Maß und Integral (2. Auflage)

De Gruyter, Berlin 2025. ISBN: 978-3-11-134277-1

René Schilling

Druckfehler und kleinere Änderungen. Letzte Änderung: 14. Juni 2025.

Seite, Zeile	Stelle im Buch	Korrektur
S. 107, 2°, 3°, 4°		Vereinfachung am Ende dieses Dokuments
S. 107, Z. 9 von oben	$U = \bigcup_{n \in \mathbb{N}} Z_n \in \mathcal{Z}_{\cup}^{\square} \operatorname{mit} Z_n \in \mathcal{Z}_{\cup}^{\square}$	$U = \bigcup_{n \in \mathbb{N}} Z_n \text{ mit } Z_n \in \mathcal{Z}^{\square} \text{ so dass } U \in \mathcal{Z}^{\square}$
S. 122, Aufg. 8(b)	$\{u \neq 0\} \cup \{w \neq 0\}$	$\{u \neq 0\} + \{w \neq 0\} = \{x + y \mid u(x) \neq 0, w(y) \neq 0\}$
S. 125, Kor. 20.3	bitte hinzufügen:	$\min f \in \mathcal{L}^{0,+}_{\overline{\mathbb{R}}}(\mathcal{A})$
S. 136, Lem. 21.6 + Bew.	\mathcal{F} (alle)	$\mathcal{J}_{\mathrm{rat}}$ (alle)
S. 136/7, Lem. 21.7 + Bew.	\mathcal{F} (alle)	$\mathcal{J}_{\mathrm{rat}}$ (alle)
S. 138, Bew. 21.4	\mathcal{J} (alle)	$\mathcal{J}_{\mathrm{rat}}$ (alle)
S. 139, Bew. 21.8	\mathcal{F} (alle)	$\mathcal{J}_{\mathrm{rat}}$ (alle)

Ich bedanke mich bei allen Lesern, die mich auf (Druck-)Fehler aufmerksam gemacht haben: Jonas Esser.

1

Vereinfachungen

Vereinfachung des Beweises von Lemma 17.5: Da \mathcal{Z}^\square ein Halbring ist, und da wir Carathéodorys Fortsetzungssatz (Satz 5.2) für Halbringe bewiesen haben, genügt der Nachweis, dass μ relativ zu \mathcal{Z}^\square σ -additiv ist. Das kann man mit einer einfachen Variation von 3° erreichen, der 2° und 4° überflüssig macht.

 $\boxed{\mu \text{ ist auf } \mathscr{Z} \text{ σ-additiv:}} \text{ Es sei } U = \bigcup_{n \in \mathbb{N}} Z_n \text{ mit } Z_n \in \mathscr{Z}^\square. \text{ Wir nehmen an, dass } U \in \mathscr{Z}^\square. \text{ Weil } \Omega_I \in \mathscr{Z}^\square, \text{ haben wir } \Omega_I \setminus U = \bigcup_{n=1}^N S_n \text{ mit disjunkten } Z_n \in \mathscr{Z}^\square. \text{ Weil } (S_1, \dots, S_N, Z_1, Z_2, \dots) \text{ eine disjunkte Zerlegung von } \Omega_I \text{ ist, folgt nach Voraussetzung}$

$$\sum_{n \in \mathbb{N}} \mu(Z_n) \stackrel{(17.2)}{=} 1 - \sum_{n=1}^{N} \mu(S_n) .$$
 unabhängig von $(Z_n)_n$

Andererseits ist auch $(S_1, ..., S_N, U, \emptyset, \emptyset, ...)$ eine disjunkte Zerlegung von Ω_I , also folgt

$$\sum_{n \in \mathbb{N}} \mu(Z_n) \stackrel{(17.2)}{=} 1 - \sum_{n=1}^{N} \mu(S_n) \stackrel{(17.2)}{=} \mu(U).$$

Daher ist μ ein Prämaß auf dem Halbring \mathcal{Z}^{\square} . Wir können nun den Fortsetzungssatz von Carathéodory (Satz 5.2) anwenden und μ eindeutig zu einem Maß auf $\mathcal{A}_I = \sigma(\mathcal{Z}^{\square})$ fortsetzen.