ − (û0 + 1− ûR)) υ̂ (1− û)

)
ŵ

=
(
û+ (1− û)− (û0 + 1− ûR)υ̂ (1− û)

)
ŵ =

(
1− (1− ûR)υ̂ (1− û)

)
ŵ

= ŵ − (1− ûR)ŵυ̂ (1− û) = ŵ.

It now follows from (33) and (34) that

f ∗ w = f ∗
(
u+

N∑

j=1

vj ∗ uj ∗ (υ − υ ∗ u)
)

∗ w

= f ∗ u ∗ w + f ∗
(

N∑

j=1

vj ∗ uj ∗ (υ − υ ∗ u)
)

∗ w

= f ∗ u ∗ w +
N∑

j=1

(f ∗ vj) ∗ uj ∗ (υ − υ ∗ u) ∗ w = f ∗ u ∗ w.

�

Corollary 4.2. If Z(Y ) = ∅ in Theorem 4.1, then f = 0.

Proof. It is sufficient to show that

f ∗ w = 0

for every w ∈ L1
g̃(R

n) with compactly supported Fourier transform ŵ (see the

beginning of the proof of Theorem 4.1). Take u ∈ L1
g̃(R

n) is such that û = 1
in an open set, and the support of û does not intersect that of ŵ. The latter
condition implies that u ∗w = 0. Since Z(Y ) = ∅, it follows from Theorem 4.1
that f = f ∗ u. Hence,

f ∗ w = (f ∗ u) ∗ w = f ∗ (u ∗ w) = f ∗ 0 = 0

(see (33)). �
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For a bounded set E ⊂ Rn, let conv(E) denote its closed convex hull and HE

denote its support function:

HE(y) := sup
ξ∈E

y · ξ = sup
ξ∈conv(E)

y · ξ, y ∈ Rn.

Clearly, HE is positively homogeneous and convex:

HE(τy) = τHE(y), HE(y + x) ≤ HE(y) +HE(x)

for all y, x ∈ Rn, τ ≥ 0.

For every positively homogeneous convex function H ,

K := {ξ ∈ Rn| y · ξ ≤ H(y) for all y ∈ Rn} (38)

is the unique convex compact set such that HK = H (see, e.g., [14, Theorem
4.3.2]).

Theorem 4.3. Let g, f , and Y satisfy the conditions of Theorem 4.1, and let

HY (y) := HZ(Y )(−y) = sup
ξ∈Z(Y )

(−y) · ξ = − inf
ξ∈Z(Y )

y · ξ, y ∈ Rn. (39)

Then f admits analytic continuation to an entire function f : Cn → C such
that for every multi-index α ∈ Zn

+,

‖(∂αf) (·+ iy)‖L∞
g−1 (R

n) ≤ Cαe
HY (y)+Sg(|y|)|y|‖f‖L∞

g−1(R
n), y ∈ Rn (40)

(see (14), (15)), where the constant Cα ∈ (0,∞) depends only on α and g.

Proof. Take any ε > 0. There exists u ∈ L1
g̃(R

n) such that û = 1 in a
neighbourhood of Z(Y ), and û = 0 outside the ε

2
-neighbourhood of Z(Y ) (see

[5, Lemma 1.24]). It follows from the Paley–Wiener–Schwartz theorem (see,
e.g., [14, Theorem 7.3.1]) that u = F−1û admits analytic continuation to an
entire function u : Cn → C satisfying the estimate

|u(x+ iy)| ≤ cεe
HY (y)+ε|y|/2 for all x, y ∈ Rn

with some constant cε ∈ (0,∞). So, u satisfies the conditions of Corollary 3.4
with g̃ in place of g, and

‖u(·+ iy)‖L1
g̃
(Rn) ≤ C0,ε/2 e

HY (y)+ε|y|‖u‖L1
g̃
(Rn), y ∈ Rn. (41)

Since

f(x) =

∫

Rn

u(x− s)f(s) ds

(see Theorem 4.1), f admits analytic continuation

f(x+ iy) :=

∫

Rn

u(x+ iy − s)f(s) ds

(see Corollary 3.4), and

‖f(·+ iy)‖L∞
g−1(R

n) ≤ ‖u(·+ iy)‖L1
g̃
(Rn)‖f‖L∞

g−1(R
n)

≤ C0,ε/2 e
HY (y)+ε|y|‖u‖L1

g̃
(Rn)‖f‖L∞

g−1 (R
n) =: Mεe

HY (y)+ε|y|‖f‖L∞
g−1(R

n)
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(see (32)). Since

|f(x+ iy)|
g(x)

≤ Mεe
HY (y)+ε|y|‖f‖L∞

g−1(R
n),

one has log |f(x+ iy)| = O(|x+ iy|) for |x+ iy| large (see (2)), and

lim sup
0<t→∞

log |f(x+ itω)|
t

≤ lim sup
0<t→∞

log
(
Mεg(x)‖f‖L∞

g−1(R
n)

)
+ tHY (ω) + εt

t

= HY (ω) + ε.

Hence,

κf (ω) := sup
x∈Rn

(
lim sup
0<t→∞

log |f(x+ itω)|
t

)
≤ HY (ω) + ε

for every ε > 0, i.e.
κf (ω) ≤ HY (ω).

So, (40) follows from Theorem 3.3. �

Theorem 4.4. Let g : Rn → [1,∞) be a locally bounded, measurable sub-
multiplicative function satisfying the Beurling-Domar condition (3) and let
m ∈ C(Rn) be such that the Fourier multiplier operator

C∞
c (Rn) ∋ φ 7→ m̃(D)φ := F−1(m̃φ̂)

maps C∞
c (Rn) into L1

g(R
n). Suppose f ∈ L∞

g−1(Rn) is such that m(D)f = 0 as
a distribution, i.e.

〈f, m̃(D)φ〉 = 0 for all φ ∈ C∞
c (Rn). (42)

If K := {η ∈ Rn | m(η) = 0} is compact, then f admits analytic continuation
to an entire function f : Cn → C such that for every multi-index α ∈ Zn

+,

‖(∂αf) (·+ iy)‖L∞
g−1 (R

n) ≤ Cαe
H(y)+Sg(|y|)|y|‖f‖L∞

g−1(R
n), y ∈ Rn (43)

(see (14), (15)), where where H(y) := HK(−y), and the constant Cα ∈ (0,∞)
depends only on α and g.

Conversely, if every f ∈ L∞(Rn) satisfying (42) admits analytic continuation
to an entire function f : Cn → C such that

‖f(·+ iy)‖L∞
g−1(R

n) ≤ Mεe
H(y)+ε|y|‖f‖L∞

g−1(R
n), y ∈ Rn, (44)

holds for every ε > 0 with a constant Mε ∈ (0,∞) that depends only on ε, m,
and g, then {η ∈ Rn | m(η) = 0} ⊆ K, where K is the unique convex compact
set such that HK(y) = H(−y) (cf. (38)).

Proof. Let
(Tυφ)(x) := φ(x− υ), x, υ ∈ Rn.

Since Tυφ ∈ C∞
c (Rn) for every φ ∈ C∞

c (Rn) and all υ ∈ Rn, it follows from
(42) that
(
f ∗ ˜̃m(D)φ

)
(υ) = 〈f, Tυm̃(D)φ〉 = 〈f, m̃(D) (Tυφ)〉 = 0 for all υ ∈ Rn.
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Hence

f ∗ ˜̃m(D)φ = 0 for all φ ∈ C∞
c (Rn).

It is easy to see that

⋂

φ∈C∞
c (Rn)

{
η ∈ Rn | ̂̃

m̃(D)φ(η) = 0

}
=

⋂

φ∈C∞
c (Rn)

{
η ∈ Rn | ̂̃m(D)φ(−η) = 0

}

=
⋂

φ∈C∞
c (Rn)

{
η ∈ Rn | m(η)φ̂(−η) = 0

}
= {η ∈ Rn | m(η) = 0} = K.

Applying Theorem 4.3 with

Y :=
{
˜̃m(D)φ

∣∣ φ ∈ C∞
c (Rn)

}
⊂ L1

g̃(R
n)

and Z(Y ) = K, one gets (43).

For the converse direction, we assume the contrary, i.e. that the zero-set {η ∈
Rn | m(η) = 0} contains some γ 6∈ K (see (38)). Then there exists y0 ∈ Rn\{0}
such that y0 ·γ > HK(y0) = H(−y0). It is easy to see that f(x) := eix·γ satisfies
m(D)eix·γ = eix·γm(γ) = 0 for all x ∈ Rn. Take ε < (y0 · γ − H(−y0))/|y0|.
Clearly, f ∈ L∞(Rn), and

‖f(· − iτy0)‖L∞
g−1 (R

n)

eH(−τy0)+ε|τy0|‖f‖L∞
g−1(R

n)
=

eτ(y0·γ)

eτ(H(−y0)+ε|y0|)

= eτ(y0·γ−H(−y0)−ε|y0|) → ∞ as τ → ∞.

So, f does not satisfy (44). �

Corollary 4.5. Let g : Rn → [1,∞) be a locally bounded, measurable sub-
multiplicative function satisfying the Beurling-Domar condition (3) and let
m ∈ C(Rn) be such that the Fourier multiplier operator

C∞
c (Rn) ∋ φ 7→ m̃(D)φ := F−1(m̃φ̂)

maps C∞
c (Rn) into L1

g(R
n). Suppose f ∈ L∞

g−1(Rn) is such that m(D)f = 0 as

a distribution, i.e. (42) holds. If {η ∈ Rn | m(η) = 0} = {0}, then f admits
analytic continuation to an entire function f : Cn → C such that for every
multi-index α ∈ Zn

+,

‖(∂αf) (·+ iy)‖L∞
g−1(R

n) ≤ Cαe
Sg(|y|)|y|‖f‖L∞

g−1(R
n), y ∈ Rn, (45)

where the constant Cα ∈ (0,∞) depends only on α and g. If {η ∈ Rn | m(η) = 0} =
∅, then f = 0.

Conversely, if every f ∈ L∞(Rn) satisfying (42) admits analytic continuation
to an entire function f : Cn → C such that

‖f(·+ iy)‖L∞
g−1(R

n) ≤ Mεe
ε|y|‖f‖L∞

g−1(R
n), y ∈ Rn, (46)

holds for every ε > 0 with a constant Mε ∈ (0,∞) that depends only on ε, m,
and g, then {η ∈ Rn | m(η) = 0} ⊆ {0}.
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Proof. The only part that does not follow immediately from Theorem 4.4
is that f = 0 in the case {η ∈ Rn | m(η) = 0} = ∅. In this case, one can take
the same Y as in the proof of Theorem 4.4, note that Z(Y ) = ∅ and apply
Corollary 4.2 to conclude that f = 0. (It is instructive to compare this result
to [17, Proposition 2.2].) �

Remark 4.6. The condition that m̃(D) maps C∞
c (Rn) to L1

g(R
n) is satisfied if

m is a linear combination of terms of the form ab, where a = Fµ, µ is a finite
complex Borel measure on Rn such that∫

Rn

g̃(y) |µ|(dy) < ∞,

and b is the Fourier transform of a compactly supported distribution. Indeed,

it is easy to see that b̃(D) maps C∞
c (Rn) into itself, while the convolution

operator φ 7→ µ̃ ∗ φ maps C∞
c (Rn) to L1

g(R
n).

Remark 4.7. We are mostly interested in super-polynomially growing weights
here as polynomially growing ones have been dealt with in our previous paper
[3]. Nevertheless, it is instructive to look at the behaviour of the factor eSg(|y|)|y|

for typical super-polynomially, polynomially, and sub-polynomially growing
weights.

It follows from (20) that if g(x) = e|x|/ log
γ(e+|x|), γ > 1, then there exists a

constant Cγ such that

eSg(|y|)|y| ≤ Cγe
1
π
|y| log−γ(e+|y|)(1+ 2

γ−1
log(e+|y|))

= Cγ

(
e|y|/ log

γ(e+|y|)) 1
π (1+

2
γ−1

log(e+|y|))
= Cγ(g(y))

1
π (1+

2
γ−1

log(e+|y|)).

Similarly, if g(x) = ea|x|
b
, a ≥ 0, b ∈ [0, 1), then (19) implies

eSg(|y|)|y| = ea|y|
b(sin( 1−b

2
π))

−1

= (g(y))(sin(
1−b
2

π))
−1

. (47)

If g(x) = (1 + |x|)s, s ≥ 0, then (17) implies

eSg(|y|)|y| ≤ ec1s+s log(1+|y|) = Cs(1 + |y|)s = Cs g(y). (48)

Finally, if g(x) = (log(e+ |x|))t, t ≥ 0, then (18) implies

eSg(|y|)|y| ≤ ec2t+t log log(e+|y|) = Ct(log(e+ |y|))t = Ct g(y).

Remark 4.8. If g is polynomially bounded in Corollary 4.5, then it follows
from (45) and (48) that f is a polynomially bounded entire function on Cn

and hence a polynomial (see, e.g., [20, Corollary 1.7]). The fact that f is a
polynomial in this case was established in [3] and [11].

Remark 4.9. Let n = 2, g(x) := (1+ |x|)k, k ∈ N, f(x1, x2) := (x1+ ix2)
k (or

f(x1, x2) := (x1 + ix2)
k + (x1 − ix2)

k if one prefers to have a real-valued f).
Then f ∈ L∞

g−1(R2), ∆f = 0, f(x + iy1e1) = (x1 + iy1 + ix2)
k for any y1 ∈ R

(see (7)), and

‖f(·+ iy1e1)‖L∞
g−1(R

2)

g(y1e1)
≥ |y1|k

(1 + |y1|)k
→ 1 = ‖f‖L∞

g−1 (R
2) as |y1| → ∞.
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So, the factor eSg(|y|)|y| ≤ Ck g(y) (see (48)) is optimal in (45) in this case.

The case g(x) = ea|x|
b
, a > 0, b ∈ [0, 1) is perhaps more interesting. Let us

take b = 1
2
. Then it follows from (47) that eSg(|y|)|y| = (g(y))

√
2. Let us show

that one cannot replace this factor in (45) with (g(y))
√
2 (1−ε), ε > 0. Take any

ε > 0. Since

4
√
1 + τ 2 cos

(
1

2
arctan

1

τ

)
→ 1√

2
as τ → 0, τ > 0,

there exists τε > 0 such that

4
√
1 + τ 2ε cos

(
1

2
arctan

1

τ ε

)
≤ 1 + ε√

2
.

Let us estimate Re
√
x1 + iκx2 , where x = (x1, x2) ∈ R2, κ > 0 is a constant

to be chosen later, and
√· is the branch of the square root that is analytic in

C \ (−∞, 0] and positive on (0,+∞). If x1 ≥ τǫκ|x2|, then

Re
√
x1 + iκx2 ≤

∣∣√x1 + iκx2

∣∣ = 4

√
x2
1 + κ2x2

2 ≤ 4

√(
1 +

1

τ 2ε

)
x2
1

≤
(
1 +

1

τ 2ε

)1/4 √
x1 ≤

(
1 +

1

τ 2ε

)1/4√
|x| .

If 0 < x1 < τǫκ|x2|, then

Re
√
x1 + iκx2 ≤

∣∣√x1 + iκx2

∣∣ cos
(
1

2
arctan

κ|x2|
x1

)

≤
∣∣∣
√
τǫκ|x2|+ iκx2

∣∣∣ cos
(
1

2
arctan

1

τ ε

)

= κ1/2|x2|1/2 4
√
1 + τ 2ε cos

(
1

2
arctan

1

τ ε

)
≤ 1 + ε√

2
κ1/2|x|1/2.

Now, take κε ≥ 1 such that

1 + ε√
2

κ1/2
ε ≥

(
1 +

1

τ 2ε

)1/4

.

Then

Re
√
x1 + iκεx2 ≤

1 + ε√
2

κ1/2
ε |x|1/2 (49)

for x1 > 0. If x1 ≤ 0, then the argument of
√
x1 + iκεx2 belongs to±[π/4, π/2],

depending on the sign of x2. Hence

Re
√
x1 + iκεx2 ≤

∣∣√x1 + iκεx2

∣∣ cos π
4
≤ 1√

2
κ1/2
ε |x|1/2,

and (49) holds for all x = (x1, x2) ∈ R2.

Since the Taylor series of cosw contains only even powers of w, cos(i
√
z) is

an analytic function of z ∈ C. So, cos(i
√
x1 + ix2) is a harmonic function of



LIOUVILLE THEOREM FOR SUB-EXPONENTIALLY GROWING SOLUTIONS 19

x = (x1, x2) ∈ R2. Hence f(x1, x2) := cos(i
√
x1 + iκεx2) is a solution of the

elliptic partial differential equation
(
∂2
x1

+
1

κ2
ε

∂2
x2

)
f(x1, x2) = 0.

It follows from (49) that

|f(x1, x2)| ≤
1

2

(
1 + eRe

√
x1+iκεx2

)
≤ e

1+ε√
2
κ
1/2
ε |x|1/2

.

So, f ∈ L∞
g−1(R2), where g(x) = ea|x|

1/2
with a = 1+ε√

2
κ
1/2
ε . Clearly, the analytic

continuation of f to C2 is given by the formula

f(x1 + iy1, x2 + iy2) = cos
(
i
√

x1 + iy1 + iκε(x2 + iy2)
)
.

Then (see (7))

‖f(·+ iy2e2)‖L∞
g−1 (R

2)

(g(y2e2))
√
2 (1−ε)

≥ |f(0 + iy2e2)|
g(0)(g(y2e2))

√
2 (1−ε)

=
|cos(i√−κεy2)|

e
√
2 (1−ε) 1+ε√

2
κ
1/2
ε |y2|1/2

≥ eκ
1/2
ε |y2|1/2

2e(1−ε2)κ
1/2
ε |y2|1/2

=
eε

2κ
1/2
ε |y2|1/2

2
→ ∞ as y2 → −∞.

5. Concluding remarks

Corollary 4.5 shows that sub-exponentially growing solutions of m(D)f = 0
admit analytic continuation to entire functions on Cn. It is well known that no
growth restrictions are necessary in the case when m(D) is an elliptic partial
differential operator with constant coefficients, and every solution of m(D)f =
0 in Rn admits analytic continuation to an entire function on Cn (see [22],
[6]).

Remark 5.1. The latter result has a local version similar to Hayman’s theorem
on harmonic functions (see [12, Theorem 1]) : for every elliptic partial differen-
tial operatorm(D) with constant coefficients there exists a constant cm ∈ (0, 1)
such that every solution of m(D)f = 0 in the ball {x ∈ Rn : |x| < R}
of any radius R > 0 admits continuation to an analytic function in the ball
{x ∈ Cn : |x| < cmR}. Indeed, let m0(D) =

∑
|α|=N aαD

α be the principal

part of m(D) =
∑

|α|≤N aαD
α. There exists Cm > 0 such that

∑

|α|=N

aα(a + ib)α = 0, a, b ∈ Rn =⇒ |a| ≥ Cm|b|

(see, e.g., [25, §7]). Then the same argument as in the proof of [18, Corol-
lary 8.2] shows that f admits continuation to an analytic function in the ball{
x ∈ Cn : |x| < (1 + C−2

m )−1/2R
}
. Note that in the case of the Laplacian, one

can take Cm = 1 and cm = (1 + C−2
m )−1/2 = 1√

2
, which is the optimal constant

for harmonic functions (see [12]).
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Let us return to equations in Rn. Below, m(ξ) will always denote a polynomial
with {ξ ∈ Rn | m(ξ) = 0} ⊆ {0}. For non-elliptic partial differential operators
m(D), one needs to place growth restrictions on solutions of m(D)f = 0 to
make sure that they admit analytic continuation to entire functions on Cn.

We say that a function f defined on Rn (or Cn) is of infra-exponential growth
if for every ε > 0, there exists Cε > 0 such that

|f(z)| ≤ Cεe
ε|z| for all z ∈ Rn (z ∈ Cn).

Let µ : [0,∞) → [0,∞) be an increasing to infinity function such that

µ(t) ≤ At +B, t ≥ 0

for some A,B > 0, and ∫ ∞

1

µ(t)

t2
dt < ∞. (50)

Suppose {ξ ∈ Rn | m(ξ) = 0} = {0}. Then, under additional restrictions on
µ, every solution f of m(D)f = 0 that has growth O(eεµ(|x|)) for every ε > 0
admits analytic continuation to an entire function of infra-exponential growth
on Cn (see [17]). It is easy to see that (50) is equivalent to the Beurling-Domar
condition (3) for g(x) := eµ(|x|).

One cannot replace O(eεµ(|x|)) with O(eε|x|) in the above result without placing
a restriction on the complex zeros of m. If there exists δ > 0 such that m(ζ)
has no complex zeros in

|Im ζ | < δ, |Re ζ | > δ−1, (51)

then every solution of m(D)f = 0 that, together with its partial derivatives
up to the order of m(D), is of infra-exponential growth on Rn, admits analytic
continuation to an entire function of infra-exponential growth on Cn (see [16],
[17]).

On the other hand, if for every δ > 0, (51) contains complex zeros of m(ζ),
then m(D)f = 0 has a solution in C∞ all of whose derivatives are of infra-
exponential growth, but which is not entire infra-exponential in Cn. The proof
of the latter result in [16], [17] is not constructive, and the author writes:
“Unfortunately we cannot present concrete examples of such” solutions. How-
ever, it is not difficult to construct, for any ε > 0, a solution in C∞ all of
whose derivatives have growth O(eε|x|), but which is not real-analytic. Indeed,
according to the assumption, there exist complex zeros

ζk = ξk + iηk, ξk, ηk ∈ Rn, k ∈ N

of m(ζ) such that

|ηk| < k−1, |ξk| > k. (52)

Choosing a subsequence, we can assume that ωk := |ξk|−1ξk converge to a point
ω0 ∈ Sn−1 := {ξ ∈ Rn : |ξ| = 1} as k → ∞, and that |ωk − ω0| < 1 for all
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k ∈ N. Then

ωk · ω0 =
|ωk|2 + |ω0|2 − |ωk − ω0|2

2
>

1 + 1− 1

2
=

1

2
, k ∈ N. (53)

Consider

f(x) :=
∑

k>ε−1

eiζk·x

e|ξk|1/2
=
∑

k>ε−1

eiξk ·x−ηk·x

e|ξk|1/2
, x ∈ Rn. (54)

Then, for every multi-index α,

|∂αf(x)| =
∣∣∣∣∣
∑

k>ε−1

(iζk)
αeiζk ·x

e|ξk|1/2

∣∣∣∣∣ ≤
∑

k>ε−1

(|ξk|+ 1)|α|e|ηk ||x|

e|ξk|1/2

≤ eε|x|
∑

k>ε−1

(|ξk|+ 1)|α|

e|ξk|1/2
=: Cαe

ε|x|, x ∈ Rn

(see (52)). Further,

m(D)f(x) =
∑

k>ε−1

m(ζk)e
iζk·x

e|ξk|1/2
= 0.

On the other hand, f is not real-analytic. Before we prove this, note that
formally putting x − itω0, t > 0 in place of x in the right-hand side of (54),
one gets a divergent series. Indeed, its terms can be estimated as follows

∣∣∣∣
eiξk ·x+tξk·ω0−ηk ·x+itηk·ω0

e|ξk|1/2

∣∣∣∣ =
et|ξk|ωk·ω0−ηk·x

e|ξk|1/2
≥ e−ε|x| e

t|ξk|/2

e|ξk|1/2
→ ∞

as k → ∞ (see (52), (53)).

For any j > ε−1, there exists ℓj ∈ N such that

ℓj ≤ |ξj|1/2 < ℓj + 1. (55)

It is clear that ℓj → ∞ as j → ∞ (see (52)). Note that

|arg (ω0 · ζk) | ≤
|ω0 · ηk|
|ω0 · ξk|

≤ 2

k|ξk|
.

If |ξk| ≥ 6ℓj
πk
, then

|arg (ω0 · ζk)ℓj | ≤
2ℓj
k|ξk|

≤ π

3
,

and

Re (ω0 · ζk)ℓj ≥
1

2
|ω0 · ζk|ℓj ≥

1

2ℓj+1
|ξk|ℓj .

Clearly, |ξj| ≥ 6ℓj
πj

for sufficiently large j (see (55)). Hence, one has the following

estimate for the directional derivative ∂ω0

∣∣((−i∂ω0)
ℓjf
)
(0)
∣∣ ≥

∑

k>ε−1

Re (ω0 · ζk)ℓj
e|ξk|1/2
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≥ −
∑

k>ε−1, |ξk|<
6ℓj
πk

|ζk|ℓj
e|ξk|1/2

+
∑

k>ε−1, |ξk|≥
6ℓj
πk

|ξk|ℓj
2ℓj+1e|ξk|1/2

≥ −
∑

k>ε−1, |ξk|<
6ℓj
πk

(
|ξk|+ 1

k

)ℓj

e|ξk|1/2
+

|ξj|ℓj
2ℓj+1e|ξj |

1/2

≥ −
∑

k>ε−1, |ξk|<
6ℓj
πk

1

e|ξk|1/2

(
10ℓj
πk

)ℓj

+
ℓ
2ℓj
j

2ℓj+1e(ℓ
2
j+1)1/2

≥ −(10ℓj)
ℓj

∞∑

k=1

1

e|ξk|1/2k2
+

ℓ
2ℓj
j

2ℓj+1eℓj+1
= −C(10ℓj)

ℓj + (2e)−(ℓj+1)ℓ
2ℓj
j .

Hence ∣∣((−i∂ω0)
ℓjf
)
(0)
∣∣ ≥ ℓ

3
2
ℓj

j

for all sufficiently large j, which means that f is not real-analytic in a neigh-
bourhood of 0.

The operator m(D) in the previous example is not hypoelliptic. If m(D) is
hypoelliptic, then every solution of m(D)f = 0, such that |f(x)| ≤ Aea|x|,
x ∈ Rn, for some constants A, a > 0, admits analytic continuation to an
entire function of order one on Cn (see [10, §4, Corollary 2]). For elliptic
operators, this result can be strengthened: every solution of m(D)f = 0,

such that |f(x)| ≤ Aea|x|
β
, x ∈ Rn, for β ≥ 1 and some constants A, a > 0,

admits analytic continuation to an entire function of order β on Cn (see [10,
§4, Corollary 3]). Let us show that for every β > 1 there exists a semi-elliptic
operator m(D) (see [15, Theorem 11.1.11]) and a C∞ solution of m(D)f =

0, all of whose derivatives have growth O(ea|x|
β
), but which does not admit

analytic continuation to an entire function on Cn.

A simple example of such a semi-elliptic operator is ∂2
x1

+ ∂4ℓ+2
x2

with ℓ ∈ N

satisfying 1 + 1
2ℓ

≤ β, i.e. ℓ ≥ 1
2(β−1)

.

Let

f(x1, x2) :=

∞∑

k=1

e−ik2ℓ+1x1+kx2

ek2ℓ+1 , (x1, x2) ∈ R2.

If x2 > 0, then the function t 7→ tx2− t2ℓ+1 achieves maximum at t =
(

x2

2ℓ+1

) 1
2ℓ ,

and this maximum is equal to

2ℓ

(
1

2ℓ+ 1

)1+ 1
2ℓ

x
1+ 1

2ℓ
2 =: cℓ x

1+ 1
2ℓ

2 .

Hence, for every multi-index α,

|∂αf(x1, x2)| ≤
∞∑

k=1

k(2ℓ+1)|α|ekx2−k2ℓ+1
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=

[
x

1
2ℓ
2

]
+1

∑

k=1

k(2ℓ+1)|α|ekx2−k2ℓ+1

+
∞∑

k=

[
x

1
2ℓ
2

]
+2

k(2ℓ+1)|α|ek(x2−k2ℓ)

≤
([

x
1
2ℓ
2

]
+ 1
)(2ℓ+1)|α|+1

ecℓ x
1+ 1

2ℓ
2 +

∞∑

k=1

k(2ℓ+1)|α|e−k

≤ 2(2ℓ+1)|α|+1
(
x
2|α|+1
2 + 1

)
ecℓ x

1+ 1
2ℓ

2 + cℓ,α ≤ Cℓ,αe
(cℓ+1)x

1+ 1
2ℓ

2 .

If x2 ≤ 0, then

|∂αf(x1, x2)| ≤
∞∑

k=1

k(2ℓ+1)|α|

ek2ℓ+1 <

∞∑

j=1

j|α|

ej
=: Cα < ∞.

So, f ∈ C∞(R2), and ∂αf(x1, x2) = O
(
e(cℓ+1)|x2|1+

1
2ℓ

)
= O

(
e(cℓ+1)|x|1+

1
2ℓ

)
. It

is easy to see that
(
∂2
x1

+ ∂4ℓ+2
x2

)
f(x1, x2) = 0.

The function f admits analytic continuation to the set

Π1 :=
{
(z1, z2) ∈ C2| Im z1 < 1

}
.

Indeed, let

f(z1, z2) = f(x1 + iy1, x2 + iy2) =

∞∑

k=1

e−ik2ℓ+1(x1+iy1)+k(x2+iy2)

ek2ℓ+1

=

∞∑

k=1

ei(ky2−k2ℓ+1x1)ek
2ℓ+1(y1−1)+kx2 .

It is easy to see that the last series is uniformly convergent on compact sub-
sets of Π1. So, f admits analytic continuation to Π1. On the other hand,
f(iy1, 0) → ∞ as y1 → 1− 0. Indeed,

f(iy1, 0) =

∞∑

k=1

ek
2ℓ+1(y1−1).

Take any N ∈ N. If y1 > 1−N−(2ℓ+1), then

f(iy1, 0) >

∞∑

k=1

e−k2ℓ+1N−(2ℓ+1)

>

N∑

k=1

e−k2ℓ+1N−(2ℓ+1) ≥
N∑

k=1

e−1 =
N

e
.

So, f(iy1, 0) → ∞ as y1 → 1− 0.
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