An extension of the Liouville theorem for Fourier multipliers to sub-exponentially growing solutions

David Berger, René L. Schilling, Eugene Shargorodsky, and Teo Sharia

Abstract

We study the equation $m(D) f=0$ in a large class of subexponentially growing functions. Under appropriate restrictions on $m \in$ $C\left(\mathbb{R}^{n}\right)$, we show that every such solution can be analytically continued to a sub-exponentially growing entire function on \mathbb{C}^{n} if and only if $m(\xi) \neq 0$ for $\xi \neq 0$.

1. Introduction

The classical Liouville theorem for the Laplace operator $\Delta:=\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}$ on \mathbb{R}^{n} says that every bounded (polynomially bounded) solution of the equation $\Delta f=0$ is in fact constant (is a polynomial). Recently, similar results have been obtained for solutions of more general equations of the form $m(D) f=0$, where $m(D):=\mathcal{F}^{-1} m(\xi) \mathcal{F}$, and

$$
\mathcal{F} \phi(\xi)=\widehat{\phi}(\xi)=\int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} \phi(x) d x \quad \text { and } \quad \mathcal{F}^{-1} u(x)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} u(\xi) d \xi
$$

are the Fourier and the inverse Fourier transforms (see [1], [2], [3], 11], and the references therein). Namely, it was shown that, under appropriate restrictions on $m \in C\left(\mathbb{R}^{n}\right)$, the implication
f is bounded (polynomially bounded) and $m(D) f=0$
$\Longrightarrow \quad f$ is constant (is a polynomial)
holds if and only if $m(\xi) \neq 0$ for $\xi \neq 0$. Much of this research has been motivated by applications to infinitesimal generators of Lévy processes.

[^0]In this paper, we deal with solutions of $m(D) f=0$ that can grow faster than any polynomial. Of course, one cannot expect such solutions to have simple structure, not even in the case of $\Delta f=0$ in \mathbb{R}^{2} (see, e.g., [21, Ch. I, §2]). We consider sub-exponentially growing solutions whose growth is controlled by a submultiplicative function (see (1)) satisfying the Beurling-Domar condition (3), and show that, under appropriate restrictions on $m \in C\left(\mathbb{R}^{n}\right)$, every such solution admits analytic continuation to a sub-exponentially growing entire function on \mathbb{C}^{n} if and only if $m(\xi) \neq 0$ for $\xi \neq 0$ (see Corollary 4.5). Results of this type have been obtained for solutions of partial differential equations with constant coefficients by A. Kaneko and G.E. Silov (see [16], [17, [26], [7, Ch. 10, Sect. 2, Theorem 2], and Section 5 below).

Keeping in mind applications to infinitesimal generators of Lévy processes, we do not assume that m is the Fourier transform of a distribution with compact support, so our setting is different from that in, e.g., [6], [15, Ch. XVI].
The paper is organized as follows. In Chapter 2, we consider submultiplicative functions satisfuing the Beurling-Domar condition and, for every such function g, introduce an auxiliary function S_{g} (see (14), (15)), which appears in our main estimates. Chapter 3 contains weighted L^{p} estimates for entire functions on \mathbb{C}^{n}, which are a key ingredient in the proof of our main results in Chapter 4 , Another key ingredient is the Tauberian theorem 4.1, which is similar to [3, Theorem 7] and [23, Theorem 9.3]. The main difference is that the function f in Theorem4.1 is not assumed to be polynomially bounded, and hence it might not be a tempered distribution. So, we avoid using the Fourier transform $\widehat{f}=$ $\mathcal{F} f$ and its support (and non-quasianalytic type ultradistributions). Although we are mainly interested in the case $m(\xi) \neq 0$ for $\xi \neq 0$, we also prove a Liouville type result for m with compact zero set $\left\{\xi \in \mathbb{R}^{n} \mid m(\xi)=0\right\}$ (see Theorem (4.4). Finally, we discuss in Section 5 A. Kaneko's Liouville type results for partial differential equations with constant coefficients ([16], [17]), which show that the Beurling-Domar condition is in a sense optimal in our setting.

2. Submultiplicative functions and the Beurling-Domar condition

Let $g: \mathbb{R}^{n} \rightarrow(0, \infty)$ be a locally bounded, measurable submultiplicative function, i.e. a locally bounded measurable function satisfying

$$
g(x+y) \leq C g(x) g(y) \quad \text { for all } \quad x, y \in \mathbb{R}^{n}
$$

where the constant $C \in[1, \infty)$ does not depend on x and y. Without loss of generality, we will always assume that $g \geq 1$, as otherwise one can replace g with $g+1$. Also, replacing g with $C g$, one can assume that

$$
\begin{equation*}
g(x+y) \leq g(x) g(y) \quad \text { for all } \quad x, y \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

A locally bounded submultiplicative function is exponentially bounded, i.e.

$$
\begin{equation*}
|g(x)| \leq C e^{a|x|} \tag{2}
\end{equation*}
$$

for suitable constants $C, a>0$ (see [24, Section 25] or [13, Ch. VII]).
We will say that g satisfies the Beurling-Domar condition if

$$
\begin{equation*}
\sum_{l=1}^{\infty} \frac{\log g(l x)}{l^{2}}<\infty \quad \text { for all } \quad x \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

If g satisfies the Beurling-Domar condition, then it also satisfies the Gelfand-Raikov-Shilov condition

$$
\lim _{l \rightarrow \infty} g(l x)^{1 / l}=1 \quad \text { for all } \quad x \in \mathbb{R}^{n}
$$

while $g(x)=e^{|x| / \log (e+|x|)}$ satisfies the latter but not the former (see [9]). It is also easy to see that $g(x)=e^{|x| / \log ^{\gamma}(e+|x|)}$ satisfies the Beurling-Domar condition if and only if $\gamma>1$. The function

$$
g(x)=e^{a|x|^{b}}(1+|x|)^{s}(\log (e+|x|))^{t}
$$

satisfies the Beurling-Domar condition for any $a, s, t \geq 0$ and $b \in[0,1)$ (see [9]).
Lemma 2.1. Let $g: \mathbb{R}^{n} \rightarrow[1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling-Domar condition (3). Then for every $\varepsilon>0$, there exists $R_{\varepsilon} \in(0, \infty)$ such that

$$
\begin{equation*}
\int_{R_{\varepsilon}}^{\infty} \frac{\log g(\tau x)}{\tau^{2}} d \tau<\varepsilon \quad \text { for all } \quad x \in \mathbb{S}^{n-1}:=\left\{y \in \mathbb{R}^{n}:|y|=1\right\} \tag{4}
\end{equation*}
$$

Proof. Since $g \geq 1$ is locally bounded,

$$
\begin{equation*}
0 \leq M:=\sup _{|y| \leq 1} \log g(y)<\infty . \tag{5}
\end{equation*}
$$

Take any $x \in \mathbb{S}^{n-1}$. It follows from (1) that

$$
\log g((l+1) x)-M \leq \log g(\tau x) \leq \log g(l x)+M \quad \text { for all } \quad \tau \in[l, l+1] .
$$

Hence

$$
\begin{align*}
& \sum_{l=L}^{\infty} \frac{\log g((l+1) x)-M}{(l+1)^{2}} \leq \sum_{l=L}^{\infty} \int_{l}^{l+1} \frac{\log g(\tau x)}{\tau^{2}} d \tau \leq \sum_{l=L}^{\infty} \frac{\log g(l x)+M}{l^{2}} \\
& \Longrightarrow \sum_{l=L+1}^{\infty} \frac{\log g(l x)}{l^{2}}-\frac{M}{L} \leq \int_{L}^{\infty} \frac{\log g(\tau x)}{\tau^{2}} d \tau \leq \sum_{l=L}^{\infty} \frac{\log g(l x)}{l^{2}}+\frac{M}{L-1} \tag{6}
\end{align*}
$$

for $L \in \mathbb{N}$.
Let

$$
\begin{align*}
& \mathbf{e}_{j}:=(\underbrace{0, \ldots, 0}_{j-1}, 1,0, \ldots, 0), j=1, \ldots, n, \quad \mathbf{e}_{0}:=\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right), \tag{7}\\
& Q:=\left\{y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}: \frac{1}{2 \sqrt{n}}<y_{j}<\frac{2}{\sqrt{n}}, j=1, \ldots, n\right\} .
\end{align*}
$$

For every $x \in \mathbb{S}^{n-1}$ there exists an orthogonal matrix $A_{x} \in O(n)$ such that $x=A_{x} \mathbf{e}_{0}$. Hence $\{A Q\}_{A \in O(n)}$ is an open cover of \mathbb{S}^{n-1}. Let $\left\{A_{k} Q\right\}_{k=1, \ldots, K}$ be a finite subcover. Take an arbitrary $\varepsilon>0$. It follows from (3) and (6) that there exists $R_{\varepsilon}>0$ for which

$$
\int_{\frac{R_{\varepsilon}}{2 \sqrt{n}}}^{\infty} \frac{\log g\left(\tau A_{k} \mathbf{e}_{j}\right)}{\tau^{2}} d \tau<\frac{\varepsilon}{2 \sqrt{n}}, \quad k=1, \ldots, K, j=1, \ldots, n
$$

For any $x \in \mathbb{S}^{n-1}$, there exist $k=1, \ldots, K$ and $a_{j} \in\left(\frac{1}{2 \sqrt{n}}, \frac{2}{\sqrt{n}}\right), j=1, \ldots, n$ such that

$$
x=\sum_{j=1}^{n} a_{j} A_{k} \mathbf{e}_{j}
$$

Using (1), one gets

$$
\begin{aligned}
\int_{R_{\varepsilon}}^{\infty} \frac{\log g(\tau x)}{\tau^{2}} d \tau & \leq \sum_{j=1}^{n} \int_{R_{\varepsilon}}^{\infty} \frac{\log g\left(\tau a_{j} A_{k} \mathbf{e}_{j}\right)}{\tau^{2}} d \tau=\sum_{j=1}^{n} a_{j} \int_{a_{j} R_{\varepsilon}}^{\infty} \frac{\log g\left(r A_{k} \mathbf{e}_{j}\right)}{r^{2}} d r \\
& \leq \sum_{j=1}^{n} \frac{2}{\sqrt{n}} \int_{\frac{R_{s}}{2 \sqrt{n}}}^{\infty} \frac{\log g\left(r A_{k} \mathbf{e}_{j}\right)}{r^{2}} d r<\sum_{j=1}^{n} \frac{2}{\sqrt{n}} \cdot \frac{\varepsilon}{2 \sqrt{n}}=n \frac{\varepsilon}{n}=\varepsilon
\end{aligned}
$$

Let

$$
\begin{aligned}
& I_{g, x}(r):=\int_{\max \{r, 1\}}^{\infty} \frac{\log g(\tau x)}{\tau^{2}} d \tau<\infty \\
& J_{g, x}(r):=\frac{1}{\max \{r, 1\}^{2}} \int_{0}^{r} \log g(\tau x) d \tau<\infty \\
& S_{g, x}(r):=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\log g(\tau x)}{\tau^{2}+\max \{r, 1\}^{2}} d \tau \quad r \geq 0, x \in \mathbb{S}^{n-1} .
\end{aligned}
$$

One has, for $r>1$ and any $\beta \in(0,1)$,

$$
\begin{align*}
J_{g, x}(r) & =\frac{1}{r^{2}} \int_{0}^{r} \log g(\tau x) d \tau=\frac{1}{r^{2}} \int_{0}^{1} \log g(\tau x) d \tau \\
& +\frac{1}{r^{2(1-\beta)}} \int_{1}^{r^{\beta}} \frac{\log g(\tau x)}{r^{2 \beta}} d \tau+\int_{r^{\beta}}^{r} \frac{\log g(\tau x)}{r^{2}} d \tau \\
& \leq \frac{M}{r^{2}}+\frac{1}{r^{2(1-\beta)}} \int_{1}^{\tau^{\beta}} \frac{\log g(\tau x)}{\tau^{2}} d \tau+\int_{r^{\beta}}^{r} \frac{\log g(\tau x)}{\tau^{2}} d \tau \\
& \leq \frac{M}{r^{2}}+\frac{I_{g, x}(1)}{r^{2(1-\beta)}}+I_{g, x}\left(r^{\beta}\right) \tag{8}
\end{align*}
$$

(see (5)). Further, if $r>1$, then

$$
\pi S_{g, x}(r)=\int_{0}^{\infty} \frac{\log g(\tau x)}{\tau^{2}+r^{2}} d \tau+\int_{0}^{\infty} \frac{\log g(-\tau x)}{\tau^{2}+r^{2}} d \tau
$$

$$
\begin{align*}
& \leq \int_{0}^{r} \frac{\log g(\tau x)}{r^{2}} d \tau+\int_{r}^{\infty} \frac{\log g(\tau x)}{\tau^{2}} d \tau \\
& +\int_{0}^{r} \frac{\log g(-\tau x)}{r^{2}} d \tau+\int_{r}^{\infty} \frac{\log g(-\tau x)}{\tau^{2}} d \tau \\
& =I_{g, x}(r)+J_{g, x}(r)+I_{g,-x}(r)+J_{g,-x}(r) \tag{9}\\
\pi S_{g, x}(r) & \geq \int_{0}^{r} \frac{\log g(\tau x)}{2 r^{2}} d \tau+\int_{r}^{\infty} \frac{\log g(\tau x)}{2 \tau^{2}} d \tau \\
& +\int_{0}^{r} \frac{\log g(-\tau x)}{2 r^{2}} d \tau+\int_{r}^{\infty} \frac{\log g(-\tau x)}{2 \tau^{2}} d \tau \\
& =\frac{1}{2}\left(I_{g, x}(r)+J_{g, x}(r)+I_{g,-x}(r)+J_{g,-x}(r)\right) \tag{10}
\end{align*}
$$

Since g is locally bounded, it follows from Lemma 2.1 that I_{g} defined by

$$
\begin{equation*}
I_{g}(r):=\sup _{x \in \mathbb{S}^{n-1}} I_{g, x}(r)=\sup _{x \in \mathbb{S}^{n-1}} \int_{\max \{r, 1\}}^{\infty} \frac{\log g(\tau x)}{\tau^{2}} d \tau<\infty \tag{11}
\end{equation*}
$$

is a decreasing function such that

$$
\begin{equation*}
I_{g}(r) \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty . \tag{12}
\end{equation*}
$$

Let

$$
\begin{align*}
& J_{g}(r):=\sup _{x \in \mathbb{S}^{n-1}} J_{g, x}(r)=\sup _{x \in \mathbb{S}^{n-1}} \frac{1}{\max \{r, 1\}^{2}} \int_{0}^{r} \log g(\tau x) d \tau, \tag{13}\\
& S_{g}(r):=\sup _{x \in \mathbb{S}^{n-1}} S_{g, x}(r)=\sup _{x \in \mathbb{S}^{n-1}} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\log g(\tau x)}{\tau^{2}+\max \{r, 1\}^{2}} d \tau . \tag{14}
\end{align*}
$$

Then

$$
\begin{aligned}
& J_{g}(r) \leq \frac{M}{r^{2}}+\frac{I_{g}(1)}{r^{2(1-\beta)}}+I_{g}\left(r^{\beta}\right), \\
& \frac{1}{2 \pi} \max \left\{I_{g}(r), J_{g}(r)\right\} \leq S_{g}(r) \leq \frac{2}{\pi}\left(I_{g}(r)+J_{g}(r)\right)
\end{aligned}
$$

(see (8), (9), (10)). So, $J_{g}(r) \rightarrow 0$, and

$$
\begin{equation*}
S_{g}(r) \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty \tag{15}
\end{equation*}
$$

(see (12)). It is clear that

$$
\begin{equation*}
S_{g}(r)=S_{g}(1) \text { for } r \in[0,1], \quad \text { and } \quad S_{g} \text { is a decreasing function. } \tag{16}
\end{equation*}
$$

Examples.

1) If $g(x)=(1+|x|)^{s}, s \geq 0$, then

$$
\begin{aligned}
S_{g}(r) & =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s \log (1+|\tau|)}{\tau^{2}+r^{2}} d \tau=\frac{s}{\pi r} \int_{-\infty}^{\infty} \frac{\log (1+r|\lambda|)}{\lambda^{2}+1} d \lambda \\
& \leq \frac{s}{\pi r} \int_{-\infty}^{\infty} \frac{\log (1+|\lambda|)}{\lambda^{2}+1} d \lambda+\frac{s \log (1+r)}{\pi r} \int_{-\infty}^{\infty} \frac{1}{\lambda^{2}+1} d \lambda
\end{aligned}
$$

$$
\begin{equation*}
=\frac{c_{1} s}{r}+\frac{s \log (1+r)}{r}, \quad r \geq 1 \tag{17}
\end{equation*}
$$

where

$$
c_{1}:=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\log (1+|\lambda|)}{\lambda^{2}+1} d \lambda<\infty
$$

2) If $g(x)=(\log (e+|x|))^{t}, t \geq 0$, then using the obvious inequality

$$
u+v \leq 2 u v, \quad u, v \geq 1
$$

one gets

$$
\begin{align*}
S_{g}(r) & =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{t \log \log (e+|\tau|)}{\tau^{2}+r^{2}} d \tau=\frac{t}{\pi r} \int_{-\infty}^{\infty} \frac{\log \log (e+r|\lambda|)}{\lambda^{2}+1} d \lambda \\
& \leq \frac{t}{\pi r} \int_{-\infty}^{\infty} \frac{\log (\log (e+|\lambda|)+\log (e+r))}{\lambda^{2}+1} d \lambda \\
& \leq \frac{t}{\pi r} \int_{-\infty}^{\infty} \frac{\log (2 \log (e+|\lambda|))}{\lambda^{2}+1} d \lambda+\frac{t \log \log (e+r)}{\pi r} \int_{-\infty}^{\infty} \frac{1}{\lambda^{2}+1} d \lambda \\
& =\frac{c_{2} t}{r}+\frac{t \log \log (e+r)}{r}, \quad r \geq 1, \tag{18}
\end{align*}
$$

where

$$
c_{2}:=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\log (2 \log (e+|\lambda|))}{\lambda^{2}+1} d \lambda<\infty .
$$

3) If $g(x)=e^{a|x|^{b}}, a \geq 0, b \in[0,1)$, then

$$
\begin{align*}
S_{g}(r) & =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a|\tau|^{b}}{\tau^{2}+r^{2}} d \tau=\frac{a r^{b-1}}{\pi} \int_{-\infty}^{\infty} \frac{|\lambda|^{b}}{\lambda^{2}+1} d \lambda=\frac{2 a r^{b-1}}{\pi} \int_{0}^{\infty} \frac{t^{b}}{t^{2}+1} d t \\
& =\frac{a r^{b-1}}{\pi} \int_{0}^{\infty} \frac{s^{\frac{b-1}{2}}}{s+1} d s=\frac{a r^{b-1}}{\sin \left(\frac{1-b}{2} \pi\right)}, \quad r \geq 1 \tag{19}
\end{align*}
$$

(see, e.g., 4, Ch. V, Example 2.12]).
4) Finally, let $g(x)=e^{|x| / \log ^{\gamma}(e+|x|)}, \gamma>1$. Since

$$
\frac{\tau(e+\tau)}{\tau^{2}+r^{2}}=\frac{1+\frac{e}{\tau}}{1+\frac{r^{2}}{\tau^{2}}} \leq 1+\frac{e}{\tau} \leq 1+\frac{e}{r} \quad \text { for } \quad \tau \geq r
$$

then for any $\beta \in(0,1)$,

$$
\begin{aligned}
S_{g}(r)= & \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|\tau|}{\left(\tau^{2}+r^{2}\right) \log ^{\gamma}(e+|\tau|)} d \tau=\frac{2}{\pi} \int_{0}^{\infty} \frac{\tau}{\left(\tau^{2}+r^{2}\right) \log ^{\gamma}(e+\tau)} d \tau \\
= & \frac{2}{\pi} \int_{0}^{r^{\beta}}+\int_{r^{\beta}}^{r}+\int_{r}^{\infty} \frac{\tau}{\left(\tau^{2}+r^{2}\right) \log ^{\gamma}(e+\tau)} d \tau \\
\leq & \frac{2}{\pi} \int_{0}^{r^{\beta}} \frac{\tau}{\tau^{2}+r^{2}} d \tau+\frac{2}{\pi \log ^{\gamma}\left(e+r^{\beta}\right)} \int_{r^{\beta}}^{r} \frac{\tau}{\tau^{2}+r^{2}} d \tau \\
& +\frac{2}{\pi}\left(1+\frac{e}{r}\right) \int_{r}^{\infty} \frac{1}{(e+\tau) \log ^{\gamma}(e+\tau)} d \tau
\end{aligned}
$$

$$
\begin{aligned}
= & \left.\frac{1}{\pi} \log \left(\tau^{2}+r^{2}\right)\right|_{0} ^{r^{\beta}}+\left.\frac{1}{\pi \log ^{\gamma}\left(e+r^{\beta}\right)} \log \left(\tau^{2}+r^{2}\right)\right|_{r^{\beta}} ^{r} \\
& +\left.\frac{2}{\pi}\left(1+\frac{e}{r}\right) \frac{1}{1-\gamma} \log ^{1-\gamma}(e+\tau)\right|_{r} ^{\infty} \\
\leq & \frac{1}{\pi} \log \left(1+r^{2(\beta-1)}\right)+\frac{\log 2}{\pi \log ^{\gamma}\left(e+r^{\beta}\right)}+\frac{2}{\pi}\left(1+\frac{e}{r}\right) \frac{1}{\gamma-1} \log ^{1-\gamma}(e+r) \\
\leq & \frac{r^{2(\beta-1)}}{\pi}+\frac{\log 2}{\pi \log ^{\gamma}\left(e+r^{\beta}\right)}+\frac{2}{\pi}\left(1+\frac{e}{r}\right) \frac{1}{\gamma-1} \log ^{1-\gamma}(e+r), \quad r \geq 1
\end{aligned}
$$

Since

$$
\lim _{r \rightarrow \infty} \frac{r^{2(\beta-1)}+(\log 2) \log ^{-\gamma}\left(e+r^{\beta}\right)}{\log ^{-\gamma}(e+r)}=\frac{\log 2}{\beta^{\gamma}} \quad \text { for all } \quad \beta \in(0,1),
$$

one gets, upon taking $\beta \in\left((\log 2)^{1 / \gamma}, 1\right)$, the following estimate

$$
\begin{equation*}
S_{g}(r) \leq \frac{\log ^{-\gamma}(e+r)}{\pi}+\frac{2}{\pi}\left(1+\frac{e}{r}\right) \frac{1}{\gamma-1} \log ^{1-\gamma}(e+r) \tag{20}
\end{equation*}
$$

for sufficiently large r.

3. Estimates for entire functions

Let $1 \leq p \leq \infty$ and let $\omega: \mathbb{R}^{n} \rightarrow[0, \infty)$ be a measurable function such that $\omega>0$ Lebesgue almost everywhere. We set

$$
\begin{align*}
& \|f\|_{L_{\omega}^{p}}:=\|\omega f\|_{L^{p}} \text { and } \tag{21}\\
& L_{\omega}^{p}\left(\mathbb{R}^{n}\right):=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{C} \mid f \text { measurable, }\|f\|_{L_{\omega}^{p}}<\infty\right\}
\end{align*}
$$

Lemma 3.1. Let $g: \mathbb{R}^{n} \rightarrow[1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling-Domar condition (3). Let φ be a measurable function such that for almost every $x^{\prime}=\left(x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n-1}, \varphi\left(z_{1}, x^{\prime}\right)$ is analytic in z_{1} for $\operatorname{Im} z_{1}>0$ and continuous up to \mathbb{R}. Suppose also that $\log \left|\varphi\left(z_{1}, x^{\prime}\right)\right|=O\left(\left|z_{1}\right|\right)$ for $\left|z_{1}\right|$ large, $\operatorname{Im} z_{1} \geq 0$, and that the restriction of φ to \mathbb{R}^{n} belongs to $L_{g^{ \pm 1}}^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$. Finally, suppose that

$$
\begin{equation*}
k_{\varphi}:=\underset{x^{\prime} \in \mathbb{R}^{n-1}}{\operatorname{ess} \sup _{1}}\left(\limsup _{0<y_{1} \rightarrow \infty} \frac{\log \left|\varphi\left(i y_{1}, x^{\prime}\right)\right|}{y_{1}}\right)<\infty . \tag{22}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\varphi\left(\cdot+i y_{1}, \cdot\right)\right\|_{L_{g \pm 1}^{p}\left(\mathbb{R}^{n}\right)} \leq C_{g} e^{\left(k_{\varphi}+S_{g}\left(y_{1}\right)\right) y_{1}}\|\varphi\|_{L_{g^{ \pm 1}}^{p}\left(\mathbb{R}^{n}\right)}, \quad y_{1}>0 \tag{23}
\end{equation*}
$$

(see (14), (15)), where the constant $C_{g}<\infty$ depends only on g.
Proof. Let $a^{+}:=\max \{a, 0\}$ for $a \in \mathbb{R}$. It follows from (11) that

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{\log ^{+}\left(g^{\mp 1}\left(t, x^{\prime}\right)\right)}{1+t^{2}} d t \leq \int_{-\infty}^{\infty} \frac{\log \left(g\left(t, x^{\prime}\right)\right)}{1+t^{2}} d t \\
& \leq \int_{-\infty}^{\infty} \frac{\log (g(t, 0))+\log \left(g\left(0, x^{\prime}\right)\right)}{1+t^{2}} d t \leq \pi\left(\left(S_{g}(1)+\log \left(g\left(0, x^{\prime}\right)\right)\right)<+\infty\right.
\end{aligned}
$$

Since $g^{ \pm 1} \varphi \in L^{p}\left(\mathbb{R}^{n}\right)$, Fubini's theorem implies that

$$
g^{ \pm 1}\left(\cdot, x^{\prime}\right) \varphi\left(\cdot, x^{\prime}\right) \in L^{p}(\mathbb{R})
$$

for almost all $x^{\prime} \in \mathbb{R}^{n-1}$. For such $x^{\prime} \in \mathbb{R}^{n-1}$,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{\log ^{+}\left|\varphi\left(t, x^{\prime}\right)\right|}{1+t^{2}} d t \\
& \leq \int_{-\infty}^{\infty} \frac{\log ^{+}\left(g^{ \pm 1}\left(t, x^{\prime}\right)\left|\varphi\left(t, x^{\prime}\right)\right|\right)}{1+t^{2}} d t+\int_{-\infty}^{\infty} \frac{\log ^{+}\left(g^{\mp 1}\left(t, x^{\prime}\right)\right)}{1+t^{2}} d t<\infty
\end{aligned}
$$

Then

$$
\log \left|\varphi\left(x_{1}+i y_{1}, x^{\prime}\right)\right| \leq k_{\varphi} y_{1}+\frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log \left|\varphi\left(t, x^{\prime}\right)\right|}{\left(t-x_{1}\right)^{2}+y_{1}^{2}} d t, \quad x_{1} \in \mathbb{R}, y_{1}>0
$$

([19, Ch. III, G, 2], see also [21, Ch. V, Theorems 5 and 7]).
Applying (1) again, one gets

$$
\begin{aligned}
& \log g(x) \leq \log g\left(t, x^{\prime}\right)+\log g\left(x_{1}-t, 0\right) \\
& \log g\left(t, x^{\prime}\right) \leq \log g(x)+\log g\left(t-x_{1}, 0\right) \quad \text { for all } \quad x=\left(x_{1}, x^{\prime}\right) \in \mathbb{R}^{n}, t \in \mathbb{R}
\end{aligned}
$$

The latter inequality can be rewritten as follows

$$
\log g^{-1}(x) \leq \log g^{-1}\left(t, x^{\prime}\right)+\log g\left(t-x_{1}, 0\right)
$$

Hence
$\log g^{ \pm 1}(x) \leq \log g^{ \pm 1}\left(t, x^{\prime}\right)+\log g\left(\pm\left(x_{1}-t\right), 0\right) \quad$ for all $\quad x=\left(x_{1}, x^{\prime}\right) \in \mathbb{R}^{n}, t \in \mathbb{R}$, and

$$
\begin{aligned}
& \log \left(\left|\varphi\left(x_{1}+i y_{1}, x^{\prime}\right)\right| g^{ \pm 1}(x)\right) \leq k_{\varphi} y_{1}+\frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log \left|\varphi\left(t, x^{\prime}\right)\right|}{\left(t-x_{1}\right)^{2}+y_{1}^{2}} d t+\log g^{ \pm 1}(x) \\
& =k_{\varphi} y_{1}+\frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log \left|\varphi\left(t, x^{\prime}\right)\right|+\log g^{ \pm 1}(x)}{\left(t-x_{1}\right)^{2}+y_{1}^{2}} d t \\
& \leq k_{\varphi} y_{1}+\frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log \left(\left|\varphi\left(t, x^{\prime}\right)\right| g^{ \pm 1}\left(t, x^{\prime}\right)\right)}{\left(t-x_{1}\right)^{2}+y_{1}^{2}} d t+\frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log g\left(\pm\left(x_{1}-t\right), 0\right)}{\left(t-x_{1}\right)^{2}+y_{1}^{2}} d t \\
& =k_{\varphi} y_{1}+\frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log \left(\left|\varphi\left(t, x^{\prime}\right)\right| g^{ \pm 1}\left(t, x^{\prime}\right)\right)}{\left(t-x_{1}\right)^{2}+y_{1}^{2}} d t+\frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log g(\tau, 0)}{\tau^{2}+y_{1}^{2}} d \tau
\end{aligned}
$$

If $y_{1} \in[0,1]$, then

$$
\begin{align*}
& \frac{y_{1}}{\pi} \int_{0}^{\infty} \frac{\log g(\tau, 0)}{\tau^{2}+y_{1}^{2}} d \tau \leq M \frac{y_{1}}{\pi} \int_{0}^{1} \frac{1}{\tau^{2}+y_{1}^{2}} d \tau+\frac{y_{1}}{\pi} \int_{1}^{\infty} \frac{\log g(\tau, 0)}{\tau^{2}+y_{1}^{2}} d \tau \\
& \quad \leq M \frac{y_{1}}{\pi} \int_{\mathbb{R}} \frac{1}{\tau^{2}+y_{1}^{2}} d \tau+\frac{1}{\pi} \int_{1}^{\infty} \frac{\log g(\tau, 0)}{\tau^{2}} d \tau \leq M+\frac{I_{g}(1)}{\pi} \tag{24}
\end{align*}
$$

It follows from (14) that for $y_{1}>1$,

$$
\frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log g(\tau, 0)}{\tau^{2}+y_{1}^{2}} d \tau \leq y_{1} S_{g}\left(y_{1}\right)
$$

So,

$$
\begin{aligned}
\log \left(\left|\varphi\left(x_{1}+i y_{1}, x^{\prime}\right)\right| g^{ \pm 1}(x)\right) \leq c_{g} & +\left(k_{\varphi}+S_{g}\left(y_{1}\right)\right) y_{1} \\
& +\frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log \left(\left|\varphi\left(t, x^{\prime}\right)\right| g^{ \pm 1}\left(t, x^{\prime}\right)\right)}{\left(t-x_{1}\right)^{2}+y_{1}^{2}} d t
\end{aligned}
$$

where $c_{g}:=M+\frac{I_{g}(1)}{\pi}$. Using Jensen's inequality, one gets

$$
\left|\varphi\left(x_{1}+i y_{1}, x^{\prime}\right)\right| g^{ \pm 1}(x) \leq C_{g} e^{\left(k_{\varphi}+S_{g}\left(y_{1}\right)\right) y_{1}} \frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\left|\varphi\left(t, x^{\prime}\right)\right| g^{ \pm 1}\left(t, x^{\prime}\right)}{\left(t-x_{1}\right)^{2}+y_{1}^{2}} d t
$$

where

$$
\begin{equation*}
C_{g}:=e^{M+\frac{I_{g}(1)}{\pi}} . \tag{25}
\end{equation*}
$$

Estimate (23) now follows from Young's convolution inequality and (21).
Remark 3.2. Let $n=1, g: \mathbb{R} \rightarrow[1, \infty)$ be a Hölder continuous submultiplicative function satisfying the Beurling-Domar condition, and let

$$
\begin{aligned}
w(x+i y) & :=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{\log g(t)}{(t-x)^{2}+y^{2}} d t \\
& +\frac{i}{\pi} \int_{-\infty}^{\infty}\left(\frac{x-t}{(t-x)^{2}+y^{2}}+\frac{t}{t^{2}+1}\right) \log g(t) d t, \quad x \in \mathbb{R}, y>0
\end{aligned}
$$

Then $\varphi(z):=e^{w(z)}$ is analytic in z for $\operatorname{Im} z>0$ and continuous up to \mathbb{R},

$$
|\varphi(x)|=e^{\operatorname{Re}(w(x))}=e^{\log g(x)}=g(x), \quad x \in \mathbb{R}
$$

(see, e.g., [8, Ch. III, §1]), and

$$
|\varphi(i y)|=e^{\operatorname{Re}(w(i y))}=\exp \left(\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{\log g(t)}{t^{2}+y^{2}} d\right)=e^{S_{g}(y) y}, \quad y>0 .
$$

So,

$$
k_{\varphi}=\limsup _{0<y \rightarrow \infty} \frac{\log |\varphi(i y)|}{y}=\limsup _{y \rightarrow \infty} S_{g}(y)=0
$$

(see (15)), and

$$
\begin{aligned}
\|\varphi(\cdot+i y)\|_{L_{g^{-1}}(\mathbb{R})} & \geq \frac{|\varphi(i y)|}{g(0)} \geq|\varphi(i y)|=e^{S_{g}(y) y}=e^{S_{g}(y) y}\|1\|_{L^{\infty}(\mathbb{R})} \\
& =e^{S_{g}(y) y}\left\|g^{-1} \varphi\right\|_{L^{\infty}(\mathbb{R})}=e^{S_{g}(y) y}\|\varphi\|_{L_{g^{-1}}^{\infty}(\mathbb{R})},
\end{aligned}
$$

which shows that the factor $e^{S_{g}\left(y_{1}\right) y_{1}}$ in the right-hand side of (23) is optimal in this case.

Clearly,

$$
\begin{equation*}
S_{\breve{g}}=S_{g}, \quad C_{\breve{g}}=C_{g}, \tag{26}
\end{equation*}
$$

where $\breve{g}(x):=g(A x)$ and $A \in O(n)$ is an arbitrary orthogonal matrix (see (14), (25) and (5)).

Theorem 3.3. Let $g: \mathbb{R}^{n} \rightarrow[1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling-Domar condition (3). Let $\varphi: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be an entire function such that $\log |\varphi(z)|=O(|z|)$ for $|z|$ large, $z \in \mathbb{C}^{n}$, and that the restriction of φ to \mathbb{R}^{n} belongs to $L_{g^{ \pm 1}}^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$. Then for every multi-index $\alpha \in \mathbb{Z}_{+}^{n}$,

$$
\begin{equation*}
\left\|\left(\partial^{\alpha} \varphi\right)(\cdot+i y)\right\|_{L_{g}^{p} 1}\left(\mathbb{R}^{n}\right) \leq C_{\alpha} e^{\left(\kappa_{\varphi}(y /|y|)+S_{g}(|y|)\right)|y|}\|\varphi\|_{L_{g}^{p} 1}\left(\mathbb{R}^{n}\right), \quad y \in \mathbb{R}^{n} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa_{\varphi}(\omega):=\sup _{x \in \mathbb{R}^{n}}\left(\limsup _{0<t \rightarrow \infty} \frac{\log |\varphi(x+i t \omega)|}{t}\right)<\infty, \quad \omega \in \mathbb{S}^{n-1} \tag{28}
\end{equation*}
$$

and the constant $C_{\alpha} \in(0, \infty)$ depends only on α and g.
Proof. (Cf. the proof of Lemma 9.29 in [20].) Take any $y \in \mathbb{R}^{n} \backslash\{0\}$. There exist an orthogonal matrix $A \in O(n)$ such that $A \mathbf{e}_{1}=\omega:=y /|y|$ (see (7)). Let $\breve{\varphi}(z):=\varphi(A z), z \in \mathbb{C}^{n}$, and $\breve{g}(x):=g(A x), x \in \mathbb{R}^{n}$. Then $\breve{\varphi}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is an entire function, and one can apply to it Lemma 3.1 with \breve{g} in place of g (see (26)).
For any $x \in \mathbb{R}^{n}$, one has $\varphi(x+i y)=\breve{\varphi}\left(\tilde{x}+i|y| \mathbf{e}_{1}\right)=\breve{\varphi}\left(\tilde{x}_{1}+i|y|, \tilde{x}_{2}, \ldots, \tilde{x}_{n}\right)$, where $\tilde{x}:=A^{-1} x$. Hence

$$
\begin{aligned}
& \|\varphi(\cdot+i y)\|_{L_{g \pm 1}^{p}\left(\mathbb{R}^{n}\right)}=\|\breve{\varphi}(\cdot+i|y|, \cdot)\|_{L_{\tilde{g} \pm 1}^{p}\left(\mathbb{R}^{n}\right)} \leq C_{\breve{g}} e^{\left(k_{\breve{\varphi}}+S_{\breve{g}}(|y|)\right)|y|}\|\breve{\varphi}\|_{L_{\ddot{g} \pm 1}^{p}\left(\mathbb{R}^{n}\right)} \\
& \leq C_{g} e^{\left(\kappa_{\varphi}(y /|y|)+S_{g}(|y|)\right)|y|}\|\breve{\varphi}\|_{L_{\dot{g} \pm 1}^{p}\left(\mathbb{R}^{n}\right)}=C_{g} e^{\left(\kappa_{\varphi}(y /|y|)+S_{g}(|y|)\right)|y|}\|\varphi\|_{L_{g^{ \pm 1}}^{p}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

(see (26)), which proves (27) for $\alpha=0$ and $y \neq 0$. This estimate is trivial for $\alpha=0$ and $y=0$.

Iterating the standard Cauchy integral formula for one complex variable, one gets

$$
\begin{array}{r}
\varphi(\zeta)=\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \frac{\varphi\left(z_{1}+e^{i \theta_{1}}, \ldots, z_{n}+e^{i \theta_{n}}\right)}{\prod_{k=1}^{n}\left(z_{k}+e^{i \theta_{k}}-\zeta_{k}\right)}\left(\prod_{k=1}^{n} e^{i \theta_{k}}\right) d \theta_{1} \cdots d \theta_{n} \\
\zeta \in \Delta(z):=\left\{\eta \in \mathbb{C}^{n}:\left|\eta_{k}-z_{k}\right|<1, k=1, \ldots, n\right\}, z \in \mathbb{C}^{n}
\end{array}
$$

(cf. [20, Ch. 1, §1]), which implies

$$
\partial^{\alpha} \varphi(\zeta)=\frac{\alpha!}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \frac{\varphi\left(z_{1}+e^{i \theta_{1}}, \ldots, z_{n}+e^{i \theta_{n}}\right)}{\prod_{k=1}^{n}\left(z_{k}+e^{i \theta_{k}}-\zeta_{k}\right)^{\alpha_{k}+1}}\left(\prod_{k=1}^{n} e^{i \theta_{k}}\right) d \theta_{1} \cdots d \theta_{n}
$$

Hence

$$
\partial^{\alpha} \varphi(z)=\frac{\alpha!}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \frac{\varphi\left(z_{1}+e^{i \theta_{1}}, \ldots, z_{n}+e^{i \theta_{n}}\right)}{\prod_{k=1}^{n} e^{i \alpha_{k} \theta_{k}}} d \theta_{1} \cdots d \theta_{n}
$$

and

$$
\begin{equation*}
\left|\partial^{\alpha} \varphi(z)\right| \leq \frac{\alpha!}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi}\left|\varphi\left(z_{1}+e^{i \theta_{1}}, \ldots, z_{n}+e^{i \theta_{n}}\right)\right| d \theta_{1} \cdots d \theta_{n} \tag{29}
\end{equation*}
$$

Since $g \geq 1$ is locally bounded,

$$
1 \leq M_{1}:=\sup _{\left|s_{k}\right| \leq 1, k=1, \ldots, n} g(s)<\infty
$$

Then it follows from (1) that

$$
\begin{equation*}
g^{ \pm 1}\left(x_{1}-\cos \theta_{1}, \ldots, x_{n}-\cos \theta_{n}\right) \leq M_{1} g^{ \pm 1}(x) \tag{30}
\end{equation*}
$$

According to the conditions of the theorem, there exists a constant $c_{\varphi} \in(0, \infty)$ such that $\log |\varphi(\zeta)| \leq c_{\varphi}|\zeta|$ for $|\zeta|$ large. Then $\kappa_{\varphi}(\omega) \leq c_{\varphi}$ (see (28)). Let $\varphi_{y}:=\varphi(\cdot+i y), y=\left(\operatorname{Im} z_{1}, \ldots, \operatorname{Im} z_{n}\right)$. Then, similarly to the above inequality, $\kappa_{\varphi_{y}}(\omega) \leq c_{\varphi}$. Applying (27) with $\alpha=0$ to the function φ_{y} in place of φ and using (16), (30), one derives from (29)

$$
\begin{aligned}
& \left\|\left(\partial^{\alpha} \varphi\right)(\cdot+i y)\right\|_{L_{g}^{p}}\left(\mathbb{R}^{n}\right) \\
& \leq \frac{\alpha!}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi}\left\|\varphi\left(\cdot+i y_{1}+e^{i \theta_{1}}, \ldots, \cdot+i y_{n}+e^{i \theta_{n}}\right)\right\|_{L_{g^{ \pm}}^{p}}\left(\mathbb{R}^{n}\right) \\
& \leq \frac{\alpha!}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \cdots d \theta_{n} \\
& \leq \frac{\alpha!}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} M_{1} C_{0} e^{\left(c_{\varphi}+S_{g}(1)\right) \sqrt{n}}\left\|\varphi\left(\cdot+i y_{1}+i \sin \theta_{1}, \ldots, \cdot+i y_{n}+i \sin \theta_{n}\right)\right\|_{L_{g^{ \pm \pm 1}}^{p}\left(\mathbb{R}^{n}\right)} d \theta_{1} \cdots d \theta_{n} \\
& =\alpha!M_{1} C_{0} e^{\left(c_{\varphi}\right)} d \theta_{1} \cdots d \theta_{n} \\
&
\end{aligned}
$$

Applying (27) with $\alpha=0$ again, one gets

$$
\left\|\left(\partial^{\alpha} \varphi\right)(\cdot+i y)\right\|_{L_{g^{ \pm 1}}^{p}\left(\mathbb{R}^{n}\right)} \leq \alpha!M_{1} C_{0}^{2} e^{\left(c_{\varphi}+S_{g}(1)\right) \sqrt{n}} e^{\left(\kappa_{\varphi}(y /|y|)+S_{g}(|y|)\right)|y|}\|\varphi\|_{L_{g^{ \pm 1}}^{p}\left(\mathbb{R}^{n}\right)}
$$

Corollary 3.4. Let $g: \mathbb{R}^{n} \rightarrow[1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling-Domar condition (3). Let $\varphi: \mathbb{C}^{n} \rightarrow$ \mathbb{C} be an entire function such that $\log |\varphi(z)|=O(|z|)$ for $|z|$ large, $z \in \mathbb{C}^{n}$, and that the restriction of φ to \mathbb{R}^{n} belongs to $L_{g^{ \pm 1}}^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$. Then for every multi-index $\alpha \in \mathbb{Z}_{+}^{n}$ and every $\varepsilon>0$,

$$
\begin{equation*}
\left\|\left(\partial^{\alpha} \varphi\right)(\cdot+i y)\right\|_{L_{g \pm 1}^{p}\left(\mathbb{R}^{n}\right)} \leq C_{\alpha, \varepsilon} e^{\left(\kappa_{\varphi}(y /|y|)+\varepsilon\right)|y|}\|\varphi\|_{L_{g^{ \pm 1}}^{p}\left(\mathbb{R}^{n}\right)}, \quad y \in \mathbb{R}^{n}, \tag{31}
\end{equation*}
$$

where κ_{φ} is defined by (28), and the constant $C_{\alpha, \varepsilon} \in(0, \infty)$ depends only on α, ε, and g.

Proof. It follows from (15) that for every $\varepsilon>0$, there exists c_{ε} such that

$$
S_{g}(|y|)|y| \leq c_{\varepsilon}+\varepsilon|y| \quad \text { for all } \quad y \in \mathbb{R}^{n} .
$$

Hence (27) implies (31).

4. Main results

We will use the notation $\widetilde{g}(x):=g(-x), x \in \mathbb{R}^{n}$.
Taking $y-x$ in place of y in (1) and rearranging, one gets

$$
\begin{equation*}
\frac{1}{g(x)} \leq \frac{g(y-x)}{g(y)} . \tag{32}
\end{equation*}
$$

Using this inequality, one can easily show that $f * u \in L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)$ for every $f \in L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)$ and $u \in L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right)$. The Fubini-Tonelli theorem implies that

$$
\begin{equation*}
f *(v * u)=(f * v) * u \quad \text { for all } \quad f \in L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right) \quad \text { and } \quad v, u \in L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right) \tag{33}
\end{equation*}
$$

Theorem 4.1. Let $g: \mathbb{R}^{n} \rightarrow[1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling-Domar condition (3), $f \in L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)$, and Y be a linear subspace of $L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
f * v=0 \quad \text { for every } v \in Y \tag{34}
\end{equation*}
$$

Suppose the set

$$
\begin{equation*}
Z(Y):=\bigcap_{v \in Y}\left\{\xi \in \mathbb{R}^{n} \mid \widehat{v}(\xi)=0\right\} \tag{35}
\end{equation*}
$$

is bounded, and $u \in L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right)$ is such that $\widehat{u}=1$ in a neighbourhood of $Z(Y)$. Then $f=f * u$.

Proof. It is sufficient to show that

$$
\begin{equation*}
\langle f, h\rangle=\langle f * u, h\rangle \quad \text { for every } h \in L_{g}^{1}\left(\mathbb{R}^{n}\right) \tag{36}
\end{equation*}
$$

Since the set of functions h with compactly supported Fourier transforms \widehat{h} is dense in $L_{g}^{1}\left(\mathbb{R}^{n}\right)$ (see [5, Theorems 1.52 and 2.11]), it is sufficient to prove (36) for such h. Further,

$$
\langle f, h\rangle=(f * \widetilde{h})(0) .
$$

So, it is sufficient to show that

$$
\begin{equation*}
f * w=f * u * w \tag{37}
\end{equation*}
$$

for every $w \in L_{\widetilde{g}}^{1}\left(\mathbb{R}^{n}\right)$ with compactly supported Fourier transform \widehat{w}. Take any such w and choose $R>0$ such that the support of \widehat{w} lies in $B_{R}:=$ $\left\{\xi \in \mathbb{R}^{n}:|\xi| \leq R\right\}$. It is clear that \widetilde{g} satisfies the Beurling-Domar condition. Then there exists $u_{R} \in L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right)$ such that $0 \leq \widehat{u_{R}} \leq 1, \widehat{u_{R}}(\xi)=1$ for $|\xi| \leq R$, and $\widehat{u_{R}}(\xi)=0$ for $|\xi| \geq R+1$ (see [5, Lemma 1.24]).
Let V be an open neighbourhood of $Z(Y)$ such that $\widehat{u}=1$ in V. Similarly to the above, there exists $u_{0} \in L_{\widetilde{g}}^{1}\left(\mathbb{R}^{n}\right)$ such that $0 \leq \widehat{u_{0}} \leq 1, \widehat{u_{0}}=1$ in a neighbourhood $V_{0} \subset V$ of $Z(Y)$, and $\widehat{u_{0}}=0$ outside V (see [5, Lemma 1.24]).
Since Y is a linear subspace, for every $\eta \in B_{R+1} \backslash V_{0} \subset \mathbb{R}^{n} \backslash Z(Y)$, there exists $v_{\eta} \in Y$ such that $\widehat{v_{\eta}}(\eta)=1$. Since $v_{\eta} \in L^{1}\left(\mathbb{R}^{n}\right), \widehat{v_{\eta}}$ is continuous, and there is a neighbourhood V_{η} of η such that $\left|\widehat{v_{\eta}}(\xi)-1\right|<1 / 2$ for all $\xi \in V_{\eta}$.

Similarly to the above, there exists $u_{\eta} \in L_{\widehat{g}}^{1}\left(\mathbb{R}^{n}\right)$ such that $\operatorname{Re}\left(\widehat{v_{\eta}} \widehat{u_{\eta}}\right) \geq 0$, and $\operatorname{Re}\left(\widehat{v_{\eta}} \widehat{u_{\eta}}\right)>\frac{1}{2}$ in a neighbourhood $V_{\eta}^{0} \subset V_{\eta}$ of η.
Since $B_{R+1} \backslash V_{0}$ is compact, its open cover $\left\{V_{\eta}^{0}\right\}_{\eta \in B_{R+1} \backslash V_{0}}$ has a finite subcover. So, there exist functions $v_{j} \in Y$ and $u_{j} \in L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right), j=1, \ldots, N$ such that

$$
\operatorname{Re}(\sigma)>\frac{1}{2}, \quad \text { where } \quad \sigma:=\widehat{u_{0}}+\sum_{j=1}^{N} \widehat{v_{j}} \widehat{u_{j}}+1-\widehat{u_{R}}
$$

Then there exists $v \in L_{\widetilde{g}}^{1}\left(\mathbb{R}^{n}\right)$ such that $\widehat{v}=1 / \sigma$ (see [5, Theorem 1.53]).
Since $\widehat{u_{0}}(1-\widehat{u})=0$ and $\left(1-\widehat{u_{R}}\right) \widehat{w}=0$, one has

$$
\begin{aligned}
& \left(\widehat{u}+\sum_{j=1}^{N} \widehat{v_{j}} \widehat{u_{j}} \widehat{v}(1-\widehat{u})\right) \widehat{w}=\left(\widehat{u}+\left(\sigma-\left(\widehat{u_{0}}+1-\widehat{u_{R}}\right)\right) \widehat{v}(1-\widehat{u})\right) \widehat{w} \\
& =\left(\widehat{u}+(1-\widehat{u})-\left(\widehat{u_{0}}+1-\widehat{u_{R}}\right) \widehat{v}(1-\widehat{u})\right) \widehat{w}=\left(1-\left(1-\widehat{u_{R}}\right) \widehat{v}(1-\widehat{u})\right) \widehat{w} \\
& =\widehat{w}-\left(1-\widehat{u_{R}}\right) \widehat{w} \widehat{v}(1-\widehat{u})=\widehat{w}
\end{aligned}
$$

It now follows from (33) and (34) that

$$
\begin{aligned}
f * w & =f *\left(u+\sum_{j=1}^{N} v_{j} * u_{j} *(v-v * u)\right) * w \\
& =f * u * w+f *\left(\sum_{j=1}^{N} v_{j} * u_{j} *(v-v * u)\right) * w \\
& =f * u * w+\sum_{j=1}^{N}\left(f * v_{j}\right) * u_{j} *(v-v * u) * w=f * u * w .
\end{aligned}
$$

Corollary 4.2. If $Z(Y)=\emptyset$ in Theorem 4.1, then $f=0$.

Proof. It is sufficient to show that

$$
f * w=0
$$

for every $w \in L_{\widehat{g}}^{1}\left(\mathbb{R}^{n}\right)$ with compactly supported Fourier transform \widehat{w} (see the beginning of the proof of Theorem 4.1). Take $u \in L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right)$ is such that $\widehat{u}=1$ in an open set, and the support of \widehat{u} does not intersect that of \widehat{w}. The latter condition implies that $u * w=0$. Since $Z(Y)=\emptyset$, it follows from Theorem 4.1 that $f=f * u$. Hence,

$$
f * w=(f * u) * w=f *(u * w)=f * 0=0
$$

(see (33)).

For a bounded set $E \subset \mathbb{R}^{n}$, let $\operatorname{conv}(E)$ denote its closed convex hull and H_{E} denote its support function:

$$
H_{E}(y):=\sup _{\xi \in E} y \cdot \xi=\sup _{\xi \in \operatorname{conv}(E)} y \cdot \xi, \quad y \in \mathbb{R}^{n} .
$$

Clearly, H_{E} is positively homogeneous and convex:

$$
\begin{aligned}
H_{E}(\tau y)=\tau H_{E}(y), & H_{E}(y+x) \leq H_{E}(y)+H_{E}(x) \\
& \text { for all } y, x \in \mathbb{R}^{n}, \tau \geq 0 .
\end{aligned}
$$

For every positively homogeneous convex function H,

$$
\begin{equation*}
K:=\left\{\xi \in \mathbb{R}^{n} \mid y \cdot \xi \leq H(y) \text { for all } y \in \mathbb{R}^{n}\right\} \tag{38}
\end{equation*}
$$

is the unique convex compact set such that $H_{K}=H$ (see, e.g., 14, Theorem 4.3.2]).

Theorem 4.3. Let g, f, and Y satisfy the conditions of Theorem 4.1, and let

$$
\begin{equation*}
\mathcal{H}_{Y}(y):=H_{Z(Y)}(-y)=\sup _{\xi \in Z(Y)}(-y) \cdot \xi=-\inf _{\xi \in Z(Y)} y \cdot \xi, \quad y \in \mathbb{R}^{n} \tag{39}
\end{equation*}
$$

Then f admits analytic continuation to an entire function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that for every multi-index $\alpha \in \mathbb{Z}_{+}^{n}$,

$$
\begin{equation*}
\left\|\left(\partial^{\alpha} f\right)(\cdot+i y)\right\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)} \leq C_{\alpha} e^{\mathcal{H}_{Y}(y)+S_{g}(|y|)|y|}\|f\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)}, \quad y \in \mathbb{R}^{n} \tag{40}
\end{equation*}
$$

(see (14), (15)), where the constant $C_{\alpha} \in(0, \infty)$ depends only on α and g.
Proof. Take any $\varepsilon>0$. There exists $u \in L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right)$ such that $\widehat{u}=1$ in a neighbourhood of $Z(Y)$, and $\widehat{u}=0$ outside the $\frac{\varepsilon}{2}$-neighbourhood of $Z(Y)$ (see [5, Lemma 1.24]). It follows from the Paley-Wiener-Schwartz theorem (see, e.g., [14, Theorem 7.3.1]) that $u=\mathcal{F}^{-1} \widehat{u}$ admits analytic continuation to an entire function $u: \mathbb{C}^{n} \rightarrow \mathbb{C}$ satisfying the estimate

$$
|u(x+i y)| \leq c_{\varepsilon} e^{\mathcal{H}_{Y}(y)+\varepsilon|y| / 2} \quad \text { for all } \quad x, y \in \mathbb{R}^{n}
$$

with some constant $c_{\varepsilon} \in(0, \infty)$. So, u satisfies the conditions of Corollary 3.4 with \widetilde{g} in place of g, and

$$
\begin{equation*}
\|u(\cdot+i y)\|_{L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right)} \leq C_{0, \varepsilon / 2} e^{\mathcal{H}_{Y}(y)+\varepsilon|y|}\|u\|_{L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right)}, \quad y \in \mathbb{R}^{n} . \tag{41}
\end{equation*}
$$

Since

$$
f(x)=\int_{\mathbb{R}^{n}} u(x-s) f(s) d s
$$

(see Theorem 4.1), f admits analytic continuation

$$
f(x+i y):=\int_{\mathbb{R}^{n}} u(x+i y-s) f(s) d s
$$

(see Corollary 3.4), and

$$
\begin{aligned}
& \|f(\cdot+i y)\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)} \leq\|u(\cdot+i y)\|_{L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right)}\|f\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)} \\
& \leq C_{0, \varepsilon / 2} e^{\mathcal{H}_{Y}(y)+\varepsilon|y|}\|u\|_{L_{\tilde{g}}^{1}\left(\mathbb{R}^{n}\right)}\|f\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)}=: M_{\varepsilon} e^{\mathcal{H}_{Y}(y)+\varepsilon|y|}\|f\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

(see (32)). Since

$$
\frac{|f(x+i y)|}{g(x)} \leq M_{\varepsilon} e^{\mathcal{H}_{Y}(y)+\varepsilon|y|}\|f\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)}
$$

one has $\log |f(x+i y)|=O(|x+i y|)$ for $|x+i y|$ large (see (22)), and

$$
\begin{aligned}
\limsup _{0<t \rightarrow \infty} \frac{\log |f(x+i t \omega)|}{t} & \leq \limsup _{0<t \rightarrow \infty} \frac{\log \left(M_{\varepsilon} g(x)\|f\|_{L_{g-1}^{\infty}\left(\mathbb{R}^{n}\right)}\right)+t \mathcal{H}_{Y}(\omega)+\varepsilon t}{t} \\
& =\mathcal{H}_{Y}(\omega)+\varepsilon .
\end{aligned}
$$

Hence,

$$
\kappa_{f}(\omega):=\sup _{x \in \mathbb{R}^{n}}\left(\limsup _{0<t \rightarrow \infty} \frac{\log |f(x+i t \omega)|}{t}\right) \leq \mathcal{H}_{Y}(\omega)+\varepsilon
$$

for every $\varepsilon>0$, i.e.

$$
\kappa_{f}(\omega) \leq \mathcal{H}_{Y}(\omega)
$$

So, (40) follows from Theorem 3.3.
Theorem 4.4. Let $g: \mathbb{R}^{n} \rightarrow[1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling-Domar condition (3) and let $m \in C\left(\mathbb{R}^{n}\right)$ be such that the Fourier multiplier operator

$$
C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \ni \phi \mapsto \widetilde{m}(D) \phi:=\mathcal{F}^{-1}(\widetilde{m} \widehat{\phi})
$$

maps $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ into $L_{g}^{1}\left(\mathbb{R}^{n}\right)$. Suppose $f \in L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)$ is such that $m(D) f=0$ as a distribution, i.e.

$$
\begin{equation*}
\langle f, \widetilde{m}(D) \phi\rangle=0 \quad \text { for all } \phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \tag{42}
\end{equation*}
$$

If $K:=\left\{\eta \in \mathbb{R}^{n} \mid m(\eta)=0\right\}$ is compact, then f admits analytic continuation to an entire function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that for every multi-index $\alpha \in \mathbb{Z}_{+}^{n}$,

$$
\begin{equation*}
\left\|\left(\partial^{\alpha} f\right)(\cdot+i y)\right\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)} \leq C_{\alpha} e^{H(y)+S_{g}(|y|)|y|}\|f\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)}, \quad y \in \mathbb{R}^{n} \tag{43}
\end{equation*}
$$

(see (14), (15)), where where $H(y):=H_{K}(-y)$, and the constant $C_{\alpha} \in(0, \infty)$ depends only on α and g.

Conversely, if every $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying (42) admits analytic continuation to an entire function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\|f(\cdot+i y)\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)} \leq M_{\varepsilon} e^{H(y)+\varepsilon|y|}\|f\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)}, \quad y \in \mathbb{R}^{n} \tag{44}
\end{equation*}
$$

holds for every $\varepsilon>0$ with a constant $M_{\varepsilon} \in(0, \infty)$ that depends only on ε, m, and g, then $\left\{\eta \in \mathbb{R}^{n} \mid m(\eta)=0\right\} \subseteq K$, where K is the unique convex compact set such that $H_{K}(y)=H(-y)(c f$. (38) $)$.

Proof. Let

$$
\left(T_{v} \phi\right)(x):=\phi(x-v), \quad x, v \in \mathbb{R}^{n} .
$$

Since $T_{v} \phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ for every $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and all $v \in \mathbb{R}^{n}$, it follows from (42) that

$$
(f * \widetilde{\widetilde{m}(D) \phi})(v)=\left\langle f, T_{v} \widetilde{m}(D) \phi\right\rangle=\left\langle f, \widetilde{m}(D)\left(T_{v} \phi\right)\right\rangle=0 \quad \text { for all } v \in \mathbb{R}^{n}
$$

Hence

$$
f * \widetilde{\widetilde{m}(D) \phi}=0 \quad \text { for all } \phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

It is easy to see that

$$
\begin{aligned}
& \bigcap_{\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)}\left\{\eta \in \mathbb{R}^{n} \mid \widehat{\widetilde{m(D)}} \phi(\eta)=0\right\}=\bigcap_{\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)}\left\{\eta \in \mathbb{R}^{n} \mid \widehat{\widetilde{m}(D)} \phi(-\eta)=0\right\} \\
= & \bigcap_{\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)}\left\{\eta \in \mathbb{R}^{n} \mid m(\eta) \widehat{\phi}(-\eta)=0\right\}=\left\{\eta \in \mathbb{R}^{n} \mid m(\eta)=0\right\}=K .
\end{aligned}
$$

Applying Theorem 4.3 with

$$
Y:=\left\{\widetilde{\widetilde{m}(D) \phi} \mid \phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)\right\} \subset L_{\widetilde{g}}^{1}\left(\mathbb{R}^{n}\right)
$$

and $Z(Y)=K$, one gets (43).
For the converse direction, we assume the contrary, i.e. that the zero-set $\{\eta \in$ $\left.\mathbb{R}^{n} \mid m(\eta)=0\right\}$ contains some $\gamma \notin K$ (see (38)). Then there exists $y_{0} \in \mathbb{R}^{n} \backslash\{0\}$ such that $y_{0} \cdot \gamma>H_{K}\left(y_{0}\right)=H\left(-y_{0}\right)$. It is easy to see that $f(x):=e^{i x \cdot \gamma}$ satisfies $m(D) e^{i x \cdot \gamma}=e^{i x \cdot \gamma} m(\gamma)=0$ for all $x \in \mathbb{R}^{n}$. Take $\varepsilon<\left(y_{0} \cdot \gamma-H\left(-y_{0}\right)\right) /\left|y_{0}\right|$. Clearly, $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$, and

$$
\begin{aligned}
& \frac{\left\|f\left(\cdot-i \tau y_{0}\right)\right\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)}}{e^{H\left(-\tau y_{0}\right)+\varepsilon\left|\tau y_{0}\right|}\|f\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)}}=\frac{e^{\tau\left(y_{0} \cdot \gamma\right)}}{e^{\tau\left(H\left(-y_{0}\right)+\varepsilon\left|y_{0}\right|\right)}} \\
& =e^{\tau\left(y_{0} \cdot \gamma-H\left(-y_{0}\right)-\varepsilon\left|y_{0}\right|\right)} \rightarrow \infty \quad \text { as } \quad \tau \rightarrow \infty .
\end{aligned}
$$

So, f does not satisfy (44).
Corollary 4.5. Let $g: \mathbb{R}^{n} \rightarrow[1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling-Domar condition (3) and let $m \in C\left(\mathbb{R}^{n}\right)$ be such that the Fourier multiplier operator

$$
C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \ni \phi \mapsto \widetilde{m}(D) \phi:=\mathcal{F}^{-1}(\widetilde{m} \widehat{\phi})
$$

maps $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ into $L_{g}^{1}\left(\mathbb{R}^{n}\right)$. Suppose $f \in L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)$ is such that $m(D) f=0$ as a distribution, i.e. (42) holds. If $\left\{\eta \in \mathbb{R}^{n} \mid m(\eta)=0\right\}=\{0\}$, then f admits analytic continuation to an entire function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that for every multi-index $\alpha \in \mathbb{Z}_{+}^{n}$,

$$
\begin{equation*}
\left\|\left(\partial^{\alpha} f\right)(\cdot+i y)\right\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)} \leq C_{\alpha} e^{S_{g}(|y|)|y|}\|f\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)}, \quad y \in \mathbb{R}^{n} \tag{45}
\end{equation*}
$$

where the constant $C_{\alpha} \in(0, \infty)$ depends only on α and g. If $\left\{\eta \in \mathbb{R}^{n} \mid m(\eta)=0\right\}=$ \emptyset, then $f=0$.
Conversely, if every $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying (42) admits analytic continuation to an entire function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\|f(\cdot+i y)\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)} \leq M_{\varepsilon} e^{\varepsilon|y|}\|f\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{n}\right)}, \quad y \in \mathbb{R}^{n} \tag{46}
\end{equation*}
$$

holds for every $\varepsilon>0$ with a constant $M_{\varepsilon} \in(0, \infty)$ that depends only on ε, m, and g, then $\left\{\eta \in \mathbb{R}^{n} \mid m(\eta)=0\right\} \subseteq\{0\}$.

Proof. The only part that does not follow immediately from Theorem 4.4 is that $f=0$ in the case $\left\{\eta \in \mathbb{R}^{n} \mid m(\eta)=0\right\}=\emptyset$. In this case, one can take the same Y as in the proof of Theorem 4.4, note that $Z(Y)=\emptyset$ and apply Corollary 4.2 to conclude that $f=0$. (It is instructive to compare this result to [17, Proposition 2.2].)
Remark 4.6. The condition that $\widetilde{m}(D)$ maps $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ to $L_{g}^{1}\left(\mathbb{R}^{n}\right)$ is satisfied if m is a linear combination of terms of the form $a b$, where $a=F \mu, \mu$ is a finite complex Borel measure on \mathbb{R}^{n} such that

$$
\int_{\mathbb{R}^{n}} \widetilde{g}(y)|\mu|(d y)<\infty,
$$

and b is the Fourier transform of a compactly supported distribution. Indeed, it is easy to see that $\widetilde{b}(D)$ maps $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ into itself, while the convolution operator $\phi \mapsto \widetilde{\mu} * \phi$ maps $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ to $L_{g}^{1}\left(\mathbb{R}^{n}\right)$.
REMARK 4.7. We are mostly interested in super-polynomially growing weights here as polynomially growing ones have been dealt with in our previous paper [3]. Nevertheless, it is instructive to look at the behaviour of the factor $e^{S_{g}(|y|)|y|}$ for typical super-polynomially, polynomially, and sub-polynomially growing weights.
It follows from (20) that if $g(x)=e^{|x| / \log ^{\gamma}(e+|x|)}, \gamma>1$, then there exists a constant C_{γ} such that

$$
\begin{aligned}
e^{S_{g}(|y|)|y|} & \leq C_{\gamma} e^{\frac{1}{\pi}|y| \log ^{-\gamma}(e+|y|)\left(1+\frac{2}{\gamma-1} \log (e+|y|)\right)} \\
& =C_{\gamma}\left(e^{|y| / \log \gamma(e+|y|)}\right)^{\frac{1}{\pi}\left(1+\frac{2}{\gamma-1} \log (e+|y|)\right)}=C_{\gamma}(g(y))^{\frac{1}{\pi}\left(1+\frac{2}{\gamma-1} \log (e+|y|)\right)}
\end{aligned}
$$

Similarly, if $g(x)=e^{a|x|^{b}}, a \geq 0, b \in[0,1)$, then (19) implies

$$
\begin{equation*}
e^{S_{g}(|y|)|y|}=e^{a|y|^{b}\left(\sin \left(\frac{1-b}{2} \pi\right)\right)^{-1}}=(g(y))^{\left(\sin \left(\frac{1-b}{2} \pi\right)\right)^{-1}} . \tag{47}
\end{equation*}
$$

If $g(x)=(1+|x|)^{s}, s \geq 0$, then (17) implies

$$
\begin{equation*}
e^{S_{g}(|y|)|y|} \leq e^{c_{1} s+s \log (1+|y|)}=C_{s}(1+|y|)^{s}=C_{s} g(y) . \tag{48}
\end{equation*}
$$

Finally, if $g(x)=(\log (e+|x|))^{t}, t \geq 0$, then (18) implies

$$
e^{S_{g}(|y|)|y|} \leq e^{c_{2} t+t \log \log (e+|y|)}=C_{t}(\log (e+|y|))^{t}=C_{t} g(y)
$$

Remark 4.8. If g is polynomially bounded in Corollary 4.5, then it follows from (45) and (48) that f is a polynomially bounded entire function on \mathbb{C}^{n} and hence a polynomial (see, e.g., [20, Corollary 1.7]). The fact that f is a polynomial in this case was established in [3] and [11].
Remark 4.9. Let $n=2, g(x):=(1+|x|)^{k}, k \in \mathbb{N}, f\left(x_{1}, x_{2}\right):=\left(x_{1}+i x_{2}\right)^{k}$ (or $f\left(x_{1}, x_{2}\right):=\left(x_{1}+i x_{2}\right)^{k}+\left(x_{1}-i x_{2}\right)^{k}$ if one prefers to have a real-valued $\left.f\right)$. Then $f \in L_{g^{-1}}^{\infty}\left(\mathbb{R}^{2}\right), \Delta f=0, f\left(x+i y_{1} \mathbf{e}_{1}\right)=\left(x_{1}+i y_{1}+i x_{2}\right)^{k}$ for any $y_{1} \in \mathbb{R}$ (see (77)), and

$$
\frac{\left\|f\left(\cdot+i y_{1} \mathbf{e}_{1}\right)\right\|_{L_{g-1}^{\infty}\left(\mathbb{R}^{2}\right)}}{g\left(y_{1} \mathbf{e}_{1}\right)} \geq \frac{\left|y_{1}\right|^{k}}{\left(1+\left|y_{1}\right|\right)^{k}} \rightarrow 1=\|f\|_{L_{g^{-1}}^{\infty}\left(\mathbb{R}^{2}\right)} \quad \text { as } \quad\left|y_{1}\right| \rightarrow \infty
$$

So, the factor $e^{S_{g}(|y|)|y|} \leq C_{k} g(y)$ (see (48)) is optimal in (45) in this case.
The case $g(x)=e^{a|x|^{b}}, a>0, b \in[0,1)$ is perhaps more interesting. Let us take $b=\frac{1}{2}$. Then it follows from (47) that $e^{S_{g}(|y|)|y|}=(g(y))^{\sqrt{2}}$. Let us show that one cannot replace this factor in (45) with $(g(y))^{\sqrt{2}(1-\varepsilon)}, \varepsilon>0$. Take any $\varepsilon>0$. Since

$$
\sqrt[4]{1+\tau^{2}} \cos \left(\frac{1}{2} \arctan \frac{1}{\tau}\right) \rightarrow \frac{1}{\sqrt{2}} \quad \text { as } \quad \tau \rightarrow 0, \tau>0
$$

there exists $\tau_{\varepsilon}>0$ such that

$$
\sqrt[4]{1+\tau_{\varepsilon}^{2}} \cos \left(\frac{1}{2} \arctan \frac{1}{\tau_{\varepsilon}}\right) \leq \frac{1+\varepsilon}{\sqrt{2}} .
$$

Let us estimate $\operatorname{Re} \sqrt{x_{1}+i \kappa x_{2}}$, where $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \kappa>0$ is a constant to be chosen later, and $\sqrt{ }$ is the branch of the square root that is analytic in $\mathbb{C} \backslash(-\infty, 0]$ and positive on $(0,+\infty)$. If $x_{1} \geq \tau_{\epsilon} \kappa\left|x_{2}\right|$, then

$$
\begin{aligned}
\operatorname{Re} \sqrt{x_{1}+i \kappa x_{2}} & \leq\left|\sqrt{x_{1}+i \kappa x_{2}}\right|=\sqrt[4]{x_{1}^{2}+\kappa^{2} x_{2}^{2}} \leq \sqrt[4]{\left(1+\frac{1}{\tau_{\varepsilon}^{2}}\right) x_{1}^{2}} \\
& \leq\left(1+\frac{1}{\tau_{\varepsilon}^{2}}\right)^{1 / 4} \sqrt{x_{1}} \leq\left(1+\frac{1}{\tau_{\varepsilon}^{2}}\right)^{1 / 4} \sqrt{|x|}
\end{aligned}
$$

If $0<x_{1}<\tau_{\epsilon} \kappa\left|x_{2}\right|$, then

$$
\begin{aligned}
& \operatorname{Re} \sqrt{x_{1}+i \kappa x_{2}} \leq\left|\sqrt{x_{1}+i \kappa x_{2}}\right| \cos \left(\frac{1}{2} \arctan \frac{\kappa\left|x_{2}\right|}{x_{1}}\right) \\
& \leq\left|\sqrt{\tau_{\epsilon} \kappa\left|x_{2}\right|+i \kappa x_{2}}\right| \cos \left(\frac{1}{2} \arctan \frac{1}{\tau_{\varepsilon}}\right) \\
& =\kappa^{1 / 2}\left|x_{2}\right|^{1 / 2} \sqrt[4]{1+\tau_{\varepsilon}^{2}} \cos \left(\frac{1}{2} \arctan \frac{1}{\tau_{\varepsilon}}\right) \leq \frac{1+\varepsilon}{\sqrt{2}} \kappa^{1 / 2}|x|^{1 / 2}
\end{aligned}
$$

Now, take $\kappa_{\varepsilon} \geq 1$ such that

$$
\frac{1+\varepsilon}{\sqrt{2}} \kappa_{\varepsilon}^{1 / 2} \geq\left(1+\frac{1}{\tau_{\varepsilon}^{2}}\right)^{1 / 4}
$$

Then

$$
\begin{equation*}
\operatorname{Re} \sqrt{x_{1}+i \kappa_{\varepsilon} x_{2}} \leq \frac{1+\varepsilon}{\sqrt{2}} \kappa_{\varepsilon}^{1 / 2}|x|^{1 / 2} \tag{49}
\end{equation*}
$$

for $x_{1}>0$. If $x_{1} \leq 0$, then the argument of $\sqrt{x_{1}+i \kappa_{\varepsilon} x_{2}}$ belongs to $\pm[\pi / 4, \pi / 2]$, depending on the sign of x_{2}. Hence

$$
\operatorname{Re} \sqrt{x_{1}+i \kappa_{\varepsilon} x_{2}} \leq\left|\sqrt{x_{1}+i \kappa_{\varepsilon} x_{2}}\right| \cos \frac{\pi}{4} \leq \frac{1}{\sqrt{2}} \kappa_{\varepsilon}^{1 / 2}|x|^{1 / 2}
$$

and (49) holds for all $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
Since the Taylor series of $\cos w$ contains only even powers of $w, \cos (i \sqrt{z})$ is an analytic function of $z \in \mathbb{C}$. So, $\cos \left(i \sqrt{x_{1}+i x_{2}}\right)$ is a harmonic function of
$x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Hence $f\left(x_{1}, x_{2}\right):=\cos \left(i \sqrt{x_{1}+i \kappa_{\varepsilon} x_{2}}\right)$ is a solution of the elliptic partial differential equation

$$
\left(\partial_{x_{1}}^{2}+\frac{1}{\kappa_{\varepsilon}^{2}} \partial_{x_{2}}^{2}\right) f\left(x_{1}, x_{2}\right)=0
$$

It follows from (49) that

$$
\left|f\left(x_{1}, x_{2}\right)\right| \leq \frac{1}{2}\left(1+e^{\operatorname{Re} \sqrt{x_{1}+i \kappa_{\varepsilon} x_{2}}}\right) \leq e^{\frac{1+\varepsilon}{\sqrt{2}} \kappa_{\varepsilon}^{1 / 2}|x|^{1 / 2}}
$$

So, $f \in L_{g^{-1}}^{\infty}\left(\mathbb{R}^{2}\right)$, where $g(x)=e^{a|x|^{1 / 2}}$ with $a=\frac{1+\varepsilon}{\sqrt{2}} \kappa_{\varepsilon}^{1 / 2}$. Clearly, the analytic continuation of f to \mathbb{C}^{2} is given by the formula

$$
f\left(x_{1}+i y_{1}, x_{2}+i y_{2}\right)=\cos \left(i \sqrt{x_{1}+i y_{1}+i \kappa_{\varepsilon}\left(x_{2}+i y_{2}\right)}\right)
$$

Then (see (77))

$$
\begin{gathered}
\frac{\left\|f\left(\cdot+i y_{2} \mathbf{e}_{2}\right)\right\|_{L_{-1}^{\infty}\left(\mathbb{R}^{2}\right)}}{\left(g\left(y_{2} \mathbf{e}_{2}\right)\right)^{\sqrt{2}(1-\varepsilon)}} \geq \frac{\left|f\left(0+i y_{2} \mathbf{e}_{2}\right)\right|}{g(0)\left(g\left(y_{2} \mathbf{e}_{2}\right)\right)^{\sqrt{2}(1-\varepsilon)}}=\frac{\left|\cos \left(i \sqrt{-\kappa_{\varepsilon} y_{2}}\right)\right|}{e^{\sqrt{2}(1-\varepsilon) \frac{1+\varepsilon}{\sqrt{2}} \kappa_{\varepsilon}^{1 / 2}\left|y_{2}\right|^{1 / 2}}} \\
\geq \frac{e^{\kappa_{\varepsilon}^{1 / 2}\left|y_{2}\right|^{1 / 2}}}{2 e^{\left(1-\varepsilon^{2}\right) \kappa_{\varepsilon}^{1 / 2}\left|y_{2}\right|^{1 / 2}}}=\frac{e^{\varepsilon^{2} \kappa_{\varepsilon}^{1 / 2}\left|y_{2}\right|^{1 / 2}}}{2} \rightarrow \infty \quad \text { as } \quad y_{2} \rightarrow-\infty
\end{gathered}
$$

5. Concluding remarks

Corollary 4.5 shows that sub-exponentially growing solutions of $m(D) f=0$ admit analytic continuation to entire functions on \mathbb{C}^{n}. It is well known that no growth restrictions are necessary in the case when $m(D)$ is an elliptic partial differential operator with constant coefficients, and every solution of $m(D) f=$ 0 in \mathbb{R}^{n} admits analytic continuation to an entire function on \mathbb{C}^{n} (see [22], [6]).

Remark 5.1. The latter result has a local version similar to Hayman's theorem on harmonic functions (see [12, Theorem 1]) : for every elliptic partial differential operator $m(D)$ with constant coefficients there exists a constant $c_{m} \in(0,1)$ such that every solution of $m(D) f=0$ in the ball $\left\{x \in \mathbb{R}^{n}:|x|<R\right\}$ of any radius $R>0$ admits continuation to an analytic function in the ball $\left\{x \in \mathbb{C}^{n}:|x|<c_{m} R\right\}$. Indeed, let $m_{0}(D)=\sum_{|\alpha|=N} a_{\alpha} D^{\alpha}$ be the principal part of $m(D)=\sum_{|\alpha| \leq N} a_{\alpha} D^{\alpha}$. There exists $C_{m}>0$ such that

$$
\sum_{|\alpha|=N} a_{\alpha}(a+i b)^{\alpha}=0, \quad a, b \in \mathbb{R}^{n} \quad \Longrightarrow \quad|a| \geq C_{m}|b|
$$

(see, e.g., [25, §7]). Then the same argument as in the proof of [18, Corollary 8.2] shows that f admits continuation to an analytic function in the ball $\left\{x \in \mathbb{C}^{n}:|x|<\left(1+C_{m}^{-2}\right)^{-1 / 2} R\right\}$. Note that in the case of the Laplacian, one can take $C_{m}=1$ and $c_{m}=\left(1+C_{m}^{-2}\right)^{-1 / 2}=\frac{1}{\sqrt{2}}$, which is the optimal constant for harmonic functions (see [12]).

Let us return to equations in \mathbb{R}^{n}. Below, $m(\xi)$ will always denote a polynomial with $\left\{\xi \in \mathbb{R}^{n} \mid m(\xi)=0\right\} \subseteq\{0\}$. For non-elliptic partial differential operators $m(D)$, one needs to place growth restrictions on solutions of $m(D) f=0$ to make sure that they admit analytic continuation to entire functions on \mathbb{C}^{n}.
We say that a function f defined on \mathbb{R}^{n} (or \mathbb{C}^{n}) is of infra-exponential growth if for every $\varepsilon>0$, there exists $C_{\varepsilon}>0$ such that

$$
|f(z)| \leq C_{\varepsilon} e^{\varepsilon|z|} \quad \text { for all } \quad z \in \mathbb{R}^{n}\left(z \in \mathbb{C}^{n}\right)
$$

Let $\mu:[0, \infty) \rightarrow[0, \infty)$ be an increasing to infinity function such that

$$
\mu(t) \leq A t+B, \quad t \geq 0
$$

for some $A, B>0$, and

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\mu(t)}{t^{2}} d t<\infty \tag{50}
\end{equation*}
$$

Suppose $\left\{\xi \in \mathbb{R}^{n} \mid m(\xi)=0\right\}=\{0\}$. Then, under additional restrictions on μ, every solution f of $m(D) f=0$ that has growth $O\left(e^{\varepsilon \mu(|x|)}\right)$ for every $\varepsilon>0$ admits analytic continuation to an entire function of infra-exponential growth on \mathbb{C}^{n} (see [17]). It is easy to see that (50) is equivalent to the Beurling-Domar condition (3) for $g(x):=e^{\mu(|x|)}$.
One cannot replace $O\left(e^{\varepsilon \mu(|x|)}\right)$ with $O\left(e^{\varepsilon|x|}\right)$ in the above result without placing a restriction on the complex zeros of m. If there exists $\delta>0$ such that $m(\zeta)$ has no complex zeros in

$$
\begin{equation*}
|\operatorname{Im} \zeta|<\delta, \quad|\operatorname{Re} \zeta|>\delta^{-1} \tag{51}
\end{equation*}
$$

then every solution of $m(D) f=0$ that, together with its partial derivatives up to the order of $m(D)$, is of infra-exponential growth on \mathbb{R}^{n}, admits analytic continuation to an entire function of infra-exponential growth on \mathbb{C}^{n} (see [16], [17]).

On the other hand, if for every $\delta>0$, (51) contains complex zeros of $m(\zeta)$, then $m(D) f=0$ has a solution in C^{∞} all of whose derivatives are of infraexponential growth, but which is not entire infra-exponential in \mathbb{C}^{n}. The proof of the latter result in [16], 17] is not constructive, and the author writes: "Unfortunately we cannot present concrete examples of such" solutions. However, it is not difficult to construct, for any $\varepsilon>0$, a solution in C^{∞} all of whose derivatives have growth $O\left(e^{\varepsilon|x|}\right)$, but which is not real-analytic. Indeed, according to the assumption, there exist complex zeros

$$
\zeta_{k}=\xi_{k}+i \eta_{k}, \quad \xi_{k}, \eta_{k} \in \mathbb{R}^{n}, \quad k \in \mathbb{N}
$$

of $m(\zeta)$ such that

$$
\begin{equation*}
\left|\eta_{k}\right|<k^{-1}, \quad\left|\xi_{k}\right|>k \tag{52}
\end{equation*}
$$

Choosing a subsequence, we can assume that $\omega_{k}:=\left|\xi_{k}\right|^{-1} \xi_{k}$ converge to a point $\omega_{0} \in \mathbb{S}^{n-1}:=\left\{\xi \in \mathbb{R}^{n}:|\xi|=1\right\}$ as $k \rightarrow \infty$, and that $\left|\omega_{k}-\omega_{0}\right|<1$ for all
$k \in \mathbb{N}$. Then

$$
\begin{equation*}
\omega_{k} \cdot \omega_{0}=\frac{\left|\omega_{k}\right|^{2}+\left|\omega_{0}\right|^{2}-\left|\omega_{k}-\omega_{0}\right|^{2}}{2}>\frac{1+1-1}{2}=\frac{1}{2}, \quad k \in \mathbb{N} . \tag{53}
\end{equation*}
$$

Consider

$$
\begin{equation*}
f(x):=\sum_{k>\varepsilon^{-1}} \frac{e^{i \zeta_{k} \cdot x}}{e^{\left|\xi_{k}\right|^{1 / 2}}}=\sum_{k>\varepsilon^{-1}} \frac{e^{i \xi_{k} \cdot x-\eta_{k} \cdot x}}{e^{\left|\xi_{k}\right|^{1 / 2}}}, \quad x \in \mathbb{R}^{n} \tag{54}
\end{equation*}
$$

Then, for every multi-index α,

$$
\begin{aligned}
\left|\partial^{\alpha} f(x)\right| & =\left|\sum_{k>\varepsilon^{-1}} \frac{\left(i \zeta_{k}\right)^{\alpha} e^{i \zeta_{k} \cdot x}}{e^{\left|\xi_{k}\right|^{1 / 2}}}\right| \leq \sum_{k>\varepsilon^{-1}} \frac{\left(\left|\xi_{k}\right|+1\right)^{|\alpha|} e^{\left|\eta_{k}\right||x|}}{e^{\left|\xi_{k}\right|^{1 / 2}}} \\
& \leq e^{\varepsilon|x|} \sum_{k>\varepsilon^{-1}} \frac{\left(\left|\xi_{k}\right|+1\right)^{|\alpha|}}{e^{\left|\xi_{k}\right|^{1 / 2}}}=: C_{\alpha} e^{\varepsilon|x|}, \quad x \in \mathbb{R}^{n}
\end{aligned}
$$

(see (52)). Further,

$$
m(D) f(x)=\sum_{k>\varepsilon^{-1}} \frac{m\left(\zeta_{k}\right) e^{i \zeta_{k} \cdot x}}{e^{\left|\xi_{k}\right|^{1 / 2}}}=0
$$

On the other hand, f is not real-analytic. Before we prove this, note that formally putting $x-i t \omega_{0}, t>0$ in place of x in the right-hand side of (54), one gets a divergent series. Indeed, its terms can be estimated as follows

$$
\left|\frac{e^{i \xi_{k} \cdot x+t \xi_{k} \cdot \omega_{0}-\eta_{k} \cdot x+i t \eta_{k} \cdot \omega_{0}}}{e^{\left|\xi_{k}\right|^{1 / 2}}}\right|=\frac{e^{t\left|\xi_{k}\right| \omega_{k} \cdot \omega_{0}-\eta_{k} \cdot x}}{e^{\left|\xi_{k}\right|^{1 / 2}}} \geq e^{-\varepsilon|x|} \frac{e^{\left|\left|\xi_{k}\right| / 2\right.}}{e^{\left|\xi_{k}\right|^{1 / 2}}} \rightarrow \infty
$$

as $k \rightarrow \infty($ see (52), (53)).
For any $j>\varepsilon^{-1}$, there exists $\ell_{j} \in \mathbb{N}$ such that

$$
\begin{equation*}
\ell_{j} \leq\left|\xi_{j}\right|^{1 / 2}<\ell_{j}+1 \tag{55}
\end{equation*}
$$

It is clear that $\ell_{j} \rightarrow \infty$ as $j \rightarrow \infty$ (see (52)). Note that

$$
\left|\arg \left(\omega_{0} \cdot \zeta_{k}\right)\right| \leq \frac{\left|\omega_{0} \cdot \eta_{k}\right|}{\left|\omega_{0} \cdot \xi_{k}\right|} \leq \frac{2}{k\left|\xi_{k}\right|}
$$

If $\left|\xi_{k}\right| \geq \frac{6 \ell_{j}}{\pi k}$, then

$$
\left|\arg \left(\omega_{0} \cdot \zeta_{k}\right)^{\ell_{j}}\right| \leq \frac{2 \ell_{j}}{k\left|\xi_{k}\right|} \leq \frac{\pi}{3}
$$

and

$$
\operatorname{Re}\left(\omega_{0} \cdot \zeta_{k}\right)^{\ell_{j}} \geq \frac{1}{2}\left|\omega_{0} \cdot \zeta_{k}\right|^{\ell_{j}} \geq \frac{1}{2^{\ell_{j}+1}}\left|\xi_{k}\right|^{\ell_{j}} .
$$

Clearly, $\left|\xi_{j}\right| \geq \frac{6 \ell_{j}}{\pi j}$ for sufficiently large j (see (550)). Hence, one has the following estimate for the directional derivative $\partial_{\omega_{0}}$

$$
\left|\left(\left(-i \partial_{\omega_{0}}\right)^{\ell_{j}} f\right)(0)\right| \geq \sum_{k>\varepsilon^{-1}} \frac{\operatorname{Re}\left(\omega_{0} \cdot \zeta_{k}\right)^{\ell_{j}}}{e^{\left|\xi_{k}\right|^{1 / 2}}}
$$

$$
\begin{aligned}
& \geq-\sum_{k>\varepsilon^{-1},\left|\xi_{k}\right|<\frac{6 \ell_{j}}{\pi k}} \frac{\left|\zeta_{k}\right|^{\ell_{j}}}{e^{\left|\xi_{k}\right|^{1 / 2}}}+\sum_{k>\varepsilon^{-1},\left|\xi_{k}\right| \geq \frac{6 \ell_{j}}{\pi k}} \frac{\left|\xi_{k}\right|^{\ell_{j}}}{2^{\ell_{j}+1} e^{\left|\xi_{k}\right|^{1 / 2}}} \\
& \geq-\sum_{k>\varepsilon^{-1},\left|\xi_{k}\right|<\frac{6 \ell_{j}}{\pi k}} \frac{\left(\left|\xi_{k}\right|+\frac{1}{k}\right)^{\ell_{j}}}{e^{\left|\xi_{k}\right|^{1 / 2}}}+\frac{\left|\xi_{j}\right|^{\ell_{j}}}{2^{\ell_{j}+1} e^{\left|\xi_{j}\right|^{1 / 2}}} \\
& \geq-\sum_{k>\varepsilon^{-1},\left|\xi_{k}\right|<\frac{6 \ell_{j}}{\pi k}} \frac{1}{e^{\left|\xi_{k}\right|^{1 / 2}}}\left(\frac{10 \ell_{j}}{\pi k}\right)^{\ell_{j}}+\frac{\ell_{j}^{2 \ell_{j}}}{2^{\ell_{j}+1} e^{\left(\ell_{j}^{2}+1\right)^{1 / 2}}} \\
& \geq-\left(10 \ell_{j}\right)^{\ell_{j}} \sum_{k=1}^{\infty} \frac{1}{e^{\left|\xi_{k}\right|^{1 / 2}} k^{2}}+\frac{\ell_{j}^{2 \ell_{j}}}{2^{\ell_{j}+1} e^{\ell_{j}+1}}=-C\left(10 \ell_{j}\right)^{\ell_{j}}+(2 e)^{-\left(\ell_{j}+1\right)} \ell_{j}^{2 \ell_{j}} .
\end{aligned}
$$

Hence

$$
\left|\left(\left(-i \partial_{\omega_{0}}\right)^{\ell_{j}} f\right)(0)\right| \geq \ell_{j}^{\frac{3}{2} \ell_{j}}
$$

for all sufficiently large j, which means that f is not real-analytic in a neighbourhood of 0 .

The operator $m(D)$ in the previous example is not hypoelliptic. If $m(D)$ is hypoelliptic, then every solution of $m(D) f=0$, such that $|f(x)| \leq A e^{a|x|}$, $x \in \mathbb{R}^{n}$, for some constants $A, a>0$, admits analytic continuation to an entire function of order one on \mathbb{C}^{n} (see [10, §4, Corollary 2]). For elliptic operators, this result can be strengthened: every solution of $m(D) f=0$, such that $|f(x)| \leq A e^{a|x|^{\beta}}, x \in \mathbb{R}^{n}$, for $\beta \geq 1$ and some constants $A, a>0$, admits analytic continuation to an entire function of order β on \mathbb{C}^{n} (see [10, §4, Corollary 3]). Let us show that for every $\beta>1$ there exists a semi-elliptic operator $m(D)$ (see [15, Theorem 11.1.11]) and a C^{∞} solution of $m(D) f=$ 0 , all of whose derivatives have growth $O\left(e^{a|x|^{\beta}}\right)$, but which does not admit analytic continuation to an entire function on \mathbb{C}^{n}.

A simple example of such a semi-elliptic operator is $\partial_{x_{1}}^{2}+\partial_{x_{2}}^{4 \ell+2}$ with $\ell \in \mathbb{N}$ satisfying $1+\frac{1}{2 \ell} \leq \beta$, i.e. $\ell \geq \frac{1}{2(\beta-1)}$.
Let

$$
f\left(x_{1}, x_{2}\right):=\sum_{k=1}^{\infty} \frac{e^{-i k^{2 \ell+1} x_{1}+k x_{2}}}{e^{k^{2 \ell+1}}}, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} .
$$

If $x_{2}>0$, then the function $t \mapsto t x_{2}-t^{2 \ell+1}$ achieves maximum at $t=\left(\frac{x_{2}}{2 \ell+1}\right)^{\frac{1}{2 \ell}}$, and this maximum is equal to

$$
2 \ell\left(\frac{1}{2 \ell+1}\right)^{1+\frac{1}{2 \ell}} x_{2}^{1+\frac{1}{2 \ell}}=: c_{\ell} x_{2}^{1+\frac{1}{2 \ell}} .
$$

Hence, for every multi-index α,

$$
\left|\partial^{\alpha} f\left(x_{1}, x_{2}\right)\right| \leq \sum_{k=1}^{\infty} k^{(2 \ell+1)|\alpha|} e^{k x_{2}-k^{2 \ell+1}}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{\left[x_{2}^{\frac{1}{2 \ell}}\right]+1} k^{(2 \ell+1)|\alpha|} e^{k x_{2}-k^{2 \ell+1}}+\sum_{k=\left[x_{2}^{\frac{1}{2 \ell}}\right]+2}^{\infty} k^{(2 \ell+1)|\alpha|} e^{k\left(x_{2}-k^{2 \ell}\right)} \\
& \leq\left(\left[x_{2}^{\frac{1}{2 \ell}}\right]+1\right)^{(2 \ell+1)|\alpha|+1} e^{c_{\ell} x_{2}^{1+\frac{1}{2 \ell}}}+\sum_{k=1}^{\infty} k^{(2 \ell+1)|\alpha|} e^{-k} \\
& \leq 2^{(2 \ell+1)|\alpha|+1}\left(x_{2}^{2|\alpha|+1}+1\right) e^{c_{\ell} x_{2}^{1+\frac{1}{2 \ell}}}+c_{\ell, \alpha} \leq C_{\ell, \alpha} e^{\left(c_{\ell}+1\right) x_{2}^{1+\frac{1}{2 \ell}}} .
\end{aligned}
$$

If $x_{2} \leq 0$, then

$$
\left|\partial^{\alpha} f\left(x_{1}, x_{2}\right)\right| \leq \sum_{k=1}^{\infty} \frac{k^{(2 \ell+1)|\alpha|}}{e^{k^{2 \ell+1}}}<\sum_{j=1}^{\infty} \frac{j^{|\alpha|}}{e^{j}}=: C_{\alpha}<\infty
$$

So, $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$, and $\partial^{\alpha} f\left(x_{1}, x_{2}\right)=O\left(e^{\left(c_{\ell}+1\right)\left|x_{2}\right|^{1+\frac{1}{2 \ell}}}\right)=O\left(e^{\left(c_{\ell}+1\right)|x|^{1+\frac{1}{2 \ell}}}\right)$. It is easy to see that $\left(\partial_{x_{1}}^{2}+\partial_{x_{2}}^{4 \ell+2}\right) f\left(x_{1}, x_{2}\right)=0$.
The function f admits analytic continuation to the set

$$
\Pi_{1}:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid \operatorname{Im} z_{1}<1\right\} .
$$

Indeed, let

$$
\begin{aligned}
f\left(z_{1}, z_{2}\right) & =f\left(x_{1}+i y_{1}, x_{2}+i y_{2}\right)=\sum_{k=1}^{\infty} \frac{e^{-i k^{2 \ell+1}\left(x_{1}+i y_{1}\right)+k\left(x_{2}+i y_{2}\right)}}{e^{k^{2 \ell+1}}} \\
& =\sum_{k=1}^{\infty} e^{i\left(k y_{2}-k^{2 \ell+1} x_{1}\right)} e^{k^{2 \ell+1}\left(y_{1}-1\right)+k x_{2}} .
\end{aligned}
$$

It is easy to see that the last series is uniformly convergent on compact subsets of Π_{1}. So, f admits analytic continuation to Π_{1}. On the other hand, $f\left(i y_{1}, 0\right) \rightarrow \infty$ as $y_{1} \rightarrow 1-0$. Indeed,

$$
f\left(i y_{1}, 0\right)=\sum_{k=1}^{\infty} e^{k^{2 \ell+1}\left(y_{1}-1\right)}
$$

Take any $N \in \mathbb{N}$. If $y_{1}>1-N^{-(2 \ell+1)}$, then

$$
f\left(i y_{1}, 0\right)>\sum_{k=1}^{\infty} e^{-k^{2 \ell+1} N^{-(2 \ell+1)}}>\sum_{k=1}^{N} e^{-k^{2 \ell+1} N^{-(2 \ell+1)}} \geq \sum_{k=1}^{N} e^{-1}=\frac{N}{e} .
$$

So, $f\left(i y_{1}, 0\right) \rightarrow \infty$ as $y_{1} \rightarrow 1-0$.

References

[1] N. Alibaud, F. del Teso, J. Endal, and E.R. Jakobsen, The Liouville theorem and linear operators satisfying the maximum principle. Journal des Mathematiques Pures et Appliquees 142, 229-242, 2020.
[2] D. Berger and R.L. Schilling, On the Liouville and strong Liouville properties for a class of non-local operators. Mathematica Scandinavica 128, 365-388, 2022.
[3] D. Berger, R.L. Schilling, and E. Shargorodsky, The Liouville theorem for a class of Fourier multipliers and its connection to coupling. (arXiv:2211.08929, submitted).
[4] J.B. Conway, Functions of one complex variable I. Springer-Verlag, New York - Berlin, 1978.
[5] Y. Domar, Harmonic analysis based on certain commutative Banach algebras. Acta Mathematica 96, 1-66, 1956.
[6] L. Ehrenpreis, Solution of some problems of division. Part IV: Invertible and elliptic operators. Am. J. Math. 82, 522-588, 1960.
[7] A. Friedman, Generalized functions and partial differential equations. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.
[8] J.B. Garnett, Bounded analytic functions. Springer, New York, 2006.
[9] K. Gröchenig, Weight functions in time-frequency analysis. In: L. Rodino (ed.) et al., Pseudo-differential operators. Partial differential equations and time-frequency analysis. Fields Institute Communications 52, 343-366, 2007.
[10] V.V. Grušin, The connection between local and global properties of the solutions of hypo-elliptic equations with constant coefficients. Mat. Sb. (N.S.) 66(108), 525-550, 1966.
[11] T. Grzywny and M. Kwaśnicki, Liouville's theorems for Lévy operators. (arXiv:2301.08540).
[12] W.K. Hayman, Power series expansions for harmonic functions. Bull. Lond. Math. Soc. 2, 152-158, 1970.
[13] E. Hille and R.S. Phillips, Functional analysis and semigroups. American Mathematical Society, Providence (RI), 1957.
[14] L. Hörmander, The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis. Springer-Verlag, Berlin etc., 1983.
[15] L. Hörmander, The analysis of linear partial differential operators. II: Differential operators with constant coefficients. Springer-Verlag, Berlin etc., 1983.
[16] A. Kaneko, Liouville type theorem for solutions of infra-exponential growth of linear partial differential equations with constant coefficients. Nat. Sci. Rep. Ochanomizu Univ. 49, 1, 1-5, 1998.
[17] A. Kaneko, Liouville type theorem for solutions of linear partial differential equations with constant coefficients. Ann. Pol. Math. 74, 143-159, 2000.
[18] D. Khavinson and E. Lundberg, Linear holomorphic partial differential equations and classical potential theory. American Mathematical Society, Providence, RI, 2018.
[19] P. Koosis, The logarithmic integral. I. Cambridge University Press, Cambridge, 1998. merican Mathematical Society, Providence, RI, 1982.
[20] P. Lelong and L. Gruman, Entire functions of several complex variables. SpringerVerlag, Berlin etc., 1986.
[21] B.Ya. Levin, Distribution of zeros of entire functions. American Mathematical Society, Providence, R.I., 1964.
[22] I.G. Petrowsky, Sur l'analyticité des solutions des systèmes d'équations différentielles. Rec. Math. N.S. [Mat. Sbornik] 5(47), 1, 3-70, 1939.
[23] W. Rudin, Functional analysis. McGraw-Hill Book Co., New York, 1973.
[24] K. Sato, Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge, 2013.
[25] G.E. Šilov, Local properties of solutions of partial differential equations with constant coefficients. Transl., Ser. 2, Am. Math. Soc. 42, 129-173, 1964.
[26] G.E. Šilov, An analogue of a theorem of Laurent Schwartz. Izv. Vysš. Učebn. Zaved. Matematika 1961, 4, 137-147, 1961.
(D. Berger \& R.L. Schilling) TU Dresden, Fakultät Mathematik, Institut für Mathematische Stochastik, 01062 Dresden, Germany

Email address: david.berger2@tu-dresden.de
Email address: rene.schilling@tu-dresden.de
(E. Shargorodsky) King's College London, Department of Mathematics, Strand, London, WC2R 2LS, UK

Email address: eugene.shargorodsky@kcl.ac.uk
(T. Sharia) Royal Holloway University of London, Department of Mathematics, Egham, Surrey, TW20 0EX, UK

Email address: t.sharia@rhul.ac.uk

[^0]: 2020 Mathematics Subject Classification. Primary 42B15, 35B53, 35A20; Secondary 32A15, 35E20, 35S05.

 Key words and phrases. Fourier multipliers, Liouville theorem, entire functions, Beurling-Domar condition.

 Acknowledgement. Financial support for the first two authors through the DFG-NCN Beethoven Classic 3 project SCHI419/11-1 \& NCN 2018/31/G/ST1/02252 is gratefully acknowledged.

