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1 Prologue.

Solutions to Problems 1.1–1.5

Problem 1.1 Solution: We have to calculate the area of an isosceles triangle of side-length 𝑟, base 𝑏,
height ℎ and opening angle 𝜙 ∶= 2𝜋∕2𝑗 . From elementary geometry we know that

cos 𝜙2 = ℎ
𝑟

and sin 𝜙
2 = 𝑏

2𝑟

so that
area (triangle) = 1

2
ℎ𝑏 = 𝑟2 cos 𝜙2 sin

𝜙
2 = 𝑟2

2
sin𝜙.

Since we have lim𝜙→0
sin𝜙
𝜙

= 1 we find

area (circle) = lim
𝑗→∞

2𝑗 𝑟
2

2
sin 2𝜋

2𝑗

= 𝑟2𝜋 lim
𝑗→∞

sin 2𝜋
2𝑗

2𝜋
2𝑗

= 𝑟2𝜋

just as we had expected.
■■

Problem 1.2 Solution: By construction,

𝐶𝑛+1 = [0, 1] ⧵

(𝑛+1
⋃

𝑖=1

⋃

𝑡1,…,𝑡𝑖∈{0,2}
𝐼𝑡1,…,𝑡𝑖

)

and each interval 𝐼𝑡1,…,𝑡𝑖 has length 2−𝑖. We have used this when calculating 𝓁(𝐶𝑛+1)

𝓁(𝐶𝑛+1) = 𝓁[0, 1] − 20 × 1
31

− 21 × 1
32

−⋯ − 2𝑛 × 1
3𝑛+1

(note that we have removed 2𝑛 intervals of length 3−𝑛−1). If we let 𝑛→ ∞, we get for all removed
intervals

𝓁

( ∞
⋃

𝑖=1

⋃

𝑡1,…,𝑡𝑖∈{0,2}
𝐼𝑡1,…,𝑡𝑖

)

=
∞
∑

𝑖=1
2𝑖−1 × 1

3𝑖
= 1.

The last line requires 𝜎-additivity. (Just in case: you will see in the next chapter that the number
of removed intervals is indeed countable).

■■
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Problem 1.3 Solution: We record the lenghts of the removed pieces in each step
1. In Step 1 we remove one (= 20) piece of length 1

2𝑟;
2. In Step 2 we remove two (= 21) pieces, each of length 1

8𝑟;
3. In Step 3 we remove four (= 22) pieces, each of length 1

32𝑟;
n. In Step 𝑛 we remove 2𝑛 pieces, each of length 1

22𝑛−1 𝑟;
In each step we remove 2𝑛 × 2−2𝑛+1 × 𝑟 = 2−𝑛+1𝑟 units of length, i.e. we remove

∞
∑

𝑛=1

𝑟
2𝑛−1

= 𝑟.

Thus, 𝓁(𝐼) = 𝓁[0, 1] − 𝑟 = 1 − 𝑟.
This means that the modified Cantor set does have a length! Consequently it cannot be empty.

■■

Problem 1.4 Solution: In each step the total length is increased by the factor 4∕3, since we remove
the middle interval (relative length 1∕3) and replace it by two copies constituting the sides of an
equilateral triangle (relative length 2∕3). Thus,

𝓁(𝐾𝑛) =
4
3
× 𝓁(𝐾𝑛−1) = ⋯ =

(4
3

)𝑛
𝓁(𝐾0) =

(4
3

)𝑛
.

In particular, lim𝑛→∞ 𝓁(𝐾𝑛) = ∞.
Again 𝜎-additivity comes in in the form of a limit (compare with Problem 1.2).

■■

Problem 1.5 Solution: In each step the total area is decreased by the factor 3∕4, since we remove the
middle triangle (relative area 1∕4). Thus,

area(𝑆𝑛) = 3
4
× area(𝑆𝑛−1) = ⋯ =

(3
4

)𝑛
area(𝑆0) =

(3
4

)𝑛
√

3
4
.

In particular, area(𝑆) = lim𝑛→∞ area(𝑆𝑛) = 0.
Again 𝜎-additivity comes in in the form of a limit (compare with Problem 1.2). Notice that 𝑆 is
not empty as it contains the vertices of all black triangles (see figure) of each stage.

■■
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2 The pleasures of counting.

Solutions to Problems 2.1–2.22

Problem 2.1 Solution:

(i) We have

𝑥 ∈ 𝐴 ⧵ 𝐵 ⇐⇒ 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵

⇐⇒ 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵𝑐

⇐⇒ 𝑥 ∈ 𝐴 ∩ 𝐵𝑐 .

(ii) Using (i) and de Morgan’s laws (*) yields

(𝐴 ⧵ 𝐵) ⧵ 𝐶
(i)
= (𝐴 ∩ 𝐵𝑐) ∩ 𝐶𝑐 = 𝐴 ∩ 𝐵𝑐 ∩ 𝐶𝑐

= 𝐴 ∩ (𝐵𝑐 ∩ 𝐶𝑐)
(∗)
= 𝐴 ∩ (𝐵 ∪ 𝐶)𝑐 = 𝐴 ⧵ (𝐵 ∪ 𝐶).

(iii) Using (i), de Morgan’s laws (*) and the fact that (𝐶𝑐)𝑐 = 𝐶 gives

𝐴 ⧵ (𝐵 ⧵ 𝐶)
(i)
= 𝐴 ∩ (𝐵 ∩ 𝐶𝑐)𝑐

(∗)
= 𝐴 ∩ (𝐵𝑐 ∪ 𝐶)

= (𝐴 ∩ 𝐵𝑐) ∪ (𝐴 ∩ 𝐶)
(i)
= (𝐴 ⧵ 𝐵) ∪ (𝐴 ∩ 𝐶).

(iv) Using (i) and de Morgan’s laws (*) gives

𝐴 ⧵ (𝐵 ∩ 𝐶)
(i)
= 𝐴 ∩ (𝐵 ∩ 𝐶)𝑐

(*)
= 𝐴 ∩ (𝐵𝑐 ∪ 𝐶𝑐)

= (𝐴 ∩ 𝐵𝑐) ∪ (𝐴 ∩ 𝐶𝑐)
(i)
= (𝐴 ⧵ 𝐵) ∪ (𝐴 ⧵ 𝐶)

(v) Using (i) and de Morgan’s laws (*) gives

𝐴 ⧵ (𝐵 ∪ 𝐶)
(i)
= 𝐴 ∩ (𝐵 ∪ 𝐶)𝑐

(*)
= 𝐴 ∩ (𝐵𝑐 ∩ 𝐶𝑐)

= 𝐴 ∩ 𝐵𝑐 ∩ 𝐶𝑐
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= 𝐴 ∩ 𝐵𝑐 ∩ 𝐴 ∩ 𝐶𝑐

(i)
= (𝐴 ⧵ 𝐵) ∩ (𝐴 ⧵ 𝐶)

(vi) By definition and the distributive laws for sets we find
(𝐴 ∪ 𝐵) ⧵ 𝐶 = (𝐴 ∪ 𝐵) ∩ 𝐶𝑐

= (𝐴 ∩ 𝐶𝑐) ∪ (𝐵 ∩ 𝐶𝑐)

= (𝐴 ⧵ 𝐶) ∪ (𝐵 ⧵ 𝐶).

■■

Problem 2.2 Solution: Observe, first of all, that
𝐴 ⧵ 𝐶 ⊂ (𝐴 ⧵ 𝐵) ∪ (𝐵 ⧵ 𝐶). (*)

This follows easily from
𝐴 ⧵ 𝐶 = (𝐴 ⧵ 𝐶) ∩𝑋

= (𝐴 ∩ 𝐶𝑐) ∩ (𝐵 ∪ 𝐵𝑐)

= (𝐴 ∩ 𝐶𝑐 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶𝑐 ∩ 𝐵𝑐)

⊂ (𝐵 ∩ 𝐶𝑐) ∪ (𝐴 ∩ 𝐵𝑐)

= (𝐵 ⧵ 𝐶) ∪ (𝐴 ⧵ 𝐵).

Using this and the analogous formula for 𝐶 ⧵ 𝐴 then gives
(𝐴 ∪ 𝐵 ∪ 𝐶) ⧵ (𝐴 ∩ 𝐵 ∩ 𝐶)

= (𝐴 ∪ 𝐵 ∪ 𝐶) ∩ (𝐴 ∩ 𝐵 ∩ 𝐶)𝑐

= [𝐴 ∩ (𝐴 ∩ 𝐵 ∩ 𝐶)𝑐] ∪ [𝐵 ∩ (𝐴 ∩ 𝐵 ∩ 𝐶)𝑐] ∪ [𝐶 ∩ (𝐴 ∩ 𝐵 ∩ 𝐶)𝑐]

= [𝐴 ⧵ (𝐴 ∩ 𝐵 ∩ 𝐶)] ∪ [𝐵 ⧵ (𝐴 ∩ 𝐵 ∩ 𝐶)] ∪ [𝐶 ⧵ (𝐴 ∩ 𝐵 ∩ 𝐶)]

= [𝐴 ⧵ (𝐵 ∩ 𝐶)] ∪ [𝐵 ⧵ (𝐴 ∩ 𝐶)] ∪ [𝐶 ⧵ (𝐴 ∩ 𝐵)]
2.1(iv)
= (𝐴 ⧵ 𝐵) ∪ (𝐴 ⧵ 𝐶) ∪ (𝐵 ⧵ 𝐴) ∪ (𝐵 ⧵ 𝐶) ∪ (𝐶 ⧵ 𝐴) ∪ (𝐶 ⧵ 𝐵)
(*)
= (𝐴 ⧵ 𝐵) ∪ (𝐵 ⧵ 𝐴) ∪ (𝐵 ⧵ 𝐶) ∪ (𝐶 ⧵ 𝐵)

= (𝐴▵𝐵) ∪ (𝐵 ▵𝐶)

■■

Problem 2.3 Solution: It is clearly enough to prove (2.3) as (2.2) follows if 𝐼 contains 2 points.
De Morgan’s identities state that for any index set 𝐼 (finite, countable or not countable) and any
collection of subsets 𝐴𝑖 ⊂ 𝑋, 𝑖 ∈ 𝐼 , we have

(a)
(

⋃

𝑖∈𝐼
𝐴𝑖

)𝑐

=
⋂

𝑖∈𝐼
𝐴𝑐𝑖 and (b)

(

⋂

𝑖∈𝐼
𝐴𝑖

)𝑐

=
⋃

𝑖∈𝐼
𝐴𝑐𝑖 .
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In order to see (a) we note that

𝑎 ∈

(

⋃

𝑖∈𝐼
𝐴𝑖

)𝑐

⇐⇒ 𝑎 ∉
⋃

𝑖∈𝐼
𝐴𝑖

⇐⇒ ∀ 𝑖 ∈ 𝐼 ∶ 𝑎 ∉ 𝐴𝑖

⇐⇒ ∀ 𝑖 ∈ 𝐼 ∶ 𝑎 ∈ 𝐴𝑐𝑖
⇐⇒ 𝑎 ∈

⋂

𝑖∈𝐼
𝐴𝑐𝑖 ,

and (b) follows from

𝑎 ∈

(

⋂

𝑖∈𝐼
𝐴𝑖

)𝑐

⇐⇒ 𝑎 ∉
⋂

𝑖∈𝐼
𝐴𝑖

⇐⇒ ∃ 𝑖0 ∈ 𝐼 ∶ 𝑎 ∉ 𝐴𝑖0
⇐⇒ ∃ 𝑖0 ∈ 𝐼 ∶ 𝑎 ∈ 𝐴𝑐𝑖0
⇐⇒ 𝑎 ∈

⋃

𝑖∈𝐼
𝐴𝑐𝑖 .

■■

Problem 2.4 Solution:

(i) The inclusion 𝑓 (𝐴∩𝐵) ⊂ 𝑓 (𝐴)∩𝑓 (𝐵) is always true since𝐴∩𝐵 ⊂ 𝐴 and𝐴∩𝐵 ⊂ 𝐵 imply
that 𝑓 (𝐴 ∩𝐵) ⊂ 𝑓 (𝐴) and 𝑓 (𝐴 ∩𝐵) ⊂ 𝑓 (𝐵), respectively. Thus, 𝑓 (𝐴 ∩𝐵) ⊂ 𝑓 (𝐴) ∩ 𝑓 (𝐵).
Furthermore, 𝑦 ∈ 𝑓 (𝐴)⧵𝑓 (𝐵) means that there is some 𝑥 ∈ 𝐴 but 𝑥 ∉ 𝐵 such that 𝑦 = 𝑓 (𝑥),
that is: 𝑦 ∈ 𝑓 (𝐴 ⧵ 𝐵). Thus, 𝑓 (𝐴) ⧵ 𝑓 (𝐵) ⊂ 𝑓 (𝐴 ⧵ 𝐵).
To see that the converse inclusions cannot hold we consider some non injective 𝑓 . Take
𝑋 = [0, 2], 𝐴 = (0, 1), 𝐵 = (1, 2), and 𝑓 ∶ [0, 2] → R with 𝑥 → 𝑓 (𝑥) = 𝑐 (𝑐 is some
constant). Then 𝑓 is not injective and

∅ = 𝑓 (∅) = 𝑓 ((0, 1) ∩ (1, 2)) ≠ 𝑓 ((0, 1)) ∪ 𝑓 ((1, 2)) = {𝑐}.

Moreover, 𝑓 (𝑋) = 𝑓 (𝐵) = {𝑐} = 𝑓 (𝑋 ⧵ 𝐵) but 𝑓 (𝑋) ⧵ 𝑓 (𝐵) = ∅.
(ii) Recall, first of all, the definition of 𝑓−1 for a map 𝑓 ∶ 𝑋 → 𝑌 and 𝐵 ⊂ 𝑌

𝑓−1(𝐵) ∶= {𝑥 ∈ 𝑋 ∶ 𝑓 (𝑥) ∈ 𝐵}.

Observe that

𝑥 ∈ 𝑓−1(∪𝑖∈𝐼𝐶𝑖) ⇐⇒ 𝑓 (𝑥) ∈ ∪𝑖∈𝐼𝐶𝑖
⇐⇒ ∃ 𝑖0 ∈ 𝐼 ∶ 𝑓 (𝑥) ∈ 𝐶𝑖0
⇐⇒ ∃ 𝑖0 ∈ 𝐼 ∶ 𝑥 ∈ 𝑓−1(𝐶𝑖0)

⇐⇒ 𝑥 ∈ ∪𝑖∈𝐼𝑓−1(𝐶𝑖),
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and

𝑥 ∈ 𝑓−1(∩𝑖∈𝐼𝐶𝑖) ⇐⇒ 𝑓 (𝑥) ∈ ∩𝑖∈𝐼𝐶𝑖
⇐⇒ ∀ 𝑖 ∈ 𝐼 ∶ 𝑓 (𝑥) ∈ 𝐶𝑖

⇐⇒ ∀ 𝑖 ∈ 𝐼 ∶ 𝑥 ∈ 𝑓−1(𝐶𝑖)

⇐⇒ 𝑥 ∈ ∩𝑖∈𝐼𝑓−1(𝐶𝑖),

and, finally,

𝑥 ∈ 𝑓−1(𝐶 ⧵𝐷) ⇐⇒ 𝑓 (𝑥) ∈ 𝐶 ⧵𝐷

⇐⇒ 𝑓 (𝑥) ∈ 𝐶 and 𝑓 (𝑥) ∉ 𝐷

⇐⇒ 𝑥 ∈ 𝑓−1(𝐶) and 𝑥 ∉ 𝑓−1(𝐷)

⇐⇒ 𝑥 ∈ 𝑓−1(𝐶) ⧵ 𝑓−1(𝐷).

■■

Problem 2.5 Solution:

(i), (vi) For every 𝑥 we have

1𝐴∩𝐵(𝑥) = 1 ⇐⇒ 𝑥 ∈ 𝐴 ∩ 𝐵

⇐⇒ 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵

⇐⇒ 1𝐴(𝑥) = 1 = 1𝐵(𝑥)

⇐⇒

⎧

⎪

⎨

⎪

⎩

1𝐴(𝑥) ⋅ 1𝐵(𝑥) = 1

min{1𝐴(𝑥),1𝐵(𝑥)} = 1

(ii), (v) For every 𝑥 we have

1𝐴∪𝐵(𝑥) = 1 ⇐⇒ 𝑥 ∈ 𝐴 ∪ 𝐵

⇐⇒ 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵

⇐⇒ 1𝐴(𝑥) + 1𝐵(𝑥) ⩾ 1

⇐⇒

⎧

⎪

⎨

⎪

⎩

min{1𝐴(𝑥) + 1𝐵(𝑥), 1} = 1

max{1𝐴(𝑥),1𝐵(𝑥)} = 1

(iii) Since 𝐴 = (𝐴∩𝐵)⊍ (𝐴⧵𝐵) we see that 1𝐴∩𝐵(𝑥) +1𝐴⧵𝐵(𝑥) can never have the value 2, thus
part (ii) implies

1𝐴(𝑥) = 1(𝐴∩𝐵)⊍(𝐴⧵𝐵)(𝑥) = min{1𝐴∩𝐵(𝑥) + 1𝐴⧵𝐵(𝑥), 1}

= 1𝐴∩𝐵(𝑥) + 1𝐴⧵𝐵(𝑥)

and all we have to do is to subtract 1𝐴∩𝐵(𝑥) on both sides of the equation.
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(iv) With the same argument that we use in (iii) and with the result of (iii) we get

1𝐴∪𝐵(𝑥) = 1(𝐴⧵𝐵)⊍(𝐴∩𝐵)⊍(𝐵⧵𝐴)(𝑥)

= 1𝐴⧵𝐵(𝑥) + 1𝐴∩𝐵(𝑥) + 1𝐵⧵𝐴(𝑥)

= 1𝐴(𝑥) − 1𝐴∩𝐵(𝑥) + 1𝐴∩𝐵(𝑥) + 1𝐵(𝑥) − 1𝐴∩𝐵(𝑥)

= 1𝐴(𝑥) + 1𝐵(𝑥) − 1𝐴∩𝐵(𝑥).

(vii) We have

∀𝑖 ∶ 1𝐴𝑖 ⩽ 1
⋃

𝑖 𝐴𝑖 ⇐⇒ sup
𝑖
1𝐴𝑖 ⩽ 1

⋃

𝑖 𝐴𝑖 .

On the other hand,

𝑥0 ∈
⋃

𝑖
𝐴𝑖 ⇐⇒ ∃𝑖0 ∶ 𝑥 ∈ 𝐴𝑖0 .

Thus,

1⋃
𝑖 𝐴𝑖(𝑥0) = 1 ⇐⇒ 1𝐴𝑖0

(𝑥0) = 1 ⇐⇒ sup
𝑖
1𝐴𝑖(𝑥0) = 1

and we get sup𝑖 1𝐴𝑖 ⩾ 1⋃𝑖 𝐴𝑖 .
(viii) One possibility is to mimic the proof of (vii). We prefer to argue like this: using (iii) and de

Morgan’s identities we get

1⋂
𝑖 𝐴𝑖

(iii)
=de Morgan 1𝑋 − 1⋃

𝑖 𝐴
𝑐
𝑖

(vii)
= 1 − sup

𝑖
1𝐴𝑐𝑖

= inf
𝑖
(1 − 1𝐴𝑐𝑖 )

(iii)
= inf

𝑖
1𝐴𝑖 .

■■

Problem 2.6 Solution:

(i) Using 2.5(iii), (iv) we see that

1𝐴▵𝐵(𝑥) = 1(𝐴⧵𝐵)⊍(𝐵⧵𝐴)(𝑥)

= 1𝐴⧵𝐵(𝑥) + 1𝐵⧵𝐴(𝑥)

= 1𝐴(𝑥) − 1𝐴∩𝐵(𝑥) + 1𝐵(𝑥) − 1𝐴∩𝐵(𝑥)

= 1𝐴(𝑥) + 1𝐵(𝑥) − 21𝐴∩𝐵(𝑥)

and this expression is 1 if, and only if, 𝑥 is either in 𝐴 or 𝐵 but not in both sets. Thus

1𝐴▵𝐵(𝑥) ⇐⇒ 1𝐴(𝑥) + 1𝐵(𝑥) = 1 ⇐⇒ 1𝐴(𝑥) + 1𝐵(𝑥)mod2 = 1.

It is also possible to show that

1𝐴▵𝐵 = |1𝐴 − 1𝐵|.

13
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This follows from

1𝐴(𝑥) − 1𝐵(𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if 𝑥 ∈ 𝐴 ∩ 𝐵;

0, if 𝑥 ∈ 𝐴𝑐 ∩ 𝐵𝑐;

+1, if 𝑥 ∈ 𝐴 ⧵ 𝐵;

−1, if 𝑥 ∈ 𝐵 ⧵ 𝐴.

Thus,
|1𝐴(𝑥) − 1𝐵(𝑥)| = 1 ⇐⇒ 𝑥 ∈ (𝐴 ⧵ 𝐵) ∪ (𝐵 ⧵ 𝐴) = 𝐴▵𝐵.

(ii) From part (i) we see that
1𝐴▵(𝐵 ▵𝐶) = 1𝐴 + 1𝐵 ▵𝐶 − 21𝐴1𝐵 ▵𝐶

= 1𝐴 + 1𝐵 + 1𝐶 − 21𝐵1𝐶 − 21𝐴
(

1𝐵 + 1𝐶 − 21𝐵1𝐶
)

= 1𝐴 + 1𝐵 + 1𝐶 − 21𝐵1𝐶 − 21𝐴1𝐵 − 21𝐴1𝐶 + 41𝐴1𝐵1𝐶

and this expression treats 𝐴,𝐵, 𝐶 in a completely symmetric way, i.e.
1𝐴▵(𝐵 ▵𝐶) = 1(𝐴▵𝐵)▵𝐶 .

(iii) Step 1: (𝒫 (𝑋),▵, ∅) is an abelian group.
Neutral element: 𝐴▵ ∅ = ∅▵𝐴 = 𝐴;
Inverse element: 𝐴▵𝐴 = (𝐴 ⧵ 𝐴) ∪ (𝐴 ⧵ 𝐴) = ∅, i.e. each element is its own inverse.
Associativity: see part (ii);
Commutativity: 𝐴▵𝐵 = 𝐵 ▵𝐴.
Step 2: For the multiplication ∩ we have
Associativity: 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶;
Commutativity: 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴;
One-element: 𝐴 ∩𝑋 = 𝑋 ∩ 𝐴 = 𝐴.
Step 3: Distributive law:

𝐴 ∩ (𝐵 ▵𝐶) = (𝐴 ∩ 𝐵)▵(𝐴 ∩ 𝐶).

For this we use again indicator functions and the rules from (i) and Problem 2.5:
1𝐴∩(𝐵 ▵𝐶) = 1𝐴1𝐵 ▵𝐶 = 1𝐴(1𝐵 + 1𝐶 mod 2)

=
[

1𝐴(1𝐵 + 1𝐶 )
]

mod 2

=
[

1𝐴1𝐵 + 1𝐴1𝐶
]

mod 2

=
[

1𝐴∩𝐵 + 1𝐴∩𝐶
]

mod 2

= 1(𝐴∩𝐵)▵(𝐴∩𝐶).

14
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■■

Problem 2.7 Solution: Let 𝑓 ∶ 𝑋 → 𝑌 . One has

𝑓 surjective ⇐⇒ ∀𝐵 ⊂ 𝑌 ∶ 𝑓◦𝑓−1(𝐵) = 𝐵

⇐⇒ ∀𝐵 ⊂ 𝑌 ∶ 𝑓◦𝑓−1(𝐵) ⊃ 𝐵.

This can be seen as follows: by definition 𝑓−1(𝐵) = {𝑥 ∶ 𝑓 (𝑥) ∈ 𝐵} so that

𝑓◦𝑓−1(𝐵) = 𝑓
(

{𝑥 ∶ 𝑓 (𝑥) ∈ 𝐵}
)

= {𝑓 (𝑥) ∶ 𝑓 (𝑥) ∈ 𝐵} ⊂ {𝑦 ∶ 𝑦 ∈ 𝐵}

and we have equality in the last step if, and only if, we can guarantee that every 𝑦 ∈ 𝐵 is of the form
𝑦 = 𝑓 (𝑥) for some 𝑥. Since this must hold for all sets𝐵, this amounts to saying that 𝑓 (𝑋) = 𝑌 , i.e.
that 𝑓 is surjective. The second equivalence is clear since our argument shows that the inclusion
‘⊂’ always holds.
Thus, we can construct a counterexample by setting 𝑓 ∶ R → R, 𝑓 (𝑥) ∶= 𝑥2 and 𝐵 = [−1, 1].
Then

𝑓−1([−1, 1]) = [0, 1] and 𝑓◦𝑓−1([−1, 1]) = 𝑓 ([0, 1]) = [0, 1] ⊊ [−1, 1].

On the other hand

𝑓 injective ⇐⇒ ∀𝐴 ⊂ 𝑋 ∶ 𝑓−1◦𝑓 (𝐴) = 𝐴

⇐⇒ ∀𝐴 ⊂ 𝑋 ∶ 𝑓−1◦𝑓 (𝐴) ⊂ 𝐴.

To see this we observe that because of the definition of 𝑓−1

𝑓−1◦𝑓 (𝐴) = {𝑥 ∶ 𝑓 (𝑥) ∈ 𝑓 (𝐴)} ⊃ {𝑥 ∶ 𝑥 ∈ 𝐴} = 𝐴 (*)

since 𝑥 ∈ 𝐴 always entails 𝑓 (𝑥) ∈ 𝑓 (𝐴). The reverse is, for non-injective 𝑓 , wrong since then
there might be some 𝑥0 ∉ 𝐴 but with 𝑓 (𝑥0) = 𝑓 (𝑥) ∈ 𝑓 (𝐴) i.e. 𝑥0 ∈ 𝑓−1◦𝑓 (𝐴) ⧵ 𝐴. This means
that we have equality in (∗) if, and only if, 𝑓 is injective. The second equivalence is clear since
our argument shows that the inclusion ‘⊃’ always holds.
Thus, we can construct a counterexample by setting 𝑓 ∶ R→ R, 𝑓 ≡ 1. Then

𝑓 ([0, 1]) = {1} and 𝑓−1◦𝑓 ([0, 1]) = 𝑓−1({1}) = R ⊋ [0, 1].

■■

Problem 2.8 Solution: Assume that for 𝑥, 𝑦 we have 𝑓◦𝑔(𝑥) = 𝑓◦𝑔(𝑦). Since 𝑓 is injective, we
conclude that

𝑓 (𝑔(𝑥)) = 𝑓 (𝑔(𝑦)) ⇐⇒ 𝑔(𝑥) = 𝑔(𝑦),

15
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and, since 𝑔 is also injective,

𝑔(𝑥) = 𝑔(𝑦) ⇐⇒ 𝑥 = 𝑦

showing that 𝑓◦𝑔 is injective.
■■

Problem 2.9 Solution:

• Call the set of odd numbers 𝒪 . Every odd number is of the form 2𝑘 − 1 where 𝑘 ∈ N. We
are done, if we can show that the map 𝑓 ∶ N → 𝒪 , 𝑘 → 2𝑘 − 1 is bijective. Surjectivity is
clear as 𝑓 (N) = 𝒪 . For injectivity we take 𝑖, 𝑗 ∈ N such that 𝑓 (𝑖) = 𝑓 (𝑗). The latter means
that 2𝑖 − 1 = 2𝑗 − 1, so 𝑖 = 𝑗, i.e. injectivity.

• The quickest solution is to observe that N × Z = N × N ∪ N × {0} ∪ N × (−N) where
−N ∶= {−𝑛 ∶ 𝑛 ∈ N} are the strictly negative integers. We know from Example 2.5(iv) that
N×N is countable. Moreover, the map 𝛽 ∶ N×N → N×(−N), 𝛽((𝑖, 𝑘)) = (𝑖,−𝑘) is bijective,
thus #N × (−N) = #N × N is also countable and so is N × {0} since 𝛾 ∶ N → N × {0},
𝛾(𝑛) ∶= (𝑛, 0) is also bijective.
Therefore,N ×Z is a union of three countable sets, hence countable.

An alternative approach would be to write out Z×N (the swap of Z andN is for notational
reasons—since the map 𝛽((𝑗, 𝑘)) ∶= (𝑘, 𝑗) from Z ×N toN ×Z is bijective, the cardinality
does not change) in the following form

… (−3, 1) (−2, 1) (−1, 1) (0, 1) (1, 1) (2, 1) (3, 1) …
… (−3, 2) (−2, 2) (−1, 2) (0, 2) (1, 2) (2, 2) (3, 2) …
… (−3, 3) (−2, 3) (−1, 3) (0, 3) (1, 3) (2, 3) (3, 3) …
… (−3, 4) (−2, 4) (−1, 4) (0, 4) (1, 4) (2, 4) (3, 4) …
… (−3, 5) (−2, 5) (−1, 5) (0, 5) (1, 5) (2, 5) (3, 5) …
… (−3, 6) (−2, 6) (−1, 6) (0, 6) (1, 6) (2, 6) (3, 6) …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

and going through the array, starting with (0, 1), then (1, 1) → (1, 2) → (0, 2) → (−1, 2) →
(−1, 1), then (2, 1) → (2, 2) → (2, 3) → (1, 3) → ... in clockwise oriented ⨆-shapes down,
left, up.

• In Example 2.5(iv) we have shown that #Q ⩽ #N. Since N ⊂ Q, we have a canonical
injection 𝚥 ∶ N → Q, 𝑖 → 𝑖 so that #N ⩽ #Q. Using Theorem 2.7 we conclude that
#Q = #N.
The proof of #(N ×N) = #N can be easily adapted—using some pretty obvious notational
changes—to show that the Cartesian product of any two countable sets of cardinality #N has
again cardinality #N. Applying this 𝑚 − 1 times we see that #Q𝑚 = #N.

• ⋃

𝑚∈NQ
𝑚 is a countable union of countable sets, hence countable, cf. Theorem 2.6.
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■■

Problem 2.10 Solution: Following the hint it is clear that 𝛽 ∶ N→ N × {1}, 𝑖 → (𝑖, 1) is a bijection
and that 𝚥 ∶ N × {1} → N ×N, (𝑖, 1) → (𝑖, 1) is an injection. Thus, #N ⩽ #(N ×N).
On the other hand, N × N =

⋃

𝑗∈NN × {𝑗} which is a countable union of countable sets, thus
#(N ×N) ⩽ #N.
Applying Theorem 2.7 finally gives #(N ×N) = #N.

■■

Problem 2.11 Solution: Since 𝐸 ⊂ 𝐹 the map 𝚥 ∶ 𝐸 → 𝐹 , 𝑒 → 𝑒 is an injection, thus #𝐸 ⩽ #𝐹 .
■■

Problem 2.12 Solution: Assume that the set {0, 1}N were indeed countable and that {𝑠𝑗}𝑗∈N was an
enumeration: each 𝑠𝑗 would be a sequence of the form (𝑑𝑗1, 𝑑

𝑗
2, 𝑑

𝑗
3, ..., 𝑑

𝑗
𝑘, ...) with 𝑑𝑗𝑘 ∈ {0, 1}. We

could write these sequences in an infinite list of the form:
𝑠1 = 𝑑11 𝑑12 𝑑13 𝑑14 … 𝑑1𝑘 …
𝑠2 = 𝑑21 𝑑22 𝑑23 𝑑24 … 𝑑2𝑘 …
𝑠3 = 𝑑31 𝑑32 𝑑33 𝑑34 … 𝑑3𝑘 …
𝑠4 = 𝑑41 𝑑42 𝑑43 𝑑44 … 𝑑4𝑘 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱

𝑠𝑘 = 𝑑𝑘1 𝑑𝑘2 𝑑𝑘3 𝑑𝑘4 … 𝑑𝑘𝑘 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱

and produce a new 0-1-sequence 𝑆 = (𝑒1, 𝑒2, 𝑒3,…) by setting

𝑒𝑚 ∶=
⎧

⎪

⎨

⎪

⎩

0, if 𝑑𝑚𝑚 = 1

1, if 𝑑𝑚𝑚 = 0
.

Since 𝑆 differs from 𝑠𝓁 exactly at position 𝓁, 𝑆 cannot be in the above list, thus, the above list did
not contain all 0-1-sequences, hence a contradiction.

■■

Problem 2.13 Solution: Consider the function 𝑓 ∶ (0, 1) → R given by

𝑓 (𝑥) ∶= 1
1 − 𝑥

− 1
𝑥
.

This function is obviously continuous and we have lim𝑥→0 𝑓 (𝑥) = −∞ and lim𝑥→1 𝑓 (𝑥) = +∞.
By the intermediate value theorem we have therefore 𝑓 ((0, 1)) = R, i.e. surjectivity.
Since 𝑓 is also differentiable and 𝑓 ′(𝑥) = 1

(1 − 𝑥)2
+ 1
𝑥2

> 0, we see that 𝑓 is strictly increasing,
hence injective, hence bijective.

■■
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Problem 2.14 Solution: Since 𝐴1 ⊂
⋃

𝑖∈N𝐴𝑖 it is clear that 𝔠 = #𝐴1 ⩽ #
⋃

𝑖∈N𝐴𝑖. On the other
hand, #𝐴𝑖 = 𝔠 means that we can map 𝐴𝑖 bijectively onto R and, using Problem 2.13, we map R
bijectively onto (0, 1) or (𝑖− 1, 𝑖). This shows that #⋃𝑖∈N𝐴𝑖 ⩽ #

⋃

𝑖∈N(𝑖− 1, 𝑖) ⩽ #R = 𝔠. Using
Theorem 2.7 finishes the proof.

■■

Problem 2.15 Solution: Since we can write each 𝑥 ∈ (0, 1) as an infinite dyadic fraction (o.k. if it
is finite, fill it up with an infinite tail of zeroes !), the proof of Theorem 2.8 shows that #(0, 1) ⩽
#{0, 1}N.
On the other hand, thinking in base-4 expansions, each element of {1, 2}N can be interpreted
as a unique base-4 fraction (having no 0 or 3 in its expansion) of some number in (0, 1). Thus,
#{1, 2}N ⩽ #N.
But #{1, 2}N = #{0, 1}N and we conclude with Theorem 2.7 that #(0, 1) = #{0, 1}N.

■■

Problem 2.16 Solution: Just as before, expand 𝑥 ∈ (0, 1) as an 𝑛-adic fraction, then interpret each
element of {1, 2,… , 𝑛+ 1}N as a unique (𝑛+ 1)-adic expansion of a number in (0, 1) and observe
that #{1, 2,… , 𝑛 + 1}N = {0, 1,… , 𝑛}N.

■■

Problem 2.17 Solution: Take a vector (𝑥, 𝑦) ∈ (0, 1) × (0, 1) and expand its coordinate entries 𝑥, 𝑦
as dyadic numbers:

𝑥 = 0.𝑥1𝑥2𝑥3… , 𝑦 = 0.𝑦1𝑦2𝑦3… .

Then 𝑧 ∶= 0.𝑥1𝑦1𝑥2𝑦2𝑥3𝑦3… is a number in (0, 1). Conversely, we can ‘zip’ each 𝑧 = 0.𝑧1𝑧2𝑧3𝑧4… ∈
(0, 1) into two numbers 𝑥, 𝑦 ∈ (0, 1) by setting

𝑥 ∶= 0.𝑧2𝑧4𝑧6𝑧8… , 𝑦 ∶= 0.𝑧1𝑧3𝑧5𝑧7…

This is obviously a bijective operation.

Since we have a bijection between (0, 1) ↔ R it is clear that we have also a bijection between
(0, 1) × (0, 1) ↔ R ×R.

■■

Problem 2.18 Solution: We have seen in Problem 2.18 that #{0, 1}N = #{1, 2}N = 𝔠. Obviously,
{1, 2}N ⊂ NN ⊂ RN and since we have a bijection between (0, 1) ↔ R one extends this (using
coordinates) to a bijection between (0, 1)N ↔ RN. Using Theorem 2.9 we get

𝔠 = #{1, 2}N ⩽ #NN ⩽ #RN = 𝔠,

and, because of Theorem 2.7 we have equality in the above formula.
■■
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Problem 2.19 Solution: Let 𝐹 ∈ ℱ with #𝐹 = 𝑛 Then we can write 𝐹 as a tuple of length 𝑛 (having
𝑛 pairwise different entries...) and therefore we can interpret 𝐹 as an element of ⋃𝑚∈NN

𝑚. In
this sense, ℱ →

⋃

𝑚∈NN
𝑚 and #ℱ ⩽

⋃

𝑚∈NN
𝑚 = #N since countably many countable sets are

again countable. SinceN ⊂ ℱ we get #ℱ = #N by Theorem 2.7.

Alternative: Define a map 𝜙 ∶ ℱ → N by

ℱ ∋ 𝐴 → 𝜙(𝐴) ∶=
∑

𝑎∈𝐴
2𝑎

. It is clear that 𝜙 increases if 𝐴 gets bigger: 𝐴 ⊂ 𝐵 ⇐⇒ 𝜙(𝐴) ⩽ 𝜙(𝐵). Let 𝐴,𝐵 ∈ ℱ be two
finite sets, say 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑀} and {𝑏1, 𝑏2,… , 𝑏𝑁} (ordered according to size with 𝑎1, 𝑏1
being the smallest and 𝑎𝑀 , 𝑏𝑁 the biggest) such that 𝜙(𝐴) = 𝜙(𝐵). Assume, to the contrary, that
𝐴 ≠ 𝐵. If 𝑎𝑀 ≠ 𝑏𝑁 , say 𝑎𝑀 > 𝑏𝑁 , then

𝜙(𝐴) ⩾ 𝜙({𝑎𝑀}) ⩾ 2𝑎𝑀 > 2𝑎𝑀 − 1
2 − 1

=
𝑎𝑀−1
∑

𝑗=1
2𝑗

= 𝜙({1, 2, 3,… 𝑎𝑀 − 1})

⩾ 𝜙(𝐵),

which cannot be the case since we assumed 𝜙(𝐴) = 𝜙(𝐵). Thus, 𝑎𝑀 = 𝑏𝑁 . Now consider
recursively the next elements, 𝑎𝑀−1 and 𝑏𝑁−1 and the same conclusion yields their equality etc.
The process stops after min{𝑀,𝑁} steps. But if 𝑀 ≠ 𝑁 , say 𝑀 > 𝑁 , then 𝐴 would contain at
least one more element than 𝐵, hence 𝜙(𝐴) > 𝜙(𝐵), which is also a contradiction. This, finally
shows that 𝐴 = 𝐵, hence that 𝜙 is injective.
On the other hand, each natural number can be expressed in terms of finite sums of powers of
base-2, so that 𝜙 is also surjective.
Thus, #ℱ = #N.

■■

Problem 2.20 Solution: (Let ℱ be as in the previous exercise.) Observe that the infinite sets from
𝒫 (N), ℐ ∶= 𝒫 (N) ⧵ ℱ can be surjectively mapped onto {0, 1}N: if {𝑎1, 𝑎2, 𝑎3,…} = 𝐴 ⊂ N,
then define an infinite 0-1-sequence (𝑏1, 𝑏2, 𝑏3,…) by setting 𝑏𝑗 = 0 or 𝑏𝑗 = 1 according to whether
𝑎𝑗 is even or odd. This is a surjection of 𝒫 (N) onto {0, 1}N and so #𝒫 (N) ⩾ #{0, 1}N. Call this
map 𝛾 and consider the family 𝛾−1(𝑠), 𝑠 ∈ {0, 1}N in ℐ , consisting of obviously disjoint infinite
subsets of N which lead to the same 0-1-sequence 𝑠. Now choose from each family 𝛾−1(𝑠) a
representative, call it 𝑟(𝑠) ∈ ℐ . Then the map 𝑠 → 𝑟(𝑠) is a bijection between {0, 1}N and a subset
of ℐ , the set of all representatives. Hence, ℐ has at least the same cardinality as {0, 1}N and as
such a bigger cardinality than N.

■■
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Problem 2.21 Solution: Denote byΘ the map𝒫 (N) ∋ 𝐴 → 1𝐴 ∈ {0, 1}N. Let 𝛿 = (𝑑1, 𝑑2, 𝑑3,…) ∈
{0, 1}N and define 𝐴(𝛿) ∶= {𝑗 ∈ N ∶ 𝑑𝑗 = 1}. Then 𝛿 = (1𝐴(𝛿)(𝑗))𝑗∈N showing that Θ is surject-
ive.
On the other hand,

1𝐴 = 1𝐵 ⇐⇒ 1𝐴(𝑗) = 1𝐵(𝑗) ∀𝑗 ∈ N ⇐⇒ 𝐴 = 𝐵.

This shows the injectivity of Θ, and #𝒫 (N) = #{0, 1}N follows.
■■

Problem 2.22 Solution: Since for 𝐴,𝐴′, 𝐵, 𝐵′ ⊂ 𝑋 we have the ‘multiplication rule’

(𝐴 ∩ 𝐵) ∪ (𝐴′ ∩ 𝐵′) = (𝐴 ∪ 𝐴′) ∩ (𝐴 ∪ 𝐵′) ∩ (𝐵 ∪ 𝐴′) ∩ (𝐵 ∪ 𝐵′)

and since this rule carries over to the infinite case, we get the formula from the problem by ‘mul-
tiplying out’ the countable union

(𝐴0
1 ∩ 𝐴

1
1) ∪ (𝐴0

2 ∩ 𝐴
1
2) ∪ (𝐴0

3 ∩ 𝐴
1
3) ∪ (𝐴0

4 ∩ 𝐴
1
4) ∪⋯ .

More formally, one argues as follows:

𝑥 ∈
⋃

𝑛∈N
(𝐴0

𝑛 ∩ 𝐴
1
𝑛) ⇐⇒ ∃ 𝑛0 ∶ 𝑥 ∈ 𝐴0

𝑛0
∩ 𝐴1

𝑛0
(*)

while

𝑥 ∈
⋂

𝑖=(𝑖(𝑘))𝑘∈N∈{0,1}N

⋃

𝑘∈N
𝐴𝑖(𝑘)𝑘

⇐⇒ ∀𝑖 = (𝑖(𝑘))𝑘∈N ∈ {0, 1}N ∶ 𝑥 ∈
⋃

𝑘∈N
𝐴𝑖(𝑘)𝑘

⇐⇒ ∀𝑖 = (𝑖(𝑘))𝑘∈N ∈ {0, 1}N ∃ 𝑘0 ∈ N ∶ 𝑥 ∈ 𝐴𝑖(𝑘0)𝑘0
(**)

Clearly, (*) implies (**). On the other hand, assume that (**) holds but that (*) is wrong, i.e.
suppose that for every 𝑛 we have that either 𝑥 ∈ 𝐴0

𝑛 or 𝑥 ∈ 𝐴1
𝑛 or 𝑥 is in neither of 𝐴0

𝑛, 𝐴
1
𝑛. Thus

we can construct a uniquely defined sequence 𝑖(𝑛) ∈ {0, 1}, 𝑛 ∈ N, by setting

𝑖(𝑛) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑥 ∈ 𝐴0
𝑛;

1 if 𝑥 ∈ 𝐴1
𝑛;

0 if 𝑥 ∉ 𝐴0
𝑛 and 𝑥 ∉ 𝐴1

𝑛.

Define by 𝑖′(𝑛) ∶= 1 − 𝑖(𝑛) the ‘complementary’ 0-1-sequence. Then

𝑥 ∈
⋃

𝑛
𝐴𝑖(𝑛)𝑛 but 𝑥 ∉

⋃

𝑛
𝐴𝑖

′(𝑛)
𝑛

contradicting our assumption (**).
■■
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3 𝜎-Algebras.

Solutions to Problems 3.1–3.16

Problem 3.1 Solution:

(i) It is clearly enough to show that 𝐴,𝐵 ∈ 𝒜 ⇐⇒ 𝐴 ∩ 𝐵 ∈ 𝒜 , because the case of 𝑁 sets
follows from this by induction, the induction step being

𝐴1 ∩… ∩ 𝐴𝑁
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=∶𝐵∈𝒜

∩𝐴𝑁+1 = 𝐵 ∩ 𝐴𝑁+1 ∈ 𝒜 .

Let 𝐴,𝐵 ∈ 𝒜 . Then, by (Σ2) also 𝐴𝑐 , 𝐵𝑐 ∈ 𝒜 and, by (Σ3) and (Σ2)

𝐴 ∩ 𝐵 = (𝐴𝑐 ∪ 𝐵𝑐)𝑐 = (𝐴𝑐 ∪ 𝐵𝑐 ∪ ∅ ∪ ∅ ∪…)𝑐 ∈ 𝒜 .

Alternative: Of course, the last argument also goes through for 𝑁 sets:

𝐴1 ∩ 𝐴2 ∩… ∩ 𝐴𝑁 = (𝐴𝑐1 ∪ 𝐴
𝑐
2 ∪… ∪ 𝐴𝑐𝑁 )

𝑐

= (𝐴𝑐1 ∪… ∪ 𝐴𝑐𝑁 ∪ ∅ ∪ ∅ ∪…)𝑐 ∈ 𝒜 .

(ii) By (Σ2) we have 𝐴 ∈ 𝒜 ⇐⇒ 𝐴𝑐 ∈ 𝒜 . Use 𝐴𝑐 instead of 𝐴 and observe that (𝐴𝑐)𝑐 = 𝐴 to
see the claim.

(iii) Clearly 𝐴𝑐 , 𝐵𝑐 ∈ 𝒜 and so, by part (i), 𝐴 ⧵ 𝐵 = 𝐴 ∩ 𝐵𝑐 ∈ 𝒜 as well as 𝐴▵𝐵 = (𝐴 ⧵ 𝐵) ∪
(𝐵 ⧵ 𝐴) ∈ 𝒜 .

■■

Problem 3.2 Solution:

(iv) Let us assume that 𝐵 ≠ ∅ and 𝐵 ≠ 𝑋. Then 𝐵𝑐 ∉ {∅, 𝐵,𝑋}. Since with 𝐵 also 𝐵𝑐 must be
contained in a 𝜎-algebra, the family {∅, 𝐵,𝑋} cannot be one.

(vi) Set 𝒜𝐸 ∶= {𝐸 ∩ 𝐴 ∶ 𝐴 ∈ 𝒜}. The key observation is that all set operations in 𝒜𝐸 are now
relative to 𝐸 and not to 𝑋. This concerns mainly the complementation of sets! Let us check
(Σ1)–(Σ3).
Clearly ∅ = 𝐸 ∩ ∅ ∈ 𝒜𝐸 . If 𝐵 ∈ 𝒜𝐸 , then 𝐵 = 𝐸 ∩𝐴 for some 𝐴 ∈ 𝒜 and the complement
of 𝐵 relative to 𝐸 is 𝐸 ⧵ 𝐵 = 𝐸 ∩ 𝐵𝑐 = 𝐸 ∩ (𝐸 ∩ 𝐴)𝑐 = 𝐸 ∩ (𝐸𝑐 ∪ 𝐴𝑐) = 𝐸 ∩ 𝐴𝑐 ∈ 𝒜𝐸 as
𝐴𝑐 ∈ 𝒜 . Finally, let (𝐵𝑗)𝑗∈N ⊂ 𝒜𝐸 . Then there are (𝐴𝑗)𝑗∈N ⊂ 𝒜 such that 𝐵𝑗 = 𝐸 ∩ 𝐴𝑗 .
Since𝐴 =

⋃

𝑗∈N𝐴𝑗 ∈ 𝒜 we get ⋃𝑗∈N 𝐵𝑗 =
⋃

𝑗∈N(𝐸∩𝐴𝑗) = 𝐸∩
⋃

𝑗∈N𝐴𝑗 = 𝐸∩𝐴 ∈ 𝒜𝐸 .
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(vii) Note that 𝑓−1 interchanges with all set operations. Let 𝐴,𝐴𝑗 , 𝑗 ∈ N be sets in 𝒜 . We know
that then 𝐴 = 𝑓−1(𝐴′), 𝐴𝑗 = 𝑓−1(𝐴′

𝑗) for suitable 𝐴,𝐴′
𝑗 ∈ 𝒜 ′. Since 𝒜 ′ is, by assumption

a 𝜎-algebra, we have
∅ = 𝑓−1(∅) ∈ 𝒜 as ∅ ∈ 𝒜 ′

𝐴𝑐 =
(

𝑓−1(𝐴′)
)𝑐 = 𝑓−1(𝐴′𝑐) ∈ 𝒜 as 𝐴′𝑐 ∈ 𝒜 ′

⋃

𝑗∈N
𝐴𝑗 =

⋃

𝑗∈N
𝑓−1(𝐴′

𝑗) = 𝑓−1

(

⋃

𝑗∈N
𝐴′
𝑗

)

∈ 𝒜 as ⋃

𝑗∈N
𝐴′
𝑗 ∈ 𝒜 ′

which proves (Σ1)–(Σ3) for 𝒜 .
■■

Problem 3.3 Solution: Denote by Σ = 𝜎({𝑥}, 𝑥 ∈ R). Let 𝒜 be the 𝜎-algebra defined in Ex-
ample 3.3(v). It is clear that {𝑥} ∈ 𝒜 , and so Σ ⊂ 𝒜 . On the other hand, if 𝐴 ∈ 𝒜 , then either 𝐴
or 𝐴𝑐 is countable. Wlog assume that 𝐴 is countable. Then 𝐴 is a countable union of singletons,
as such 𝐴 ∈ Σ as well as 𝐴𝑐 ∈ Σ. This means 𝒜 ⊂ Σ.

■■

Problem 3.4 Solution:

(i) Since 𝒢 is a 𝜎-algebra, 𝒢 ‘competes’ in the intersection of all 𝜎-algebras 𝒞 ⊃ 𝒢 appearing
in the definition of 𝒜 in the proof of Theorem 3.4(ii). Thus, 𝒢 ⊃ 𝜎(𝒢 ) while 𝒢 ⊂ 𝜎(𝒢 ) is
always true.

(ii) Without loss of generality we can assume that ∅ ≠ 𝐴 ≠ 𝑋 since this would simplify the
problem. Clearly {∅, 𝐴, 𝐴𝑐 , 𝑋} is a 𝜎-algebra containing 𝐴 and no element can be removed
without losing this property. Thus {∅, 𝐴, 𝐴𝑐 , 𝑋} is minimal and, therefore, = 𝜎({𝐴}).

(iii) Assume that ℱ ⊂ 𝒢 . Then we have ℱ ⊂ 𝒢 ⊂ 𝜎(𝒢 ). Now 𝒞 ∶= 𝜎(𝒢 ) is a potential
‘competitor’ in the intersection appearing in the proof of Theorem 3.4(ii), and as such 𝒞 ⊃
𝜎(ℱ ), i.e. 𝜎(𝒢 ) ⊃ 𝜎(ℱ ).

■■

Problem 3.5 Solution:

(i) {∅, (0, 12 ), {0} ∪ [ 12 , 1], [0, 1]}.
We have 2 atoms (see the explanations below): (0, 12 ), (0, 12 )𝑐 .

(ii) {∅, [0, 14 ), [
1
4 ,

3
4 ], (

3
4 , 1], [0,

3
4 ], [

1
4 , 1], [0,

1
4 ) ∪ ( 34 , 1], [0, 1]}.

We have 3 atoms (see below): [0, 14 ), [14 , 34 ], (34 , 1].
(iii) —same solution as (ii)—
Parts (ii) and (iii) are quite tedious to do and they illustrate how difficult it can be to find a 𝜎-algebra
containing two distinct sets.... imagine how to deal with something that is generated by 10, 20,
or infinitely many sets. Instead of giving a particular answer, let us describe the method to find
𝜎({𝐴,𝐵}) practically, and then we are going to prove it.
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1. Start with trivial sets and given sets: ∅, 𝑋, 𝐴, 𝐵.
2. now add their complements: 𝐴𝑐 , 𝐵𝑐
3. now add their unions and intersections and differences: 𝐴 ∪ 𝐵,𝐴 ∩ 𝐵,𝐴 ⧵ 𝐵,𝐵 ⧵ 𝐴

4. now add the complements of the sets in 3.: 𝐴𝑐 ∩ 𝐵𝑐 , 𝐴𝑐 ∪ 𝐵𝑐 , (𝐴 ⧵ 𝐵)𝑐 , (𝐵 ⧵ 𝐴)𝑐

5. finally, add unions of differences and their complements: (𝐴⧵𝐵)∪(𝐵⧵𝐴), (𝐴⧵𝐵)𝑐∩(𝐵⧵𝐴)𝑐 .
All in all one should have 16 sets (some of them could be empty or 𝑋 or appear several times,
depending on how much𝐴 differs from𝐵). That’s it, but the trouble is: is this construction correct?
Here is a somewhat more systematic procedure:

Definition: An atom of a 𝜎-algebra 𝒜 is a non-void set ∅ ≠ 𝐴 ∈ 𝒜 that contains no other set of
𝒜 .

Since 𝒜 is stable under intersections, it is also clear that all atoms are disjoint sets! Now we can
make up every set from 𝒜 as union (finite or countable) of such atoms. The task at hand is to
find atoms if 𝐴,𝐵 are given. This is easy: the atoms of our future 𝜎-algebra must be: 𝐴 ⧵ 𝐵,
𝐵 ⧵ 𝐴, 𝐴 ∩ 𝐵, (𝐴 ∪ 𝐵)𝑐 . (Test it: if you make a picture, this is a tesselation of our space 𝑋 using
disjoint sets and we can get back 𝐴,𝐵 as union! It is also minimal, since these sets must appear in
𝜎({𝐴,𝐵}) anyway.) The crucial point is now:

Theorem. If 𝒜 is a 𝜎-algebra with 𝑁 atoms (finitely many!), then 𝒜 consists of exactly 2𝑁

elements.

Proof. The question is how many different unions we can make out of 𝑁 sets. Simple answer:
we find (𝑁

𝑗

), 0 ⩽ 𝑗 ⩽ 𝑁 different unions involving exactly 𝑗 sets (𝑗 = 0 will, of course, produce
the empty set) and they are all different as the atoms were disjoint. Thus, we get ∑𝑁

𝑗=0
(𝑁
𝑗

)

=
(1 + 1)𝑁 = 2𝑁 different sets.
It is clear that they constitute a 𝜎-algebra.

This answers the above question. The number of atoms depends obviously on the relative position
of 𝐴,𝐵: do they intersect, are they disjoint etc. Have fun with the exercises and do not try to find
𝜎-algebras generated by three or more sets..... (By the way: can you think of a situation in [0, 1]
with two subsets given and exactly four atoms? Can there be more?)

■■

Problem 3.6 Solution:

(i) See the solution to Problem 3.5.
(ii) If 𝐴1,… , 𝐴𝑁 ⊂ 𝑋 are given, there are at most 2𝑁 atoms. This can be seen by induction. If

𝑁 = 1, then there are #{𝐴,𝐴𝑐} = 2 atoms at most (usually exactly 2 but there is always the
case 𝐴 = 𝑋). If we add a further set 𝐴𝑁+1, then the worst case would be that both 𝐴𝑁+1 and
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𝐴𝑐𝑁+1 intersects with each of the at most 2𝑁 atoms in a non-trivial way, thus splitting each
atom into two sets, which amounts to saying that there are 2 ⋅ 2𝑁 = 2𝑁+1 atoms.
Another way of seeing things is as follows: Denote by 𝐵𝑖 either the set 𝐴𝑖 or the set 𝐴𝑐𝑖 ,
𝑖 = 1,… , 𝑁 and form all possible intersections 𝑃𝑘 ∶= 𝐵1 ∩ 𝐵2 ∩ ⋯ ∩ 𝐵𝑁 . There are 2𝑁

possibilities since each term in the intersection has 2 possible values. Some of the sets 𝑃𝑘
may be void, but it is clear that the 𝑃𝐾 ’s are mutually disjoint (including the degenerate case
where one or two of them are empty). These intersections are a “disjointification” of the
original sets 𝐴1,… , 𝐴𝑁 extended by 𝐴0 ∶= (𝐴1 ∪⋯ ∪ 𝐴𝑁 )𝑐 , and they are the atoms. It is
clear that

𝜎(𝐴1,… , 𝐴𝑁 ) = 𝜎(𝑃𝑘, 𝑘 = 1,… , 2𝑁 ).1

Indeed, 𝑃𝑘 ∈ 𝜎(𝐴1,… , 𝐴𝑁 ) since the 𝐵𝑖 ∈ 𝜎(𝐴1,… , 𝐴𝑁 ), so we get “⊃”. Since we can
write each 𝐴𝑘 as a union of 𝑃 ′

𝑘𝑠 (think!), the inclusion “⊂” is also clear.
It is best to visualize this with 𝑁 = 3 and a Venn diagram where 𝐴1, 𝐴2, 𝐴3 intersect all in
a non-tivial way. This gives a Picture with 7 different non-overlapping regions. If you add
the complement (𝐴1 ∪ 𝐴2 ∪ 𝐴3)𝑐 = 𝐴𝑐1 ∩ 𝐴

𝑐
2 ∩ 𝐴

𝑐
3 you get region number 8 and we have in

total 23 atoms. Clearly, less atoms are possible, depending on the way, how the original sets
intersect.

■■

Problem 3.7 Solution: We follow the hint. Since #𝒜 = #N, the following set is a countable inter-
section of measurable sets, hence itself in 𝒜 :

∀𝑥 ∈ 𝑋 ∶ 𝐴(𝑥) ∶=
⋂

𝐴∈𝒜 ,𝐴∋𝑥
𝐴 ∈ 𝒜 . (*)

Write 𝒜0 for the atoms of 𝒜 . Then
• 𝐴(𝑥) ∈ 𝒜 is an atom which contains 𝑥.

Indeed: Otherwise, there is some 𝐵 ⊂ 𝐴(𝑥) such that 𝐵 ∈ 𝒜 , 𝐵 ≠ ∅, 𝐵 ≠ 𝐴(𝑥). We can
assume that 𝑥 ∈ 𝐵, or we would take 𝐵′ ∶= 𝐴(𝑥) ⧵ 𝐵 instead of 𝐵. Since 𝑥 ∈ 𝐵, 𝐵 is part
of the intersection appearing in (*) so that 𝐵 ⊃ 𝐴(𝑥), hence 𝐵 = 𝐴(𝑥), which is impossible.

• Every atom 𝐴 ≠ ∅ of 𝒜 is of the form (*).
Indeed: By assumption, 𝑥0 ∈ 𝐴 so that 𝐴 = 𝐴(𝑥0).

• 𝒜 has #N many atoms.
Indeed: Since #𝒜 = #N, there are countably infinitely many disjoint sets in 𝒜 , thus the
procedure (*) yields at least #Nmany atoms. On the other hand, there cannot be more atoms
than members of 𝒜 , and the claim follows.

1A word on notation: 𝜎(… ) is defined for families of sets, so one should write 𝜎({𝐴1,… , 𝐴𝑛}) or 𝜎(𝒢 ) with 𝒢 ∶=
{𝐴1, 𝐴2,… , 𝐴𝑁}, but this is rarely done and the slightly iffy (but easier on the eye) notation 𝜎(𝐴1,… , 𝐴𝑛) is used.
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Since 𝒜 contains all countable unions of sets from 𝒜0, and since there are more than countably
many such unions, it is clear that #𝒜 > #N.

Remark: A 𝜎-algebra may have no non-empty atoms at all! Here is an example (which I learned
from Julian Hollender). Let 𝐼 be an uncountable set, e.g. 𝐼 = [0, 1], and consider Ω = {0, 1}𝐼 . We
can construct a 𝜎-algebra onΩ in the following way: Let𝐾 ⊂ 𝐼 and define𝑃𝐾 ∶ {0, 1}𝐼 → {0, 1}𝐾

the coordinate projection. A cylinder set or finitely based set with basis 𝐾 ⊂ 𝐼 is a set of the form
𝑃−1
𝐾 (𝐵) where #𝐾 < ∞ and 𝐵 ⊂ {0, 1}𝐾 . Now consider the 𝜎-algebra 𝒜 ∶= 𝜎({cylinder sets})

on {0, 1}𝐼 . Intuitively, 𝐴 ∈ 𝒜 is of the form 𝑃−1
𝐿 (𝐵) where 𝐿 is countable. (The proof as such

is not obvious, a possible source is Lemma 4.5 in Schilling & Partzsch: Brownian Motion. De
Gruyter, Berlin 2012.) Assume that 𝐴0 ∈ 𝒜 were an atom. Then 𝐴0 has the basis 𝐿. Take
𝑖 ∈ 𝐼 ⧵ 𝐿, consider 𝐿′ = 𝐿 ∪ {𝑖} and construct a set 𝑃−1

𝐿′ (𝐵′) where 𝐵′ = 𝐵 × {0}, say. Then
𝑃−1
𝐿′ (𝐵′) ⊂ 𝐴0 and 𝑃−1

𝐿′ (𝐵′) ∈ 𝒜 .
■■

Problem 3.8 Solution: We begin with an example: Let 𝑋 = (0, 1] and 𝒜 = ℬ(0, 1] be the Borel
sets. Define

𝒜𝑛 ∶= 𝜎
(

((𝑗 − 1)2−𝑛, 𝑗2−𝑛] , 𝑗 = 1, 2,… , 2𝑛
)

the dyadic 𝜎-algebra of step 2−𝑛. Clearly, #𝒜𝑛 = 2𝑛. Moreover,
𝒜𝑛 ⊊ 𝒜𝑛+1 and 𝒜∞ ∶=

⋃

𝑛
𝒜𝑛.

However, 𝒜∞ is NOT a 𝜎-algebra.
Argument 1: 𝐼 ∈ 𝒜∞ ⇐⇒ 𝐼 ∈ 𝒜𝑛 for some 𝑛, i.e. 𝐼 is a finite union of intervals with dyadic
end-points. (More precisely: the topological boundary 𝐼 ⧵ 𝐼◦ consists of dyadic points).
On the other hand, every open set (𝑎, 𝑏) ⊂ [0, 1] is a countable union of sets from 𝒜∞:

(𝑎, 𝑏) =
⋃

𝐼∈𝒜∞,𝐼⊂(𝑎,𝑏)
𝐼

which follows from the fact that the dyadic numbers are dense in (0, 1]. (If you want it more
elementary, then approximate 𝑎 and 𝑏 from the right and left, respectively, by dyadic numbers
and construct the approximating intervals by hand....). If, for example, 𝑎 and 𝑏 are irrational, then
(𝑎, 𝑏) ∉ 𝒜∞. This shows that 𝒜∞ cannot be a 𝜎-algebra.
In fact, our argument shows that 𝜎(𝒜∞) = ℬ(0, 1].
Argument 2: Since #𝒜𝑛 = 2𝑛 we see that #𝒜∞ = #N. But Problem 3.7 tells us that 𝒜∞ can’t be a
𝜎-algebra.

Let us now turn to the general case. We follow the note by
A. Broughton and B.W. Huff: A comment on unions of sigma-fields. Am. Math. Monthly 84 (1977)
553–554.
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Since the 𝒜𝑛 are strictly increasing, we may assume that 𝒜1 ≠ {∅, 𝑋}. Recall also the notion of a
trace 𝜎-Algebra

𝐵 ∩𝒜𝑛 ∶= {𝐵 ∩ 𝐴 ∶ 𝐴 ∈ 𝒜𝑛}.

Step 1. Claim: There exists a set 𝐸 ∈ 𝒜1 such that (𝐸 ∩𝒜𝑛+1) ⧵ (𝐸 ∩𝒜𝑛) ≠ ∅ for infinitely many
𝑛 ∈ N.
To see this, assume – to the contrary – that for some 𝑛 and some 𝐵 ∈ 𝒜1 we have

𝐵 ∩𝒜𝑛 = 𝐵 ∩𝒜𝑛+1 and 𝐵𝑐 ∩𝒜𝑛 = 𝐵𝑐 ∩𝒜𝑛+1.

If 𝑈 ∈ 𝒜𝑛+1 ⧵𝒜𝑛, then
𝑈 = (𝐵 ∩ 𝑈 )

⏟⏟⏟
∈𝐵∩𝒜𝑛+1=𝐵∩𝒜𝑛⊂𝒜𝑛

∪ (𝐵𝑐 ∩ 𝑈 )
⏟⏞⏟⏞⏟

∈𝐵𝑐∩𝒜𝑛+1=𝐵𝑐∩𝒜𝑛⊂𝒜𝑛

leading to the contradiction 𝑈 ∈ 𝒜𝑛. Thus the claim holds with either 𝐸 = 𝐵 or 𝐸 = 𝐵𝑐 .

Step 2. Let 𝐸 be the set from Step 1 and denote by 𝑛1, 𝑛2,… a sequence for which the assertion
in Step 1 holds. Then

ℱ𝑘 ∶= 𝐸 ∩𝒜𝑛𝑘 , 𝑘 ∈ N

is a strictly increasing sequence of 𝜎-Algebras over the set 𝐸. Again we may assume that ℱ1 ≠
{∅, 𝐸} As in Step 1, we find some 𝐸1 ∈ ℱ1 such that 𝐸1 is not trivial (i.e. 𝐸1 ≠ ∅ and 𝐸1 ≠ 𝐸)
and (𝐸1 ∩ℱ𝑘+1) ⧵ (𝐸1 ∩ℱ𝑘) ≠ ∅ holds for infinitely many 𝑘.

Step 3. Now we repeat Step 2 and construct recursively a sequence of 𝜎-algebras 𝒜𝑖1 ⊂ 𝒜𝑖2 ⊂
𝒜𝑖3 … and a sequence of sets 𝐸1 ⊃ 𝐸2 ⊃ 𝐸3… such that

𝐸𝑘 ∈ 𝒜𝑖𝑘 and 𝐸𝑘+1 ∈ (𝐸𝑘 ∩𝒜𝑖𝑘+1) ⧵ (𝐸𝑘 ∩𝒜𝑖𝑘).

Step 4. The sets 𝐹𝑘 ∶= 𝐸𝑘 ⧵ 𝐸𝑘+1 have the property that they are disjoint and 𝐹𝑘 ∈ 𝒜𝑖𝑘+1 ⧵ 𝒜𝑖𝑘 .
Since the 𝜎-algebras are increasing, we have

⋃

𝑛∈N
𝒜𝑛 =

⋃

𝑘∈N
𝒜𝑖𝑘

which means that we can restrict ourselves to a subsequence. This means that we can assume that
𝑖𝑘 = 𝑘.

Step 5. Without loss of generality we can identify 𝐹𝑘 with {𝑘} and assume that the 𝒜𝑛 are 𝜎-
algebras on N such that {𝑘} ∈ 𝒜𝑘+1 ⧵ 𝒜𝑘. Let 𝐵𝑛 the smallest set in 𝒜𝑛 such that 𝑛 ∈ 𝐵𝑛. Then
𝑛 ∈ 𝐵𝑛 ⊂ {𝑛, 𝑛 + 1, 𝑛 + 2,…} and 𝐵𝑛 ≠ {𝑛}. Moreover

𝑚 ∈ 𝐵𝑛 ⇐⇒ 𝐵𝑚 ⊂ 𝐵𝑛 since 𝑚 ∈ 𝐵𝑛 ∩ 𝐵𝑚 ∈ 𝒜𝑚.
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Now define 𝑛1 = 1 and pick 𝑛𝑘+1 recursively: 𝑛𝑘+1 ∈ 𝐵𝑛𝑘 such that 𝑛𝑘+1 ≠ 𝑛𝑘. Then 𝐵𝑛1 ⊃ 𝐵𝑛2 ⊃
… . Set 𝐸 = {𝑛2, 𝑛4, 𝑛6,…}. If 𝒜∞ were a 𝜎-algebra, then 𝐸 ∈ 𝒜𝑛 for some 𝑛, thus 𝐸 ∈ 𝒜𝑛2𝑘 for
some 𝑘. Then {𝑛2𝑘, 𝑛2𝑘+2,…} ∈ 𝒜𝑛2𝑘 and thus 𝐵𝑛2𝑘 ⊂ {𝑛2𝑘, 𝑛2𝑘+2,…}. This contradicts the fact
𝑛2𝑘+1 ∈ 𝐵𝑛2𝑘 .

■■

Problem 3.9 Solution:

𝒪1 Since ∅ contains no element, every element 𝑥 ∈ ∅ admits certainly some neighbourhood
𝐵𝛿(𝑥) and so ∅ ∈ 𝒪 . Since for all 𝑥 ∈ R𝑛 also 𝐵𝛿(𝑥) ⊂ R𝑛, R𝑛 is clearly open.

𝒪2 Let 𝑈, 𝑉 ∈ 𝒪 . If 𝑈 ∩ 𝑉 = ∅, we are done. Else, we find some 𝑥 ∈ 𝑈 ∩ 𝑉 . Since 𝑈, 𝑉 are
open, we find some 𝛿1, 𝛿2 > 0 such that 𝐵𝛿1(𝑥) ⊂ 𝑈 and 𝐵𝛿2(𝑥) ⊂ 𝑉 . But then we can take
ℎ ∶= min{𝛿1, 𝛿2} > 0 and find

𝐵ℎ(𝑥) ⊂ 𝐵𝛿1(𝑥) ∩ 𝐵𝛿2(𝑥) ⊂ 𝑈 ∩ 𝑉 ,

i.e.𝑈 ∩𝑉 ∈ 𝒪 . For finitely many, say𝑁 , sets, the same argument works. Notice that already
for countably many sets we will get a problem as the radius ℎ ∶= min{𝛿𝑗 ∶ 𝑗 ∈ N} is not
necessarily any longer > 0.

𝒪2 Let 𝐼 be any (finite, countable, not countable) index set and (𝑈𝑖)𝑖∈𝐼 ⊂ 𝒪 be a family of open
sets. Set𝑈 ∶=

⋃

𝑖∈𝐼 𝑈𝑖. For 𝑥 ∈ 𝑈 we find some 𝑗 ∈ 𝐼 with 𝑥 ∈ 𝑈𝑗 , and since𝑈𝑗 was open,
we find some 𝛿𝑗 > 0 such that 𝐵𝛿𝑗 (𝑥) ⊂ 𝑈𝑗 . But then, trivially, 𝐵𝛿𝑗 (𝑥) ⊂ 𝑈𝑗 ⊂

⋃

𝑖∈𝐼 𝑈𝑖 = 𝑈
proving that 𝑈 is open.

The family 𝒪𝑛 cannot be a 𝜎-algebra since the complement of an open set 𝑈 ≠ ∅,≠ R𝑛 is closed.
■■

Problem 3.10 Solution: Let 𝑋 = R and set 𝑈𝑘 ∶= (− 1
𝑘
, 1
𝑘
) which is an open set. Then ⋂

𝑘∈N 𝑈𝑘 =
{0} but a singleton like {0} is closed and not open.

■■

Problem 3.11 Solution: We know already that the Borel sets ℬ = ℬ(R) are generated by any of the
following systems:

{[𝑎, 𝑏) ∶ 𝑎, 𝑏 ∈ Q}, {[𝑎, 𝑏) ∶ 𝑎, 𝑏 ∈ R},

{(𝑎, 𝑏) ∶ 𝑎, 𝑏 ∈ Q}, {(𝑎, 𝑏) ∶ 𝑎, 𝑏 ∈ R}, 𝒪1, or 𝒞 1

Here is just an example (with the dense set 𝐷 = Q) how to solve the problem. Let 𝑏 > 𝑎. Since
(−∞, 𝑏) ⧵ (−∞, 𝑎) = [𝑎, 𝑏) we get that

{[𝑎, 𝑏) ∶ 𝑎, 𝑏 ∈ Q} ⊂ 𝜎({(−∞, 𝑐) ∶ 𝑐 ∈ Q})

⇐⇒ ℬ = 𝜎({[𝑎, 𝑏) ∶ 𝑎, 𝑏 ∈ Q}) ⊂ 𝜎({(−∞, 𝑐) ∶ 𝑐 ∈ Q}).
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On the other hand we find that (−∞, 𝑎) = ⋃

𝑘∈N[−𝑘, 𝑎) proving that

{(−∞, 𝑎) ∶ 𝑎 ∈ Q} ⊂ 𝜎({[𝑐, 𝑑) ∶ 𝑐, 𝑑 ∈ Q}) = ℬ

⇐⇒ 𝜎({(−∞, 𝑎) ∶ 𝑎 ∈ Q}) ⊂ℬ

and we get equality.
The other cases are similar.

■■

Problem 3.12 Solution: Let B ∶= {𝐵𝑟(𝑥) ∶ 𝑥 ∈ R𝑛, 𝑟 > 0} and let B′ ∶= {𝐵𝑟(𝑥) ∶ 𝑥 ∈ Q𝑛, 𝑟 ∈
Q+}. Clearly,

B′ ⊂ B ⊂ 𝒪𝑛

⇐⇒ 𝜎(B′) ⊂ 𝜎(B) ⊂ 𝜎(𝒪𝑛) = ℬ(R𝑛).

On the other hand, any open set 𝑈 ∈ 𝒪𝑛 can be represented by

𝑈 =
⋃

𝐵∈B′, 𝐵⊂𝑈
𝐵. (*)

Indeed, 𝑈 ⊃
⋃

𝐵∈B′, 𝐵⊂𝑈 𝐵 follows by the very definition of the union. Conversely, if 𝑥 ∈ 𝑈 we
use the fact that𝑈 is open, i.e. there is some 𝐵𝜖(𝑥) ⊂ 𝑈 . Without loss of generality we can assume
that 𝜖 is rational, otherwise we replace it by some smaller rational 𝜖. Since Q𝑛 is dense in R𝑛 we
can find some 𝑞 ∈ Q𝑛 with |𝑥 − 𝑞| < 𝜖∕3 and it is clear that 𝐵𝜖∕3(𝑞) ⊂ 𝐵𝜖(𝑥) ⊂ 𝑈 . This shows
that 𝑈 ⊂

⋃

𝐵∈B′, 𝐵⊂𝑈 𝐵.
Since #B′ = #(Q𝑛 ×Q) = #N, formula (∗) entails that

𝒪𝑛 ⊂ 𝜎(B′) ⇐⇒ 𝜎(𝒪𝑛) = 𝜎(B′) and, therefore, 𝜎(𝒪𝑛) = 𝜎(B)

and we are done.
■■

Problem 3.13 Solution:

(i) 𝒪1: We have ∅ = ∅ ∩ 𝐴 ∈ 𝒪𝐴, 𝐴 = 𝑋 ∩ 𝐴 ∈ 𝒪𝐴.
𝒪1: Let𝑈 ′ = 𝑈 ∩𝐴 ∈ 𝒪𝐴, 𝑉 ′ = 𝑉 ∩𝐴 ∈ 𝒪𝐴 with𝑈, 𝑉 ∈ 𝒪 . Then𝑈 ′∩𝑉 ′ = (𝑈 ∩𝑉 )∩𝐴 ∈
𝒪𝐴 since 𝑈 ∩ 𝑉 ∈ 𝒪 .
𝒪2: Let 𝑈 ′

𝑖 = 𝑈𝑖∩𝐴 ∈ 𝒪𝐴 with 𝑈𝑖 ∈ 𝒪 . Then ⋃

𝑖 𝑈
′
𝑖 =

(
⋃

𝑖 𝑈𝑖
)

∩𝐴 ∈ 𝒪𝐴 since ⋃𝑖 𝑈𝑖 ∈ 𝒪 .
(ii) We use for a set 𝐴 and a family ℱ ⊂ 𝒫 (𝑋) the shorthand 𝐴 ∩ℱ ∶= {𝐴 ∩ 𝐹 ∶ 𝐹 ∈ ℱ }.

Clearly, 𝐴 ∩ 𝒪 ⊂ 𝐴 ∩ 𝜎(𝒪) = 𝐴 ∩ℬ(𝑋). Since the latter is a 𝜎-algebra, we have

𝜎(𝐴 ∩ 𝒪) ⊂ 𝐴 ∩ℬ(𝑋) i.e. ℬ(𝐴) ⊂ 𝐴 ∩ℬ(𝑋).
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For the converse inclusion we define the family

Σ ∶= {𝐵 ⊂ 𝑋 ∶ 𝐴 ∩ 𝐵 ∈ 𝜎(𝐴 ∩ 𝒪)}.

It is not hard to see that Σ is a 𝜎-algebra and that 𝒪 ⊂ Σ. Thus ℬ(𝑋) = 𝜎(𝒪) ⊂ Σ which
means that

𝐴 ∩ℬ(𝑋) ⊂ 𝜎(𝐴 ∩ 𝒪).

Notice that this argument does not really need that 𝐴 ∈ ℬ(𝑋). If, however, 𝐴 ∈ ℬ(𝑋) we
have in addition to 𝐴 ∩ℬ(𝑋) = ℬ(𝐴) that

ℬ(𝐴) = {𝐵 ⊂ 𝐴 ∶ 𝐵 ∈ ℬ(𝑋)}

■■

Problem 3.14 Solution:

(i) We see, as in the proof of Theorem 3.4, that the intersection of arbitrarily many mono-
tone classes (MC, for short) is again a MC. Thus,

𝔪(ℱ ) ∶=
⋂

ℱ⊂𝒢
𝒢 MC

𝒢 ,

is itself a MC. Note, that the intersection is non-void as the power set 𝒫 (𝑋) is (trivially)
a MC which contains ℱ . By construction, see also the argument of Theorem 3.4, 𝔪(ℱ )
is a minimal MC containing ℱ .

(ii) Define
𝒟 ∶= {𝐹 ∈ 𝔪(ℱ ) ∶ 𝐹 𝑐 ∈ 𝔪(ℱ )}.

By assumption, ℱ ⊂ 𝒟 . We are done, if we can show that 𝒟 is a MC.
(MC1) Let (𝑀𝑛)𝑛∈N ⊂ 𝒟 be an increasing family𝑀𝑛 ↑𝑀 =

⋃

𝑛∈N𝑀𝑛. Since 𝔪(ℱ )
is a MC, 𝑀 ∈ 𝔪(ℱ ) and

𝑀𝑐 =

(

⋃

𝑛∈N
𝑀𝑛

)𝑐

=
⋂

𝑛∈N
𝑀𝑐

𝑛
⏟⏟⏟
∈𝔪(ℱ )

∈ 𝔪(ℱ ).

Here we use that𝑀𝑛 ↑ ⇐⇒ 𝑀𝑐
𝑛 ↓ and so ⋂

𝑛∈N𝑀
𝑐
𝑛 ∈ 𝔪(ℱ ) because of (MC2)

for the system 𝔪(ℱ ). This proves 𝑀 ∈ 𝒟 .
(MC2) Let (𝑁𝑛)𝑛∈N ⊂ 𝒟 be a decreasing family 𝑁𝑛 ↓ 𝑁 =

⋂

𝑛∈N𝑁𝑛. As in the first
part we get from 𝑁 ∈ 𝔪(ℱ ) and 𝑁𝑐

𝑛 ↑ 𝑁𝑐 that 𝑁𝑐 ∈ 𝔪(ℱ ) due to (MC1) for
the family 𝔪(ℱ ). Consequently, 𝑁 ∈ 𝒟 .

(iii) We follow the hint. Because of the ∩-stability of ℱ we get ℱ ⊂ Σ. Let us check that Σ
is a MC:
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(MC1) Let (𝑀𝑛)𝑛∈N ⊂ Σ be an increasing sequence 𝑀𝑛 ↑ 𝑀 and 𝐹 ∈ ℱ . Then
𝑀 ∈ 𝔪(ℱ ) and from 𝔪(ℱ ) ∋𝑀𝑛 ∩ 𝐹 ↑𝑀 ∩ 𝐹 we get (using (MC1) for the
system 𝔪(ℱ )), that 𝑀 ∩ 𝐹 ∈ 𝔪(ℱ ), hence, 𝑀 ∈ Σ.

(MC2) This is similar to (MC1).
Therefore, Σ is a MC and ℱ ⊂ Σ. This proves 𝔪(ℱ ) ⊂ Σ and ℱ ⊂ Σ′. Since Σ′

is also a MC (the proof is very similar to the one for Σ; just replace “𝐹 ∈ ℱ ” with
“𝐹 ∈ 𝔪(ℱ )”) we get 𝔪(ℱ ) ⊂ Σ′, too. This proves our claim.

(iv) Since ℳ ⊃ ℱ , we get
ℳ = 𝔪(ℳ) ⊃ 𝔪(ℱ );

so it is enough to show that 𝔪(ℱ ) is a 𝜎-algebra containing ℱ . Clearly, ℱ ⊂ 𝔪(ℱ ).
(Σ1) By assumption, 𝑋 ∈ ℱ ⊂ 𝔪(ℱ ).
(Σ2) This follows immediately from (ii).
(Σ3) First we show that 𝔪(ℱ ) is ∪-stable: since 𝔪(ℱ ) is ∩-stable – by (iii) – we get

𝐶,𝐷 ∈ 𝔪(ℱ ) ⇐⇒ 𝐶 ⧵𝐷 = 𝐶 ∩𝐷𝑐 ∈ 𝔪(ℱ )

and so

𝐶,𝐷 ∈ 𝔪(ℱ )
(Σ2)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒(Σ1) 𝐶 ∪𝐷 = 𝑋 ⧵

[

(𝑋 ⧵ 𝐶) ⧵𝐷
]

∈ 𝔪(ℱ ).

If (𝐴𝑛)𝑛∈N ⊂ 𝔪(ℱ ) is any sequence, the new sequence 𝐵𝑛 ∶= 𝐴1 ∪ ⋯ ∪ 𝐴𝑛 is
increasing and ⋃

𝑛∈N𝐴𝑛 =
⋃

𝑛∈N 𝐵𝑛. Thus, (Σ3) follows from (MC1).
■■

Problem 3.15 Solution: By definition, ℳ = 𝔪(𝒪) is the monotone class generated by the open sets.
Note that

∀𝑈 ∈ 𝒪 ∶ 𝑈 =
⋃

{

𝐵𝑟(𝑥) ∶ 𝑟 ∈ Q+, 𝑥 ∈ Q𝑑 , 𝐵𝑟(𝑥) ⊂ 𝑈
}

=
⋃

𝑛∈N

⋃

{

𝐵𝑟(𝑥) ∶ 𝑟 ∈ Q+, 𝑥 ∈ Q𝑑 , 𝐵𝑟−1∕𝑛(𝑥) ⊂ 𝑈
}

which means that we can write every 𝑈 ∈ 𝒪 as a union of countably many closed sets (i.e. it is
a so-called 𝐹𝜎-set). Since unions of finitely many closed sets are still closed, we can arrange the
latter union to be an increasing union. Using the de-Morgan laws, this means that every closed set
𝐶 ∈ 𝒞 ⇐⇒ 𝐶𝑐 ∈ 𝒪 can be written as a countable intersection of (decreasing) open sets.
Since 𝔪(𝒪) is stable under countable intersections of its members, we get 𝒪 ∪ 𝒞 ⊂ 𝔪(𝒪) ⊂
𝔪(𝒪 ∪ 𝒞 ), hence 𝔪(𝒪) = 𝔪(𝒪 ∪ 𝒞 ). Please note that 𝒪 ∪ 𝒞 = {𝐴 ∶ 𝐴 ∈ 𝒪 or 𝐴 ∈ 𝒞 }.
Since 𝒪 ∪𝒞 is stable under the formation of complements, the monotone class 𝔪(𝒪 ∪𝒞 ) is stable
under the formation of complements (see Problem 3.14 (ii)), thus it is a 𝜎-algebra containing 𝒪

and 𝒞 .
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On the other hand, 𝔪(𝒪) ⊂ 𝜎(𝒪) is trivial, so we get 𝔪(𝒪) = 𝜎(𝒪).
The answer to the additional question is: yes, we can omit the monotonicity in the countable inter-
section and union. The argument is as follows: Problem 3.14 still works without the monotonicity
(giving a slightly different notion of monotone class), and so the above proof goes through!

■■

Problem 3.16 Solution: Write Σ ∶=
⋃

{𝜎(𝒞 ) ∶ 𝒞 ⊂ ℱ , 𝒞 is a countable sub-family}.
If 𝒞 ⊂ ℱ we get 𝜎(𝒞 ) ⊂ 𝜎(ℱ ), and so Σ ⊂ 𝜎(ℱ ).
Conversely, it is clear that ℱ ⊂ Σ, just take 𝒞 ∶= 𝒞𝐹 ∶= {𝐹 } for each 𝐹 ∈ ℱ . If we can show
that Σ is a 𝜎-algebra we get 𝜎(ℱ ) ⊂ 𝜎(Σ) = Σ and equality follows.

• Clearly, ∅ ∈ Σ.
• If 𝑆 ∈ Σ, then 𝑆 ∈ 𝜎(𝒞𝑆) for some countable 𝒞𝑆 ⊂ ℱ . Moreover, 𝑆𝑐 ∈ 𝜎(𝒞𝑆), i. e. 𝑆𝑐 ∈

Σ.
• If (𝑆𝑛)𝑛⩾0 ⊂ Σ are countably many sets, then 𝑆𝑛 ∈ 𝜎(𝒞𝑛) for some countable 𝒞𝑛 ⊂ ℱ and

each 𝑛 ⩾ 0. Set 𝒞 ∶=
⋃

𝑛 𝒞𝑛. This is again countable and we get 𝑆𝑛 ∈ 𝜎(𝒞 ) for all 𝑛, hence
⋃

𝑛 𝑆𝑛 ∈ 𝜎(𝒞 ) and so ⋃

𝑛 𝑆𝑛 ∈ Σ.
■■
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Solutions to Problems 4.1–4.22

Problem 4.1 Solution:

(i) We have to show that for a measure𝜇 and finitely many, pairwise disjoint sets𝐴1, 𝐴2,… , 𝐴𝑁 ∈
𝒜 we have

𝜇(𝐴1 ⊍ 𝐴2 ⊍… ⊍ 𝐴𝑁 ) = 𝜇(𝐴1) + 𝜇(𝐴2) +… + 𝜇(𝐴𝑁 ).

We use induction in 𝑁 ∈ N. The hypothesis is clear, for the start (𝑁 = 2) see Proposition
4.3(i). Induction step: take𝑁+1 disjoint sets𝐴1,… , 𝐴𝑁+1 ∈ 𝒜 , set𝐵 ∶= 𝐴1⊍…⊍𝐴𝑁 ∈ 𝒜

and use the induction start and the hypothesis to conclude
𝜇(𝐴1 ⊍… ⊍ 𝐴𝑁 ⊍ 𝐴𝑁+1) = 𝜇(𝐵 ⊍ 𝐴𝑁+1)

= 𝜇(𝐵) + 𝜇(𝐴𝑁+1)

= 𝜇(𝐴1) +… + 𝜇(𝐴𝑁 ) + 𝜇(𝐴𝑁+1).

(iv) To get an idea what is going on we consider first the case of three sets 𝐴,𝐵, 𝐶 . Applying the
formula for strong additivity thrice we get

𝜇(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝜇(𝐴 ∪ (𝐵 ∪ 𝐶))

= 𝜇(𝐴) + 𝜇(𝐵 ∪ 𝐶) − 𝜇(𝐴 ∩ (𝐵 ∪ 𝐶)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
= (𝐴∩𝐵)∪(𝐴∩𝐶)

)

= 𝜇(𝐴) + 𝜇(𝐵) + 𝜇(𝐶) − 𝜇(𝐵 ∩ 𝐶) − 𝜇(𝐴 ∩ 𝐵)

− 𝜇(𝐴 ∩ 𝐶) + 𝜇(𝐴 ∩ 𝐵 ∩ 𝐶).

As an educated guess it seems reasonable to suggest that

𝜇(𝐴1 ∪… ∪ 𝐴𝑛) =
𝑛
∑

𝑘=1
(−1)𝑘+1

∑

𝜎⊂{1,…,𝑛}
#𝜎=𝑘

𝜇
(

∩
𝑗∈𝜎

𝐴𝑗
)

.

We prove this formula by induction. The induction start is just the formula from Proposition
4.3(iv), the hypothesis is given above. For the induction step we observe that

∑

𝜎⊂{1,…,𝑛+1}
#𝜎=𝑘

=
∑

𝜎⊂{1,…,𝑛,𝑛+1}
#𝜎=𝑘, 𝑛+1∉𝜎

+
∑

𝜎⊂{1,…,𝑛,𝑛+1}
#𝜎=𝑘, 𝑛+1∈𝜎

=
∑

𝜎⊂{1,…,𝑛}
#𝜎=𝑘

+
∑

𝜎′⊂{1,…,𝑛}
#𝜎′=𝑘−1, 𝜎∶=𝜎′∪{𝑛+1}

(∗)
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Having this in mind we get for 𝐵 ∶= 𝐴1 ∪… ∪ 𝐴𝑛 and 𝐴𝑛+1 using strong additivity and the
induction hypothesis (for 𝐴1,… , 𝐴𝑛 resp. 𝐴1 ∩ 𝐴𝑛+1,… , 𝐴𝑛 ∩ 𝐴𝑛+1)

𝜇(𝐵 ∪ 𝐴𝑛+1) = 𝜇(𝐵) + 𝜇(𝐴𝑛+1) − 𝜇(𝐵 ∩ 𝐴𝑛+1)

= 𝜇(𝐵) + 𝜇(𝐴𝑛+1) − 𝜇
( 𝑛
∪
𝑗=1

(𝐴𝑗 ∩ 𝐴𝑛+1)
)

=
𝑛
∑

𝑘=1
(−1)𝑘+1

∑

𝜎⊂{1,…,𝑛}
#𝜎=𝑘

𝜇
(

∩
𝑗∈𝜎

𝐴𝑗
)

+ 𝜇(𝐴𝑛+1)

+
𝑛
∑

𝑘=1
(−1)𝑘+1

∑

𝜎⊂{1,…,𝑛}
#𝜎=𝑘

𝜇
(

𝐴𝑛+1 ∩
𝑗∈𝜎

𝐴𝑗
)

.

Because of (∗) the last line coincides with
𝑛+1
∑

𝑘=1
(−1)𝑘+1

∑

𝜎⊂{1,…,𝑛,𝑛+1}
#𝜎=𝑘

𝜇
(

∩
𝑗∈𝜎

𝐴𝑗
)

and the induction is complete.
(v) We have to show that for a measure 𝜇 and finitely many sets 𝐵1, 𝐵2,… , 𝐵𝑁 ∈ 𝒜 we have

𝜇(𝐵1 ∪ 𝐵2 ∪… ∪ 𝐵𝑁 ) ⩽ 𝜇(𝐵1) + 𝜇(𝐵2) +… + 𝜇(𝐵𝑁 ).

We use induction in 𝑁 ∈ N. The hypothesis is clear, for the start (𝑁 = 2) see Proposition
4.3(v). Induction step: take 𝑁 +1 sets 𝐵1,… , 𝐵𝑁+1 ∈ 𝒜 , set 𝐶 ∶= 𝐵1 ∪…∪𝐵𝑁 ∈ 𝒜 and
use the induction start and the hypothesis to conclude

𝜇(𝐵1 ∪… ∪ 𝐵𝑁 ∪ 𝐵𝑁+1) = 𝜇(𝐶 ∪ 𝐵𝑁+1)

⩽ 𝜇(𝐶) + 𝜇(𝐵𝑁+1)

⩽ 𝜇(𝐵1) +… + 𝜇(𝐵𝑁 ) + 𝜇(𝐵𝑁+1).

■■

Problem 4.2 Solution:

(i) The Dirac measure is defined on an arbitrary measurable space (𝑋,𝒜 ) by

𝛿𝑥(𝐴) ∶=
⎧

⎪

⎨

⎪

⎩

0, if 𝑥 ∉ 𝐴

1, if 𝑥 ∈ 𝐴
,

where 𝐴 ∈ 𝒜 and 𝑥 ∈ 𝑋 is a fixed point.
(M1) Since ∅ contains no points, 𝑥 ∉ ∅ and so 𝛿𝑥(∅) = 0.
(M2) Let (𝐴𝑗)𝑗∈N ⊂ 𝒜 a sequence of pairwise disjoint measurable sets. If 𝑥 ∈

⋃

𝑗∈N𝐴𝑗 ,
there is exactly one 𝑗0 with 𝑥 ∈ 𝐴𝑗0 , hence

𝛿𝑥

(

⋃

𝑗∈N
𝐴𝑗

)

= 1 = 1 + 0 + 0 +…
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= 𝛿𝑥(𝐴𝑗0) +
∑

𝑗≠𝑗0

𝛿𝑥(𝐴𝑗)

=
∑

𝑗∈N
𝛿𝑥(𝐴𝑗).

If 𝑥 ∉
⋃

𝑗∈N𝐴𝑗 , then 𝑥 ∉ 𝐴𝑗 for every 𝑗 ∈ N, hence

𝛿𝑥

(

⋃

𝑗∈N
𝐴𝑗

)

= 0 = 0 + 0 + 0 +… =
∑

𝑗∈N
𝛿𝑥(𝐴𝑗).

(ii) The measure 𝛾 is defined on (R,𝒜 ) by 𝛾(𝐴) ∶=
⎧

⎪

⎨

⎪

⎩

0, if #𝐴 ⩽ #N

1, if #𝐴𝑐 ⩽ #N
where 𝒜 ∶= {𝐴 ⊂ R ∶

#𝐴 ⩽ #N or #𝐴𝑐 ⩽ #N}. (Note that #𝐴 ⩽ #N if, and only if, #𝐴𝑐 = #R ⧵ 𝐴 > #N.)

(M1) Since ∅ contains no elements, it is certainly countable and so 𝛾(∅) = 0.

(M2) Let (𝐴𝑗)𝑗∈N be pairwise disjoint 𝒜 -sets. If all of them are countable, then 𝐴 ∶=
⋃

𝑗∈N𝐴𝑗 is countable and we get

𝛾

(

⋃

𝑗∈N
𝐴𝑗

)

= 𝛾(𝐴) = 0 =
∑

𝑗∈N
𝛾(𝐴𝑗).

If at least one 𝐴𝑗 is not countable, say for 𝑗 = 𝑗0, then 𝐴 ⊃ 𝐴𝑗0 is not countable and therefore
𝛾(𝐴) = 𝛾(𝐴𝑗0) = 1. Assume we could find some other 𝑗1 ≠ 𝑗0 such that 𝐴𝑗0 , 𝐴𝑗1 are not
countable. Since𝐴𝑗0 , 𝐴𝑗1 ∈ 𝒜 we know that their complements𝐴𝑐𝑗0 , 𝐴𝑐𝑗1 are countable, hence
𝐴𝑐𝑗0∪𝐴

𝑐
𝑗1

is countable and, at the same time,∈ 𝒜 . Because of this, (𝐴𝑐𝑗0∪𝐴𝑐𝑗1)𝑐 = 𝐴𝑗0∩𝐴𝑗1 = ∅
cannot be countable, which is absurd! Therefore there is at most one index 𝑗0 ∈ N such that
𝐴𝑗0 is uncountable and we get then

𝛾

(

⋃

𝑗∈N
𝐴𝑗

)

= 𝛾(𝐴) = 1 = 1 + 0 + 0 +… = 𝛾(𝐴𝑗0) +
∑

𝑗≠𝑗0

𝛾(𝐴𝑗).

(iii) We have an arbitrary measurable space (𝑋,𝒜 ) and the measure |𝐴| =
⎧

⎪

⎨

⎪

⎩

#𝐴, if 𝐴 is finite
∞, else

.

(M1) Since ∅ contains no elements, #∅ = 0 and |∅| = 0.

(M2) Let (𝐴𝑗)𝑗∈N be a sequence of pairwise disjoint sets in 𝒜 . Case 1: All𝐴𝑗 are finite and
only finitely many, say the first 𝑘, are non-empty, then 𝐴 =

⋃

𝑗∈N𝐴𝑗 is effectively a finite
union of 𝑘 finite sets and it is clear that

|𝐴| = |𝐴1| +…+ |𝐴𝑘| + |∅| + |∅| +… =
∑

𝑗∈N
|𝐴𝑗|.
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Case 2: All 𝐴𝑗 are finite and infinitely many are non-void. Then their union 𝐴 =
⋃

𝑗∈N𝐴𝑗
is an infinite set and we get

|𝐴| = ∞ =
∑

𝑗∈N
|𝐴𝑗|.

Case 3: At least one 𝐴𝑗 is infinite, and so is then the union 𝐴 =
⋃

𝑗∈N𝐴𝑗 . Thus,

|𝐴| = ∞ =
∑

𝑗∈N
|𝐴𝑗|.

(iv) On a countable setΩ = {𝜔1, 𝜔2,…}we define for a sequence (𝑝𝑗)𝑗∈N ⊂ [0, 1]with∑𝑗∈N 𝑝𝑗 =
1 the set function

𝑃 (𝐴) =
∑

𝑗∶𝜔𝑗∈𝐴
𝑝𝑗 =

∑

𝑗∈N
𝑝𝑗 𝛿𝜔𝑗 (𝐴), 𝐴 ⊂ Ω.

(M1) 𝑃 (∅) = 0 is obvious.

(M2) Let (𝐴𝑘)𝑘∈N be pairwise disjoint subsets of Ω. Then
∑

𝑘∈N
𝑃 (𝐴𝑘) =

∑

𝑘∈N

∑

𝑗∈N
𝑝𝑗 𝛿𝜔𝑗 (𝐴𝑘)

=
∑

𝑗∈N

∑

𝑘∈N
𝑝𝑗 𝛿𝜔𝑗 (𝐴𝑘)

=
∑

𝑗∈N
𝑝𝑗

(

∑

𝑘∈N
𝛿𝜔𝑗 (𝐴𝑘)

)

=
∑

𝑗∈N
𝑝𝑗𝛿𝜔𝑗

(

∪
𝑘
𝐴𝑘

)

= 𝑃
(

∪
𝑘
𝐴𝑘

)

.

The change in the order of summation needs justification; one possibility is the argument
used in the solution of Problem 4.7(ii). (Note that the reordering theorem for absolutely
convergent series is not immediately applicable since we deal with a double series!)

(v) This is obvious.
■■

Problem 4.3 Solution:

• On (R,ℬ(R)) the function 𝛾 is not be a measure, since we can take the sets 𝐴 = (1,∞),
𝐵 = (−∞,−1) which are disjoint, not countable and both have non-countable complements.
Hence, 𝛾(𝐴) = 𝛾(𝐵) = 1. On the other hand, 𝐴⊍𝐵 is non-countable and has non-countable
complement, [−1, 1]. So, 𝛾(𝐴 ⊍ 𝐵) = 1. This contradicts the additivity: 𝛾(𝐴 ⊍ 𝐵) = 1 ≠
2 = 𝛾(𝐴) + 𝛾(𝐵). Notice that the choice of the 𝜎-algebra 𝒜 avoids exactly this situation. ℬ
is the wrong 𝜎-algebra for 𝛾 .
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• On Q (and, actually, any possible 𝜎-algebra thereon) the problem is totally different: if 𝐴
is countable, then 𝐴𝑐 = Q ⧵ 𝐴 is also countable and vice versa. This means that 𝛾(𝐴) is,
according to the definition, both 1 and 0 which is, of course, impossible. This is to say: 𝛾 is
not well-defined. 𝛾 makes only sense on a non-countable set 𝑋.

■■

Problem 4.4 Solution:

(i) If 𝒜 = {∅,R}, then 𝜇 is a measure.
But as soon as 𝒜 contains one set 𝐴 which is non-trivial (trivial means either ∅ or 𝑋), we
have actually 𝐴𝑐 ∈ 𝒜 which is also non-trivial. Thus,

1 = 𝜇(𝑋) = 𝜇(𝐴 ⊍ 𝐴𝑐) ≠ 𝜇(𝐴) + 𝜇(𝐴𝑐) = 1 + 1 = 2

and 𝜇 cannot be a measure.
(ii) If we equip R with a 𝜎-algebra which contains sets such that both 𝐴 and 𝐴𝑐 can be infinite

(the Borel 𝜎-algebra would be such an example: 𝐴 = (−∞, 0) ⇐⇒ 𝐴𝑐 = [0,∞)), then 𝜈 is
not well-defined. The only type of sets where 𝜈 is well-defined is, thus,

𝒜 ∶= {𝐴 ⊂ R ∶ #𝐴 <∞ or #𝐴𝑐 <∞}.

But this is no 𝜎-algebra as the following example shows: 𝐴𝑗 ∶= {𝑗} ∈ 𝒜 , 𝑗 ∈ N, are
pairwise disjoint sets but ⋃𝑗∈N𝐴𝑗 = N is not finite and its complement is R ⧵N not finite
either! Thus, N ∉ 𝒜 , showing that 𝒜 cannot be a 𝜎-algebra. We conclude that 𝜈 can never
be a measure if the 𝜎-algebra contains infinitely many sets. If we are happy with finitely many
sets only, then here is an example that makes 𝜈 into a measure 𝒜 = {∅, {69},R ⧵ {69},R}
and similar families are possible, but the point is that they all contain only finitely many
members.

■■

Problem 4.5 Solution: Denote by 𝜆 one-dimensional Lebesgue measure and consider the Borel sets
𝐵𝑘 ∶= (𝑘,∞). Clearly ⋂

𝑘 𝐵𝑘 = ∅, 𝑘 ∈ N, so that 𝐵𝑘 ↓ ∅. On the other hand,

𝜆(𝐵𝑘) = ∞ ⇐⇒ inf
𝑘
𝜆(𝐵𝑘) = ∞ ≠ 0 = 𝜆(∅)

which shows that the finiteness condition is indeed essential.
■■

Problem 4.6 Solution: Mind the typo in the problem: it should read “infinite mass” – otherwise the
problem is pointless.
Solution 1: Define a measure 𝜇 which assigns every point 𝑛 − 1

2𝑘 , 𝑛 ∈ Z, 𝑘 ∈ N the mass 1
2𝑘 :

𝜇 =
∑

𝑛∈Z

∑

𝑘∈N

1
2𝑘
𝛿𝑛− 1

2𝑘
.
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(SinceZ×N is countable, Problem 4.7 shows that this object is indeed a measure!) Obviously, any
interval [𝑎, 𝑏) of length 𝑏−𝑎 > 2 contains some integer, say𝑚 ∈ [𝑎, 𝑏) so that [𝑚−1∕2, 𝑚) ⊂ [𝑎, 𝑏),
thus

𝜇[𝑎, 𝑏) ⩾ 𝜇[𝑚 − 1∕2, 𝑚) =
∑

𝑘∈N

1
2𝑘

= ∞.

On the other hand, the sequence of sets

𝐵𝑛 ∶=
𝑛
⋃

𝑘=−𝑛

[

𝑘 − 1, 𝑘 − 1
2𝑛

)

satisfies 𝜇(𝐵𝑛) <∞ and ⋃

𝑛 𝐵𝑛 = R.
Solution 2: Set 𝜇(𝐵) ∶= #(𝐵 ∩ Q), 𝐵 ∈ ℬ(R), i.e. the counting measure of the rationals in R.
Clearly, 𝜇[𝑎, 𝑏) = ∞ for every (non-empty) interval with 𝑎 < 𝑏. On the other hand, if (𝑞𝑘)𝑘∈N
is an enumeration of Q, the sets 𝐵𝑛 ∶= (R ⧵Q) ∪ {𝑞1,… , 𝑞𝑛} satisfy

𝐵𝑛 ↑ R and 𝜇(𝐵𝑛) = 𝑛,

i.e. 𝜇 is 𝜎-finite.
■■

Problem 4.7 Solution:

(i) Clearly, 𝜌 ∶= 𝑎𝜇 + 𝑏𝜈 ∶ 𝒜 → [0,∞] (since 𝑎, 𝑏 ⩾ 0!). We check (𝑀1), (𝑀2).
(M1) Clearly, 𝜌(∅) = 𝑎𝜇(∅) + 𝑏𝜈(∅) = 𝑎 ⋅ 0 + 𝑏 ⋅ 0 = 0.
(M2) Let (𝐴𝑗)𝑗∈N ⊂ 𝒜 be mutually disjoint sets. Then we can use the 𝜎-additivity of 𝜇, 𝜈

to get

𝜌
(

⋃

𝑗∈N
𝐴𝑗

)

= 𝑎𝜇
(

⋃

𝑗∈N
𝐴𝑗

)

+ 𝑏𝜈
(

⋃

𝑗∈N
𝐴𝑗

)

= 𝑎
∑

𝑗∈N
𝜇(𝐴𝑗) + 𝑏

∑

𝑗∈N
𝜈(𝐴𝑗)

=
∑

𝑗∈N

(

𝑎𝜇(𝐴𝑗) + 𝑏𝜇(𝐴𝑗)
)

=
∑

𝑗∈N
𝜌(𝐴𝑗).

Since all quantities involved are positive and since we allow the value +∞ to be attained,
there are no convergence problems.

(ii) Since all 𝛼𝑗 are positive, the sum ∑

𝑗∈N 𝛼𝑗𝜇𝑗(𝐴) is a sum of positive quantities and, allowing
the value +∞ to be attained, there is no convergence problem. Thus, 𝜇 ∶ 𝒜 → [0,∞] is
well-defined. Before we check (𝑀1), (𝑀2) we prove the following

Lemma. Let 𝛽𝑖𝑗 , 𝑖, 𝑗 ∈ N, be real numbers. Then

sup
𝑖∈N

sup
𝑗∈N

𝛽𝑖𝑗 = sup
𝑗∈N

sup
𝑖∈N

𝛽𝑖𝑗 .
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Proof. Observe that we have 𝛽𝑚𝑛 ⩽ sup𝑗∈N sup𝑖∈N 𝛽𝑖𝑗 for all 𝑚, 𝑛 ∈ N. The right-hand side
is independent of 𝑚 and 𝑛 and we may take the 𝑠𝑢𝑝 over all 𝑛

sup
𝑛∈N

𝛽𝑚𝑛 ⩽ sup
𝑗∈N

sup
𝑖∈N

𝛽𝑖𝑗 ∀𝑚 ∈ N

and then, with the same argument, take the sup over all 𝑚

sup
𝑚∈N

sup
𝑛∈N

𝛽𝑚𝑛 ⩽ sup
𝑗∈N

sup
𝑖∈N

𝛽𝑖𝑗 ∀𝑚 ∈ N.

The opposite inequality, ‘⩾’, follows from the same argument with 𝑖 and 𝑗 interchanged.

(M1) We have 𝜇(∅) = ∑

𝑗∈N 𝛼𝑗𝜇𝑗(∅) =
∑

𝑗∈N 𝛼𝑗 ⋅ 0 = 0.

(M2) Take pairwise disjoint sets (𝐴𝑖)𝑖∈N ⊂ 𝒜 . Then we can use the 𝜎-additivity of each of
the 𝜇𝑗’s to get

𝜇
(

⋃

𝑖∈N
𝐴𝑖

)

=
∑

𝑗∈N
𝛼𝑗𝜇𝑗

(

⋃

𝑖∈N
𝐴𝑖

)

= lim
𝑁→∞

𝑁
∑

𝑗=1
𝛼𝑗

∑

𝑖∈N
𝜇𝑗

(

𝐴𝑖
)

= lim
𝑁→∞

𝑁
∑

𝑗=1
𝛼𝑗 lim

𝑀→∞

𝑀
∑

𝑖=1
𝜇𝑗

(

𝐴𝑖
)

= lim
𝑁→∞

lim
𝑀→∞

𝑁
∑

𝑗=1

𝑀
∑

𝑖=1
𝛼𝑗𝜇𝑗

(

𝐴𝑖
)

= sup
𝑁∈N

sup
𝑀∈N

𝑁
∑

𝑗=1

𝑀
∑

𝑖=1
𝛼𝑗𝜇𝑗

(

𝐴𝑖
)

where we use that the limits are increasing limits, hence suprema. By our lemma:

𝜇
(

⋃

𝑖∈N
𝐴𝑖

)

= sup
𝑀∈N

sup
𝑁∈N

𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
𝛼𝑗𝜇𝑗

(

𝐴𝑖
)

= lim
𝑀→∞

lim
𝑁→∞

𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
𝛼𝑗𝜇𝑗

(

𝐴𝑖
)

= lim
𝑀→∞

𝑀
∑

𝑖=1

∑

𝑗∈N
𝛼𝑗𝜇𝑗

(

𝐴𝑖
)

= lim
𝑀→∞

𝑀
∑

𝑖=1
𝜇
(

𝐴𝑖
)

=
∑

𝑖∈N
𝜇
(

𝐴𝑖
)

.

■■
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Problem 4.8 Solution: Finite additivity implies monotonicity: 𝐴 ⊂ 𝐵 ⇐⇒ 𝐵 = 𝐴 ⊍ (𝐵 ⧵ 𝐴) and so

𝜇(𝐵) = 𝜇(𝐴 ⊍ (𝐵 ⧵ 𝐴)) = 𝜇(𝐴) + 𝜇(𝐵 ⧵ 𝐴) ⩾ 𝜇(𝐴).

Let 𝐵𝑛 ↑ 𝐵 and 𝐷𝑛 ∶= 𝐵𝑛 ⧵ 𝐵𝑛−1 with 𝐵0 ∶= ∅. This gives

𝜇
( ∞
⋃

𝑛=1
𝐵𝑛

)

⩾ sup
𝑛∈N

𝜇(𝐵𝑛) = sup
𝑛∈N

𝜇
( 𝑛
⨃

𝑖=1
𝐷𝑖

)

(1)
= sup

𝑛∈N

𝑛
∑

𝑖=1
𝜇(𝐷𝑖) =

∞
∑

𝑖=1
𝜇(𝐷𝑖)

(2)
⩾ 𝜇

( ∞
⋃

𝑖=1
𝐷𝑖

)

= 𝜇
( ∞
⋃

𝑛=1
𝐵𝑛

)

.

where we use finite additivity for (1) and 𝜎-subaddtitivity for (2).
■■

Problem 4.9 Solution: Set 𝜈(𝐴) ∶= 𝜇(𝐴 ∩ 𝐹 ). We know, by assumption, that 𝜇 is a measure on
(𝑋,𝒜 ). We have to show that 𝜈 is a measure on (𝑋,𝒜 ). Since 𝐹 ∈ 𝒜 , we have 𝐹 ∩ 𝐴 ∈ 𝒜 for
all 𝐴 ∈ 𝒜 , so 𝜈 is well-defined. Moreover, it is clear that 𝜈(𝐴) ∈ [0,∞]. Thus, we only have to
check

(M1) 𝜈(∅) = 𝜇(∅ ∩ 𝐹 ) = 𝜇(∅) = 0.

(M2) Let (𝐴𝑗)𝑗∈N ⊂ 𝒜 be a sequence of pairwise disjoint sets. Then also (𝐴𝑗 ∩ 𝐹 )𝑗∈N ⊂ 𝒜 are
pairwise disjoint and we can use the 𝜎-additivity of 𝜇 to get

𝜈
(

⋃

𝑗∈N
𝐴𝑗

)

= 𝜇
(

𝐹 ∩
⋃

𝑗∈N
𝐴𝑗

)

= 𝜇
(

⋃

𝑗∈N
(𝐹 ∩ 𝐴𝑗)

)

=
∑

𝑗∈N
𝜇(𝐹 ∩ 𝐴𝑗)

=
∑

𝑗∈N
𝜈(𝐴𝑗).

■■

Problem 4.10 Solution: Since𝑃 is a probability measure, 𝑃 (𝐴𝑐𝑗 ) = 1−𝑃 (𝐴𝑗) = 0. By 𝜎-subadditivity,

𝑃
(

⋃

𝑗∈N
𝐴𝑐𝑗

)

⩽
∑

𝑗∈N
𝑃 (𝐴𝑐𝑗 ) = 0

and we conclude that

𝑃
(

⋂

𝑗∈N
𝐴𝑗

)

= 1 − 𝑃
([

⋂

𝑗∈N
𝐴𝑗

]𝑐 )

= 1 − 𝑃
(

⋃

𝑗∈N
𝐴𝑐𝑗

)

= 1 − 0 = 0.

■■
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Problem 4.11 Solution: Note that
⋃

𝑗
𝐴𝑗 ⧵

⋃

𝑘
𝐵𝑘 =

⋃

𝑗

(

𝐴𝑗 ⧵
⋃

𝑘
𝐵𝑘

⏟⏟⏟
⊃𝐵𝑗 ∀ 𝑗

)

⊂
⋃

𝑗

(

𝐴𝑗 ⧵ 𝐵𝑗
)

Since ⋃

𝑗 𝐵𝑗 ⊂
⋃

𝑗 𝐴𝑗 we get from 𝜎-subadditivity

𝜇
(

⋃

𝑗
𝐴𝑗

)

− 𝜇
(

⋃

𝑗
𝐵𝑗

)

= 𝜇
(

⋃

𝑗
𝐴𝑗 ⧵

⋃

𝑘
𝐵𝑘

)

⩽ 𝜇
(

⋃

𝑗

(

𝐴𝑗 ⧵ 𝐵𝑗
)

)

⩽
∑

𝑗
𝜇(𝐴𝑗 ⧵ 𝐵𝑗).

■■

Problem 4.12 Solution:

(i) We have ∅ ∈ 𝒜 and 𝜇(∅) = 0, thus ∅ ∈ 𝒩𝜇.
(ii) Since 𝑀 ∈ 𝒜 (this is essential in order to apply 𝜇 to 𝑀!) we can use the monotonicity of

measures to get 0 ⩽ 𝜇(𝑀) ⩽ 𝜇(𝑁) = 0, i.e. 𝜇(𝑀) = 0 and 𝑀 ∈ 𝒩𝜇 follows.
(iii) Since all 𝑁𝑗 ∈ 𝒜 , we get 𝑁 ∶=

⋃

𝑗∈N𝑁𝑗 ∈ 𝒜 . By the 𝜎-subadditivity of a measure we
find

0 ⩽ 𝜇(𝑁) = 𝜇
(

⋃

𝑗∈N
𝑁𝑗

)

⩽
∑

𝑗∈N
𝜇(𝑁𝑗) = 0,

hence 𝜇(𝑁) = 0 and so 𝑁 ∈ 𝒩𝜇.
■■

Problem 4.13 Solution:

(i) The one-dimensional Borel setsℬ ∶= ℬ(R) are defined as the smallest 𝜎-algebra containing
the open sets. Pick 𝑥 ∈ R and observe that the open intervals (𝑥 − 1

𝑘
, 𝑥 + 1

𝑘
), 𝑘 ∈ N, are

all open sets and therefore (𝑥 − 1
𝑘
, 𝑥 + 1

𝑘
) ∈ ℬ. Since a 𝜎-algebra is stable under countable

intersections we get {𝑥} =
⋂

𝑘∈N(𝑥 −
1
𝑘
, 𝑥 + 1

𝑘
) ∈ ℬ.

Using the monotonicity of measures and the definition of Lebesgue measure we find
0 ⩽ 𝜆({𝑥}) ⩽ 𝜆((𝑥 − 1

𝑘
, 𝑥 + 1

𝑘
)) = (𝑥 + 1

𝑘
) − (𝑥 − 1

𝑘
) = 2

𝑘
←←←←←←←←←←←←←←←←←←←←→
𝑘→∞

0.

[Following the hint leads to a similar proof with [𝑥 − 1
𝑘
, 𝑥 + 1

𝑘
) instead of (𝑥 − 1

𝑘
, 𝑥 + 1

𝑘
).]

(ii) a) Since Q is countable, we find an enumeration {𝑞1, 𝑞2, 𝑞3,…} and we get trivially Q =
⋃

𝑗∈N{𝑞𝑗}which is a disjoint union. (This shows, by the way, thatQ ∈ ℬ as {𝑞𝑗} ∈ ℬ.)
Therefore, using part (i) of the problem and the 𝜎-additivity of measures,

𝜆(Q) = 𝜆
(

⋃

𝑗∈N
{𝑞𝑗}

)

=
∑

𝑗∈N
𝜆({𝑞𝑗}) =

∑

𝑗∈N
0 = 0.
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b) Take again an enumeration Q = {𝑞1, 𝑞2, 𝑞3,…}, fix 𝜖 > 0 and define 𝐶(𝜖) as stated in
the problem. Then we have 𝐶(𝜖) ∈ ℬ and Q ⊂ 𝐶(𝜖). Using the monotonicity and
𝜎-subadditivity of 𝜆 we get

0 ⩽ 𝜆(Q) ⩽ 𝜆
(

𝐶(𝜖)
)

= 𝜆
(

⋃

𝑘∈N
[𝑞𝑘 − 𝜖2−𝑘, 𝑞𝑘 + 𝜖2−𝑘)

)

⩽
∑

𝑘∈N
𝜆
(

[𝑞𝑘 − 𝜖2−𝑘, 𝑞𝑘 + 𝜖2−𝑘)
)

=
∑

𝑘∈N
2 ⋅ 𝜖 ⋅ 2−𝑘

= 2𝜖
1
2

1 − 1
2

= 2𝜖.

As 𝜖 > 0 was arbitrary, we can make 𝜖 → 0 and the claim follows.
(iii) Since ⋃

0⩽𝑥⩽1{𝑥} is a disjoint union, only the countability assumption is violated. Let’s see
what happens if we could use ‘𝜎-additivity’ for such non-countable unions:

0 =
∑

0⩽𝑥⩽1
0 =

∑

0⩽𝑥⩽1
𝜆({𝑥}) = 𝜆

(

⋃

0⩽𝑥⩽1
{𝑥}

)

= 𝜆([0, 1]) = 1

which is impossible.
■■

Problem 4.14 Solution: Without loss of generality we may assume that 𝑎 ≠ 𝑏; set 𝜇 ∶= 𝛿𝑎 + 𝛿𝑏.
Then 𝜇(𝐵) = 0 if, and only if, 𝑎 ∉ 𝐵 and 𝑏 ∉ 𝐵. Since {𝑎}, {𝑏} and {𝑎, 𝑏} are Borel sets, all null
sets of 𝜇 are given by

𝒩𝜇 =
{

𝐵 ⧵ {𝑎, 𝑏} ∶ 𝐵 ∈ ℬ(R)
}

.

(This shows that, in some sense, null sets can be fairly large!).
■■

Problem 4.15 Solution: Let us write 𝔑 for the family of all (proper and improper) subsets of 𝜇 null
sets. We note that sets in 𝔑 can be measurable (that is: 𝑁 ∈ 𝒜 ) but need not be measurable.

(i) Since ∅ ∈ 𝔑, we find that 𝐴 = 𝐴∪ ∅ ∈ 𝒜 for every 𝐴 ∈ 𝒜 ; thus, 𝒜 ⊂ 𝒜 . Let us check that
𝒜 is a 𝜎-algebra.
(Σ1) Since ∅ ∈ 𝒜 ⊂ 𝒜 , we have ∅ ∈ 𝒜 .
(Σ2) Let 𝐴∗ ∈ 𝒜 . Then 𝐴∗ = 𝐴 ∪𝑁 for 𝐴 ∈ 𝒜 and 𝑁 ∈ 𝔑. By definition, 𝑁 ⊂ 𝑀 ∈ 𝒜

where 𝜇(𝑀) = 0. Now

𝐴∗𝑐 = (𝐴 ∪𝑁)𝑐 = 𝐴𝑐 ∩𝑁𝑐

= 𝐴𝑐 ∩𝑁𝑐 ∩ (𝑀𝑐 ∪𝑀)
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= (𝐴𝑐 ∩𝑁𝑐 ∩𝑀𝑐) ∪ (𝐴𝑐 ∩𝑁𝑐 ∩𝑀)

= (𝐴𝑐 ∩𝑀𝑐) ∪ (𝐴𝑐 ∩𝑁𝑐 ∩𝑀)

where we use that 𝑁 ⊂ 𝑀 , hence 𝑀𝑐 ⊂ 𝑁𝑐 , hence 𝑀𝑐 ∩𝑁𝑐 = 𝑀𝑐 . But now we see
that 𝐴𝑐 ∩𝑀𝑐 ∈ 𝒜 and 𝐴𝑐 ∩𝑁𝑐 ∩𝑀 ∈ 𝔑 since 𝐴𝑐 ∩𝑁𝑐 ∩𝑀 ⊂ 𝑀 and 𝑀 ∈ 𝒜 is a
𝜇 null set: 𝜇(𝑀) = 0.

(Σ3) Let (𝐴∗
𝑗 )𝑗∈N be a sequence of 𝒜 -sets. From its very definition we know that each

𝐴∗
𝑗 = 𝐴𝑗 ∪𝑁𝑗 for some (not necessarily unique!) 𝐴𝑗 ∈ 𝒜 and 𝑁𝑗 ∈ 𝔑. So,

⋃

𝑗∈N
𝐴∗
𝑗 =

⋃

𝑗∈N
(𝐴𝑗 ∪𝑁𝑗) =

(

⋃

𝑗∈N
𝐴𝑗

)

∪
(

⋃

𝑗∈N
𝑁𝑗

)

=∶ 𝐴 ∪𝑁.

Since 𝒜 is a 𝜎-algebra, 𝐴 ∈ 𝒜 . All we have to show is that 𝑁𝑗 is in 𝔑. Since each 𝑁𝑗

is a subset of a (measurable!) null set, say, 𝑀𝑗 ∈ 𝒜 , we find that 𝑁 =
⋃

𝑗∈N𝑁𝑗 ⊂
⋃

𝑗∈N𝑀𝑗 = 𝑀 ∈ 𝒜 and all we have to show is that 𝜇(𝑀) = 0. But this follows from
𝜎-subadditivity,

0 ⩽ 𝜇(𝑀) = 𝜇
(

⋃

𝑗∈N
𝑀𝑗

)

⩽
∑

𝑗∈N
𝜇(𝑀𝑗) = 0.

Thus, 𝐴 ∪𝑁 ∈ 𝒜 .
(ii) As already mentioned in part (i), 𝐴∗ ∈ 𝒜 could have more than one representation, e.g.

𝐴 ∪𝑁 = 𝐴∗ = 𝐵 ∪𝑀 with 𝐴,𝐵 ∈ 𝒜 and 𝑁,𝑀 ∈ 𝔑. If we can show that 𝜇(𝐴) = 𝜇(𝐵)
then the definition of 𝜇̄ is independent of the representation of 𝐴∗. Since 𝑀,𝑁 are not
necessarily measurable but, by definition, subsets of (measurable) null sets 𝑀 ′, 𝑁 ′ ∈ 𝒜 we
find

𝐴 ⊂ 𝐴 ∪𝑁 = 𝐵 ∪𝑀 ⊂ 𝐵 ∪𝑀 ′,

𝐵 ⊂ 𝐵 ∪𝑀 = 𝐴 ∪𝑁 ⊂ 𝐴 ∪𝑁 ′

and since𝐴,𝐵,𝐵∪𝑀 ′, 𝐴∪𝑁 ′ ∈ 𝒜 , we get from monotonicity and subadditivity of measures

𝜇(𝐴) ⩽ 𝜇(𝐵 ∪𝑀 ′) ⩽ 𝜇(𝐵) + 𝜇(𝑀 ′) = 𝜇(𝐵),

𝜇(𝐵) ⩽ 𝜇(𝐴 ∪𝑁 ′) ⩽ 𝜇(𝐴) + 𝜇(𝑁 ′) = 𝜇(𝐴)

which shows 𝜇(𝐴) = 𝜇(𝐵).
(iii) We check (M1) and (M2)

(M1) Since ∅ = ∅ ∪ ∅ ∈ 𝒜 , ∅ ∈ 𝒜 , ∅ ∈ 𝔑, we have 𝜇̄(∅) = 𝜇(∅) = 0.
(M2) Let (𝐴∗

𝑗 )𝑗∈N ⊂ 𝒜 be a sequence of pairwise disjoint sets. Then𝐴∗
𝑗 = 𝐴𝑗 ∪𝑁𝑗 for some

𝐴𝑗 ∈ 𝒜 and 𝑁𝑗 ∈ 𝔑. These sets are also mutually disjoint, and with the arguments in
(i) we see that 𝐴∗ = 𝐴 ∪ 𝑁 where 𝐴∗ ∈ 𝒜 , 𝐴 ∈ 𝒜 , 𝑁 ∈ 𝔑 stand for the unions of
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𝐴∗
𝑗 , 𝐴𝑗 and 𝑁𝑗 , respectively. Since 𝜇̄ does not depend on the special representation of

𝒜 -sets, we get

𝜇̄
(

⋃

𝑗∈N
𝐴∗
𝑗

)

= 𝜇̄(𝐴∗) = 𝜇(𝐴) = 𝜇
(

⋃

𝑗∈N
𝐴𝑗

)

=
∑

𝑗∈N
𝜇(𝐴𝑗)

=
∑

𝑗∈N
𝜇̄(𝐴∗

𝑗 )

showing that 𝜇̄ is 𝜎-additive.
(iv) Let 𝑀∗ be a 𝜇̄ null set, i.e. 𝑀∗ ∈ 𝒜 and 𝜇̄(𝑀∗) = 0. Take any 𝐵 ⊂ 𝑀∗. We have to show

that 𝐵 ∈ 𝒜 and 𝜇̄(𝐵) = 0. The latter is clear from the monotonicity of 𝜇̄ once we have
shown that 𝐵 ∈ 𝒜 which means, once we know that we may plug 𝐵 into 𝜇̄.
Now, 𝐵 ⊂ 𝑀∗ and 𝑀∗ = 𝑀 ∪𝑁 for some 𝑀 ∈ 𝒜 and 𝑁 ∈ 𝔑. As 𝜇̄(𝑀∗) = 0 we also
know that 𝜇(𝑀) = 0. Moreover, we know from the definition of 𝔑 that 𝑁 ⊂ 𝑁 ′ for some
𝑁 ′ ∈ 𝒜 with 𝜇(𝑁 ′) = 0. This entails

𝐵 ⊂ 𝑀∗ =𝑀 ∪𝑁 ⊂ 𝑀 ∪𝑁 ′ ∈ 𝒜

and 𝜇(𝑀 ∪𝑁 ′) ⩽ 𝜇(𝑀) + 𝜇(𝑁 ′) = 0.

Hence 𝐵 ∈ 𝔑 as well as 𝐵 = ∅ ∪ 𝐵 ∈ 𝒜 . In particular, 𝜇̄(𝐵) = 𝜇(∅) = 0.
(v) Set 𝒞 = {𝐴∗ ⊂ 𝑋 ∶ ∃𝐴,𝐵 ∈ 𝒜 , 𝐴 ⊂ 𝐴∗𝐴 ⊂ 𝐵, 𝜇(𝐵 ⧵ 𝐴) = 0}. We have to show that

𝒜 = 𝒞 .
Take 𝐴∗ ∈ 𝒜 . Then 𝐴∗ = 𝐴 ∪𝑁 with 𝐴 ∈ 𝒜 , 𝑁 ∈ 𝔑 and choose 𝑁 ′ ∈ 𝒜 , 𝑁 ⊂ 𝑁 ′ and
𝜇(𝑁 ′) = 0. This shows that

𝐴 ⊂ 𝐴∗ = 𝐴 ∪𝑁 ⊂ 𝐴 ∪𝑁 ′ =∶ 𝐵 ∈ 𝒜

and that 𝜇(𝐵⧵𝐴) = 𝜇((𝐴∪𝑁 ′)⧵𝐴) ⩽ 𝜇(𝑁 ′) = 0. (Note that (𝐴∪𝑁 ′)⧵𝐴 = (𝐴∪𝑁 ′)∩𝐴𝑐 =
𝑁 ′ ∩ 𝐴𝑐 ⊂ 𝑁 ′ and that equality need not hold!).
Conversely, take𝐴∗ ∈ 𝒞 . Then, by definition,𝐴 ⊂ 𝐴∗ ⊂ 𝐵with𝐴,𝐵 ∈ 𝒜 and𝜇(𝐵⧵𝐴) = 0.
Therefore, 𝑁 ∶= 𝐵 ⧵ 𝐴 is a null set and we see that 𝐴∗ ⧵ 𝐴 ⊂ 𝐵 ⧵ 𝐴, i.e. 𝐴∗ ⧵ 𝐴 ∈ 𝔑. So,
𝐴∗ = 𝐴 ∪ (𝐴∗ ⧵ 𝐴) where 𝐴 ∈ 𝒜 and 𝐴∗ ⧵ 𝐴 ∈ 𝔑 showing that 𝐴∗ ∈ 𝒜 .

■■

Problem 4.16 Solution: Set

Σ ∶=
{

𝐹 ▵𝑁 ∶ 𝐹 ∈ ℱ , 𝑁 ∈ 𝒩
}

.

and denote, without further mentioning, by 𝐹 , 𝐹𝑗 resp.𝑁,𝑁𝑗 sets from ℱ resp. 𝒩 . Since 𝐹 ▵ ∅ =
𝐹 , ∅▵𝑁 = 𝑁 and 𝐹 ▵𝑁 ∈ 𝜎(ℱ ,𝒩 ) we get

ℱ , 𝒩 ⊂ Σ ⊂ 𝜎(ℱ ,𝒩 ) (*)
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and the first assertion follows if we can show that Σ is a 𝜎-algebra. In this case, we can apply the
𝜎-operation to the inclusions (*) and get

𝜎(ℱ ,𝒩 ) ⊂ 𝜎(Σ) ⊂ 𝜎(𝜎(ℱ ,𝒩 ))

which is just

𝜎(ℱ ,𝒩 ) ⊂ Σ ⊂ 𝜎(ℱ ,𝒩 ).

To see that Σ is a 𝜎-algebra, we check conditions (Σ1)–(Σ3).
(Σ1): Clearly, 𝑋 ∈ ℱ and 𝑁 ∈ 𝒩 so that 𝑋 = 𝑋 ▵ ∅ ∈ Σ;
(Σ2): We have, using de Morgan’s identities over and over again:

[𝐹 ▵𝑁]𝑐 = [(𝐹 ⧵𝑁) ∪ (𝑁 ⧵ 𝐹 )]𝑐

= (𝐹 ∩𝑁𝑐)𝑐 ∩ (𝑁 ∩ 𝐹 𝑐)𝑐

= (𝐹 𝑐 ∪𝑁) ∩ (𝑁𝑐 ∪ 𝐹 )

= (𝐹 𝑐 ∩𝑁𝑐) ∪ (𝐺𝑐 ∩ 𝐺) ∪ (𝑁 ∩𝑁𝑐) ∪ (𝑁 ∩ 𝐹 )

= (𝐹 𝑐 ∩𝑁𝑐) ∪ (𝑁 ∩ 𝐹 )

= (𝐹 𝑐 ⧵𝑁) ∪ (𝑁 ⧵ 𝐹 𝑐)

= 𝐹 𝑐
⏟⏟⏟

∈ℱ

▵𝑁

∈ Σ;

(Σ3): We begin by a few simple observations, namely that for all 𝐹 ∈ ℱ and 𝑁,𝑁 ′ ∈ 𝒩

𝐹 ∪𝑁 = 𝐹 ▵ (𝑁 ⧵ 𝐹 )
⏟⏞⏟⏞⏟

∈𝒩

∈ Σ; (a)

𝐹 ⧵𝑁 = 𝐹 ▵ (𝑁 ∩ 𝐹 )
⏟⏞⏟⏞⏟

∈𝒩

∈ Σ; (b)

𝑁 ⧵ 𝐹 = 𝑁 ▵ (𝐹 ∩𝑁)
⏟⏞⏟⏞⏟

∈𝒩

∈ Σ; (c)

(𝐹 ▵𝑁) ∪𝑁 ′ =
(

𝐹 ▵𝑁
)

▵
(

𝑁 ′ ⧵ (𝐹 ▵𝑁)
)

= 𝐹 ▵
(

𝑁 ▵(𝑁 ′ ⧵ (𝐹 ▵𝑁))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∈𝒩

∈ Σ, (d)

where we use Problem 2.6(ii) and part (a) for (d).
Now let (𝐹𝑗)𝑗∈N ⊂ ℱ and (𝑁𝑗)𝑗∈N ⊂ 𝒩 and set 𝐹 ∶=

⋃

𝑗 𝐹𝑗 ∈ ℱ and, because of 𝜎-
subadditivity of measures 𝑁 ∶=

⋃

𝑗 𝑁𝑗 ∈ 𝒩 . Then

𝐹 ⧵𝑁 =
⋃

𝑗∈N
(𝐹𝑗 ⧵𝑁) ⊂

⋃

𝑗∈N
(𝐹𝑗 ⧵𝑁𝑗) ⊂

⋃

𝑗∈N
𝐹𝑗 = 𝐹

45



R.L. Schilling: Measures, Integrals & Martingales

as well as
∅ ⊂

⋃

𝑗∈N
(𝑁𝑗 ⧵ 𝐹𝑗) ⊂

⋃

𝑗∈N
𝑁𝑗 = 𝑁

which shows that
𝐹 ⧵𝑁 ⊂

⋃

𝑗∈N
(𝐹𝑗 ▵𝑁𝑗) ⊂ 𝐹 ∪𝑁. (**)

Since ℱ ,𝒩 ⊂ 𝒜 , and consequently ⋃

𝑗∈N(𝐹𝑗 ▵𝑁𝑗) ∈ 𝒜 , and since 𝒜 -measurable subsets
of null sets are again in 𝒩 , the inclusions (**) show that there exists some 𝑁 ′ ∈ 𝒩 so that

⋃

𝑗∈N
(𝐹𝑗 ▵𝑁𝑗) = (𝐹 ⧵𝑁)

⏟⏞⏟⏞⏟
∈Σ, cf. (b)

∪𝑁 ′ ∈ Σ

where we use (d) for the last inclusion.
■■

Problem 4.17 Solution: By definition,
𝒜 =

{

𝐴 ∪𝑁 ∶ 𝐴 ∈ 𝒜 , 𝑁 ∈ 𝒩
}

.

Since
𝐴 ∪𝑁 = 𝐴▵ (𝑁 ⧵ 𝐴)

⏟⏟⏟
∈𝒩

and since by an application of Problem 4.16 to (𝑋,𝒜 , 𝜇̄),𝒜 ,𝒩 (instead of (𝑋,𝒜 , 𝜇),𝒢 ,𝒩 ) we
get

𝜎(𝒜 ,𝒩 ) =
{

𝐴▵𝑁 ∶ 𝐴 ∈ 𝒜 , 𝑁 ∈ 𝒩
}

and we conclude that
𝒜 ⊂ 𝜎(𝒜 ,𝒩 ).

On the other hand,
𝒜 ⊂ 𝒜 and 𝒩 ⊂ 𝒜

so that, since 𝒜 is a 𝜎-algebra,
𝜎(𝒜 ,𝒩 ) ⊂ 𝜎(𝒜 ) = 𝒜 ⊂ 𝜎(𝒜 ,𝒩 ).

Finally, assume that 𝐴∗ ∈ 𝒜 and 𝐴 ∈ 𝒜 . Then 𝐴 = 𝐴∗ ▵𝑁 and we get
𝐴∗ ▵𝐴 = 𝐴▵𝑁 ▵𝐴 = (𝐴▵𝐴)▵𝑁 = 𝑁.

Note that this result would also follow directly from 4.15 since we know from there that𝐴∗ = 𝐴∪𝑁
so that

𝐴∗ ▵𝐴 = (𝐴 ∪𝑁)▵𝐴 = 𝐴▵(𝑁 ⧵ 𝐴)▵𝐴 = 𝑁 ⧵ 𝐴

■■
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Problem 4.18 Solution: Denote the completion by ℬ∗ and write 𝒩𝑥 for all subsets of Borel null sets
of 𝛿𝑥. Clearly,

𝒩𝑥 = {𝐴 ⊂ R𝑛 ∶ 𝑥 ∉ 𝐴}.

Recall from Problem 4.15(i) that ℬ∗ contains all sets of the form𝐵∪𝑁 with𝐵 ∈ ℬ and𝑁 ∈ 𝒩𝑥.
Now let 𝐶 ⊂ R𝑛 be any set. If 𝑥 ∈ 𝐶 , then write

𝐶 = {𝑥}
⏟⏟⏟

∈ℬ

∪ (𝐶 ⧵ {𝑥})
⏟⏞⏞⏟⏞⏞⏟

∈𝒩𝑥

∈ ℬ∗;

Otherwise, 𝑥 ∉ 𝐶 and

𝐶 = 𝐶 ⧵ {𝑥} = ∅
⏟⏟⏟

∈ℬ

∪ (𝐶 ⧵ {𝑥})
⏟⏞⏞⏟⏞⏞⏟

∈𝒩𝑥

∈ ℬ∗.

This shows that ℬ∗ = 𝒫 (R𝑛) is the power set of R𝑛.
■■

Problem 4.19 Solution:

(i) Since ℬ is a 𝜎-algebra, it is closed under countable (disjoint) unions of its elements, thus 𝜈
inherits the properties (M1), (M2) directly from 𝜇.

(ii) Yes [yes], since the full space 𝑋 ∈ ℬ so that 𝜇(𝑋) = 𝜈(𝑋) is finite [resp. = 1].
(iii) No, 𝜎-finiteness is also a property of the 𝜎-algebra. Take, for example, Lebesgue measure 𝜆

on the Borel sets (this is 𝜎-finite) and consider the 𝜎-algebra 𝒞 ∶= {∅, (−∞, 0), [0,∞),R}.
Then 𝜆||

|𝒞
is not 𝜎-finite since there is no increasing sequence of 𝒞 -sets having finite measure.

■■

Problem 4.20 Solution: By definition, 𝜇 is 𝜎-finite if there is an increasing sequence (𝐵𝑗)𝑗∈N ⊂ 𝒜

such that 𝐵𝑗 ↑ 𝑋 and 𝜇(𝐵𝑗) <∞. Clearly, 𝐸𝑗 ∶= 𝐵𝑗 satisfies the condition in the statement of the
problem.
Conversely, let (𝐸𝑗)𝑗∈N be as stated in the problem. Then 𝐵𝑛 ∶= 𝐸1 ∪ … ∪ 𝐸𝑛 is measurable,
𝐵𝑛 ↑ 𝑋 and, by subadditivity,

𝜇(𝐵𝑛) = 𝜇(𝐸1 ∪… ∪ 𝐸𝑛) ⩽
𝑛
∑

𝑗=1
𝜇(𝐸𝑗) <∞.

Remark: A small change in the above argument allows to take pairwise disjoint sets 𝐸𝑗 .
■■

Problem 4.21 Solution:
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(i) Fix 𝜖 > 0 and choose for𝐴 ∈ Σ sets𝑈 ∈ 𝒪 , 𝐹 ∈ ℱ such that 𝐹 ⊂ 𝐴 ⊂ 𝑈 and 𝜇(𝑈 ⧵𝐹 ) < 𝜖.
Set 𝑈 ′ ∶= 𝐹 𝑐 ∈ 𝒪 and 𝐹 ′ ∶= 𝑈 𝑐 ∈ ℱ . Then we have

𝐹 ′ ⊂ 𝐴𝑐 ⊂ 𝑈 ′ and 𝑈 ′ ⧵ 𝐹 ′ = 𝐹 𝑐 ⧵ 𝑈 𝑐 = 𝐹 𝑐 ∩ 𝑈 = 𝑈 ⧵ 𝐹

and so 𝜇(𝑈 ′ ⧵ 𝐹 ′) = 𝜇(𝑈 ⧵ 𝐹 ) < 𝜖. This means that 𝐴𝑐 ∈ Σ.

Denote by 𝑑(𝑥, 𝑦) the distance of two points 𝑥, 𝑦 ∈ 𝑋 and write 𝐵1∕𝑛(0) for the open ball
{𝑦 ∈ 𝑋 ∶ 𝑑(𝑦, 0) < 1

𝑛
}. As in the solution of Problem 3.14(ii) we see that𝑈𝑛 ∶= 𝐹 +𝐵1∕𝑛(0)

is a sequence of open sets such that 𝑈𝑛 ↓ 𝐹 . Because of the continuity of measures we get
𝜇(𝑈𝑛 ⧵ 𝐹 ) ←←←←←←←←←←←←←←←←←←←←→𝑛→∞

0 and since ℱ ∋ 𝐹 ⊂ 𝐹 ⊂ 𝑈𝑛 ∈ 𝒪 , this means that ℱ ⊂ Σ.
(ii) Fix 𝜖 > 0 and pick for 𝐴𝑗 ∈ Σ, 𝑗 = 1, 2, open sets 𝑈𝑗 and closed sets 𝐹𝑗 such that 𝐹𝑗 ⊂

𝐴𝑗 ⊂ 𝑈𝑗 and 𝜇(𝑈𝑗 ⧵ 𝐹𝑗) < 𝜖. Then 𝐹1 ∩ 𝐹2 and 𝑈1 ∩ 𝑈2 are again closed resp. open, satisfy
𝐹1 ∩ 𝐹2 ⊂ 𝐴1 ∩ 𝐴2 ⊂ 𝑈1 ∩ 𝑈2 as well as

𝜇
(

(𝑈1 ∩ 𝑈2) ⧵ (𝐹1 ∩ 𝐹2)
)

= 𝜇
(

(𝑈1 ∩ 𝑈2) ∩ (𝐹 𝑐1 ∪ 𝐹 𝑐2 )
)

= 𝜇
(

[(𝑈1 ∩ 𝑈2) ⧵ 𝐹1] ∪ [(𝑈1 ∩ 𝑈2) ⧵ 𝐹2]
)

⩽ 𝜇
(

(𝑈1 ∩ 𝑈2) ⧵ 𝐹1
)

+ 𝜇
(

(𝑈1 ∩ 𝑈2) ⧵ 𝐹2
)

< 2𝜖.

This shows that Σ is ∩-stable.
(iii) Fix 𝜖 > 0 and pick for a given sequence (𝐴𝑗)𝑗∈N ⊂ Σ open sets 𝑈𝑗 and closed sets 𝐹𝑗 such

that

𝐹𝑗 ⊂ 𝐴𝑗 ⊂ 𝑈𝑗 and 𝜇(𝑈𝑗 ⧵ 𝐹𝑗) < 𝜖2−𝑗 .

Set 𝐴 ∶=
⋃

𝑗 𝐴𝑗 . Then 𝑈 ∶=
⋃

𝑗 𝑈𝑗 ⊃ 𝐴 is an open set wile 𝐹 ∶=
⋃

𝑗 𝐹𝑗 is contained in 𝐴
but it is only an increasing limit of closed sets Φ𝑛 ∶= 𝐹1 ∪… ∪ 𝐹𝑛. Using Problem 4.11 we
get

𝜇(𝑈 ⧵ 𝐹 ) ⩽
∑

𝑗
𝜇(𝑈𝑗 ⧵ 𝐹𝑗) ⩽

∑

𝑗
𝜖2−𝑗 ⩽ 𝜖.

Since Φ𝑛 ⊂ 𝐴 ⊂ 𝑈 and 𝑈 ⧵Φ𝑛 ↓ 𝑈 ⧵ 𝐹 , we can use the continuity of measures to conclude
that inf𝑛 𝜇(𝑈 ⧵ Φ𝑛) = 𝜇(𝑈 ⧵ 𝐹 ) ⩽ 𝜖, i.e. 𝜇(𝑈 ⧵ Φ𝑁 ) ⩽ 2𝜖 if 𝑁 = 𝑁𝜖 is sufficiently large.
This shows that Σ contains all countable unions of its members. Because of part (i) it is also
stable under complementation and contains the empty set. Thus, Σ is a 𝜎-algebra.
As ℱ ⊂ Σ and ℬ = 𝜎(ℱ ), we have ℬ ⊂ Σ.

(iv) For any Borel set 𝐵 ∈ Σ and any 𝜖 > 0 we can find open and closed sets 𝑈𝜖 and 𝐹𝜖, respect-
ively, such that 𝐹𝜖 ⊂ 𝐵 ⊂ 𝑈𝜖 and

𝜇(𝐵 ⧵ 𝐹𝜖) ⩽ 𝜇(𝑈𝜖 ⧵ 𝐹𝜖) < 𝜖 ⇐⇒ 𝜇(𝐵) ⩽ 𝜖 + 𝜇(𝐹𝜖),

𝜇(𝑈𝜖 ⧵ 𝐵) ⩽ 𝜇(𝑈𝜖 ⧵ 𝐹𝜖) < 𝜖 ⇐⇒ 𝜇(𝐵) ⩾ 𝜇(𝑈𝜖) − 𝜖.
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Thus,

sup
𝐹⊂𝐵, 𝐹∈ℱ

𝜇(𝐹 ) ⩽ 𝜇(𝐵) ⩽ 𝜖 + 𝜇(𝐹𝜖) ⩽ 𝜖 + sup
𝐹⊂𝐵, 𝐹∈ℱ

𝜇(𝐹 )

inf
𝑈⊃𝐵,𝑈∈𝒪

𝜇(𝑈 ) − 𝜖 ⩽ 𝜇(𝑈𝜖) − 𝜖 ⩽ 𝜇(𝑏) ⩽ inf
𝑈⊃𝐵,𝑈∈𝒪

𝜇(𝑈 ).

(v) For every closed 𝐹 ∈ ℱ the intersections 𝐾𝑗 ∩ 𝐹 , 𝑗 ∈ N, will be compact and 𝐾𝑗 ∩ 𝐹 ↑ 𝐹 .
By the continuity of measures we get

𝜇(𝐹 ) = sup
𝑗
𝜇(𝐾𝑗 ∩ 𝐹 ) ⩽ sup

𝐾⊂𝐹 ,𝐾 cpt
𝜇(𝐾) ⩽ 𝜇(𝐹 ).

Thus,

𝜇(𝐹 ) = sup
𝐾⊂𝐹 ,𝐾 cpt

𝜇(𝐾) ∀𝐹 ∈ ℱ . (*)

Combining (iv) and (*) we get

𝜇(𝐵)
(iv)
= sup

𝐹⊂𝐵, 𝐹∈ℱ
𝜇(𝐹 )

(*)
= sup

𝐹⊂𝐵, 𝐹∈ℱ
sup

𝐾⊂𝐹 ,𝐾 cpt
𝜇(𝐾)

⩽ sup
𝐹⊂𝐵, 𝐹∈ℱ

sup
𝐾⊂𝐵,𝐾 cpt

𝜇(𝐾)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
note: independent of 𝐹⊂𝐵

= sup
𝐾⊂𝐵,𝐾 cpt

𝜇(𝐾)

and since 𝜇(𝐾) ⩽ 𝜇(𝐵) for 𝐾 ⊂ 𝐵 and sup𝐾⊂𝐵,𝐾 cpt 𝜇(𝐾) ⩽ 𝜇(𝐵) are obvious, we are
finished.

(vi) Assume now that 𝜇 is 𝜎-finite. Let (𝐵𝑛)𝑛∈N ⊂ ℬ be an exhausting sequence for 𝑋 such
that 𝜇(𝐵𝑛) < ∞. Then the measures 𝜇𝑛(𝐵) ∶= 𝜇(𝐵 ∩ 𝐵𝑛) defined on ℬ are finite and
regular according to part (iv). Since we may interchange any two suprema (cf. the solution
of Problem 4.7) we get

𝜇(𝐵) = sup
𝑛
𝜇𝑛(𝐵) = sup

𝑛
sup

𝐹⊂𝐵, 𝐹∈ℱ
𝜇𝑛(𝐹 )

= sup
𝐹⊂𝐵, 𝐹∈ℱ

sup
𝑛
𝜇𝑛(𝐹 )

= sup
𝐹⊂𝐵, 𝐹∈ℱ

𝜇(𝐹 ).

■■

Problem 4.21 Solution: First of all, Problem 4.21(iv) shows that

𝜇(𝐵) = sup
𝐹⊂𝐵,𝐹 closed

𝜇(𝐹 ). (*)
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Let (𝑑𝑘)𝑘 be an enumeration of the dense set 𝐷 ⊂ 𝑋 and write 𝜌 for the metric in 𝑋 and 𝐾𝑟(𝑥) ∶=
{𝑦 ∈ 𝑋 ∶ 𝜌(𝑥, 𝑦) ⩽ 𝑟} for the closed ball with centre 𝑥 and radius 𝑟.
Since, for any fixed 𝑛 ∈ N the sets

𝐾1∕𝑛(𝑑1) ∪⋯ ∪𝐾1∕𝑛(𝑑𝑚) ↑ 𝑋 for 𝑚→ ∞

we get from (*)

∀ 𝜖 > 0 ∃ 𝑘(𝑛) ∈ N ∶ 𝜇(𝐹𝑛) +
𝜖
2𝑛

⩾ 𝜇(𝑋)

if 𝐹𝑛 ∶= 𝐾1∕𝑛(𝑑1) ∪⋯ ∪𝐾1∕𝑛(𝑑𝑘(𝑛)). Setting

𝐾 ∶= 𝐾𝜖 ∶=
⋂

𝑛
𝐹𝑛

it is clear that 𝐾 is closed. Moreover, since 𝐾 is, for every 1∕𝑛, covered by finitely many balls of
radius 1∕𝑛, to wit,

𝐾 ⊂ 𝐾1∕𝑛(𝑑1) ∪⋯ ∪𝐾1∕𝑛(𝑑𝑘(𝑛)),

we see that 𝐾 is compact. Indeed, if (𝑥𝑗)𝑗 ⊂ 𝐾 is a sequence, there is a subsequence (𝑥𝑛𝑗 )𝑗 which
is completely contained in one of the balls 𝐾1∕𝑛(𝑑1),… , 𝐾1∕𝑛(𝑑𝑘(𝑛)). Passing iteratively to sub-
sub-etc. sequences we find a subsequence (𝑦𝑗)𝑗 ⊂ (𝑥𝑗)𝑗 which is contained in a sequence of closed
balls 𝐾1∕𝑛(𝑐𝑛) (𝑐𝑛 is a suitable element from 𝐷). Thus (𝑦𝑗)𝑗 is a Cauchy sequence and converges,
because of completeness, to an element 𝑥∗ which is, as the 𝐹𝑛 are closed, in every 𝐹𝑛, hence in 𝐾 .
Thus 𝐾 is (sequentially) compact.
Since

𝜇(𝑋 ⧵𝐾) = 𝜇
(

⋃

𝑛
𝑋 ⧵ 𝐹𝑛

)

⩽
∑

𝑛
𝜇(𝑋 ⧵ 𝐹𝑛) ⩽

∑

𝑛

𝜖
2𝑛

= 𝜖,

we have found a sequence of compact sets 𝐾𝑛 such that 𝜇(𝐾𝑛) → 𝜇(𝑋) (note that the 𝐾𝑛 need not
‘converge’𝑋 as a set!). Obviously,𝐾𝑛∩𝐹 is compact for every closed 𝐹 and we have 𝜇(𝐾𝑛∩𝐹 ) →
𝜇(𝐹 ), hence

𝜇(𝐹 ) = sup
𝐾⊂𝐹 ,𝐾 cpt

𝜇(𝐾) ∀𝐹 ∈ ℱ .

Now we can use the argument from the proof of Problem 4.22(v).
■■
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5 Uniqueness of measures.

Solutions to Problems 5.1–5.13

Problem 5.1 Solution: Since 𝑋 ∈ 𝒟 and since complements are again in 𝒟 , we have ∅ = 𝑋𝑐 ∈ 𝒟 .
If 𝐴,𝐵 ∈ 𝒟 are disjoint, we set 𝐴1 ∶= 𝐴,𝐴2 ∶= 𝐵,𝐴𝑗 ∶= ∅ ∀𝑗 ⩾ 3. Then (𝐴𝑗)𝑗∈N ⊂ 𝒟 is a
sequence of pairwise disjoint sets, and by (D3) we find that

𝐴 ⊍ 𝐵 =
⨃

𝑗∈N
𝐴𝑗 ∈ 𝒟 .

Since (Σ1) = (D1), (Σ2) = (D2) and since (Σ3) ⇐⇒ (D3), it is clear that every 𝜎-algebra is also a
Dynkin system; that the converse is, in general, wrong is seen in Problem 5.2.

■■

Problem 5.2 Solution: Consider (D3) only, as the other two conditions coincide: (Σ𝑗) = (Δ𝑗), 𝑗 =
1, 2. We show that (Σ3) breaks down even for finite unions. If𝐴,𝐵 ∈ 𝒟 are disjoint, it is clear that
𝐴,𝐵 and also 𝐴⊍𝐵 contain an even number of elements. But if 𝐴,𝐵 have non-void intersection,
and if this intersection contains an odd number of elements, then 𝐴 ∪ 𝐵 contains an odd number
of elements. Here is a trivial example:

𝐴 = {1, 2} ∈ 𝒟 , 𝐵 = {2, 3, 4, 5} ∈ 𝒟 ,

whereas
𝐴 ∪ 𝐵 = {1, 2, 3, 4, 5} ∉ 𝒟 .

This means that (D3) holds, but (Σ3) fails.
■■

Problem 5.3 Solution: We verify the hint first. Using de Morgan’s laws we get
𝑅 ⧵𝑄 = 𝑅 ⧵ (𝑅 ∩𝑄) = 𝑅 ∩ (𝑅 ∩𝑄)𝑐 = (𝑅𝑐 ∪ (𝑅 ∩𝑄))𝑐 = (𝑅𝑐 ⊍ (𝑅 ∩𝑄))𝑐

where the last equality follows since 𝑅𝑐 ∩ (𝑅 ∩𝑄) = ∅.
Now we take 𝐴,𝐵 ∈ 𝒟 such that 𝐴 ⊂ 𝐵. In particular 𝐴 ∩ 𝐵 = 𝐴. Taking this into account and
setting 𝑄 = 𝐴,𝑅 = 𝐵 we get from the above relation

𝐵 ⧵ 𝐴 =
(

𝐵𝑐
⏟⏟⏟

∈𝒟

⊍𝐴

⏟⏞⏞⏞⏟⏞⏞⏞⏟
∈𝒟

)𝑐 ∈ 𝒟
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where we repeatedly use (D2) and (D2).
■■

Problem 5.4 Solution:

(i) Since the 𝜎-algebra 𝒜 is also a Dynkin system, it is enough to prove 𝛿(𝒟 ) = 𝒟 for any
Dynkin system 𝒟 . By definition, 𝛿(𝒟 ) is the smallest Dynkin system containing 𝒟 , thus
𝒟 ⊂ 𝛿(𝒟 ). On the other hand, 𝒟 is itself a Dynkin system, thus, because of minimality,
𝒟 ⊃ 𝛿(𝒟 ).

(ii) Clearly, 𝒢 ⊂ ℋ ⊂ 𝛿(ℋ ). Since 𝛿(ℋ ) is a Dynkin system containing 𝒢 , the minimality of
𝛿(𝒢 ) implies that 𝛿(𝒢 ) ⊂ 𝛿(ℋ ).

(iii) Since 𝜎(𝒢 ) is a 𝜎-algebra, it is also a Dynkin system. Since 𝒢 ⊂ 𝜎(𝒢 ) we conclude (again,
by minimality) that 𝛿(𝒢 ) ⊂ 𝜎(𝒢 ).

■■

Problem 5.5 Solution: Clearly, 𝛿({𝐴,𝐵}) ⊂ 𝜎({𝐴,𝐵}) is always true.
By Theorem 5.5, 𝛿({𝐴,𝐵}) = 𝜎({𝐴,𝐵}) if {𝐴,𝐵} is ∩-stable, i.e. if 𝐴 = 𝐵 or 𝐴 = 𝐵𝑐 or if at
least one of 𝐴,𝐵 is 𝑋 or ∅.
Let us exclude these cases. If 𝐴 ∩ 𝐵 = ∅, then

𝛿({𝐴,𝐵}) = 𝜎({𝐴,𝐵}) =
{

∅, 𝐴, 𝐴𝑐 , 𝐵, 𝐵𝑐 , 𝐴 ⊍ 𝐵,𝐴𝑐 ∩ 𝐵𝑐 , 𝑋
}

.

If 𝐴 ∩ 𝐵 ≠ ∅, then

𝛿({𝐴,𝐵}) =
{

∅, 𝐴, 𝐴𝑐 , 𝐵, 𝐵𝑐 , 𝑋}

while 𝜎({𝐴,𝐵}) is much larger containing, for example, 𝐴 ∩ 𝐵.
■■

Problem 5.6 Solution: Some authors call families of sets satisfying (D1), (D′
2), (D′

3) monotone classes
(this is not the standard definition!). We will use this convention locally for this solution only.
Clearly, such a monotone class ℱ is a Dynkin system:

𝐶,𝐷 ∈ ℱ , 𝐶 ∩𝐷 = ∅
(D1)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒
(D′

2)
𝐶 ⊍ 𝐷 = 𝐸 ⧵

[

(𝐸 ⧵ 𝐶) ⧵𝐷
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐸⧵𝐶⊃𝐷 as 𝐶∩𝐷=∅

]

∈ ℱ ,

i.e., ℱ is ⊍-stable. This and (D′
3) yield (D3); (D2) is a special case of (D′

2).
Conversely every Dynkin system 𝒟 is a monotone class in the sense of this problem:

𝑀,𝑁 ∈ 𝒟 , 𝑀 ⊂ 𝑁
(D2)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒(D3) 𝑁𝑐 ∩𝑀 =𝑀 ⧵𝑁 = ∅ and 𝑁 ⧵𝑀 = (𝑁𝑐 ⊍𝑀)𝑐 ∈ 𝒟 ,

i.e. (D′
2) holds. Thus, (D3) immediately implies (D′

3).
■■
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Problem 5.7 Solution: We prove the hint first. Let (𝐺𝑗)𝑗∈N ⊂ 𝒢 as stated in the problem, i.e.
satisfying (1) and (2), and define the sets 𝐹𝑁 ∶= 𝐺1 ∪ … ∪ 𝐺𝑁 . As 𝒢 ⊂ 𝒜 , it is clear that
𝐹𝑁 ∈ 𝒜 (but not necessarily in 𝒢 ...). Moreover, it is clear that 𝐹𝑁 ↑ 𝑋.

We begin with a more general assertion: For any finite union of 𝒢 -sets 𝐴1 ∪ … ∪ 𝐴𝑁 we have
𝜇(𝐴1 ∪… ∪ 𝐴𝑁 ) = 𝜈(𝐴1 ∪… ∪ 𝐴𝑁 ).

Proof. Induction Hypothesis: 𝜇(𝐴1 ∪ … ∪ 𝐴𝑁 ) = 𝜈(𝐴1 ∪ … ∪ 𝐴𝑁 ) for some 𝑁 ∈ N and any
choice of 𝐴1,… , 𝐴𝑁 ∈ 𝒢 .
Induction Start (𝑁 = 1): is obvious.
Induction Step 𝑁 ⇝ 𝑁 + 1: By the induction assumption we know that

𝜇
(

(𝐴1 ∪⋯ ∪ 𝐴𝑁 ) ∩ 𝐴𝑁+1
)

= 𝜇
(

(𝐴1 ∩ 𝐴𝑁 ) ∪⋯ ∪ (𝐴𝑁 ∩ 𝐴𝑁+1)
)

= 𝜈
(

(𝐴1 ∩ 𝐴𝑁 ) ∪⋯ ∪ (𝐴𝑁 ∩ 𝐴𝑁+1)
)

= 𝜈
(

(𝐴1 ∪⋯ ∪ 𝐴𝑁 ) ∩ 𝐴𝑁+1
)

.

If 𝜇((𝐴1 ∪⋯∪𝐴𝑁 ) ∩𝐴𝑁+1
)

<∞, hence 𝜈((𝐴1 ∪⋯∪𝐴𝑁 ) ∩𝐴𝑁+1
)

<∞, we have by the strong
additivity of measures and the ∩-stability of 𝒢 that

𝜇
(

𝐴1 ∪… ∪ 𝐴𝑁 ∪ 𝐴𝑁+1
)

= 𝜇
(

(𝐴1 ∪… ∪ 𝐴𝑁 ) ∪ 𝐴𝑁+1
)

= 𝜇
(

𝐴1 ∪… ∪ 𝐴𝑁
)

+ 𝜇(𝐴𝑁+1) − 𝜇
(

(𝐴1 ∪… ∪ 𝐴𝑁 ) ∩ 𝐴𝑁+1
)

= 𝜇
(

𝐴1 ∪… ∪ 𝐴𝑁
)

+ 𝜇(𝐴𝑁+1) − 𝜇
(

(𝐴1 ∩ 𝐴𝑁+1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∈𝒢

) ∪ … ∪ (𝐴𝑁 ∩ 𝐴𝑁+1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

∈𝒢

)
)

= 𝜈
(

𝐴1 ∪… ∪ 𝐴𝑁
)

+ 𝜈(𝐴𝑁+1) − 𝜈
(

(𝐴1 ∩ 𝐴𝑁+1) ∪ … ∪ (𝐴𝑁 ∩ 𝐴𝑁+1)
)

⋮

= 𝜈
(

𝐴1 ∪… ∪ 𝐴𝑁 ∪ 𝐴𝑁+1
)

where we use the induction hypothesis twice, namely for the union of the𝑁 𝒢 -sets 𝐴1,… , 𝐴𝑁 as
well as for the 𝑁 𝒢 -sets 𝐴1 ∩ 𝐴𝑁+1,… , 𝐴𝑁 ∩ 𝐴𝑁+1. The induction is complete.
If 𝜇((𝐴1 ∪⋯ ∪ 𝐴𝑁 ) ∩ 𝐴𝑁+1

)

= ∞, hence 𝜈((𝐴1 ∪⋯ ∪ 𝐴𝑁 ) ∩ 𝐴𝑁+1
)

= ∞, there is nothing to
show since the monotinicity of measures entails

(𝐴1 ∪⋯ ∪ 𝐴𝑁 ) ∩ 𝐴𝑁+1 ⊂ (𝐴1 ∪⋯ ∪ 𝐴𝑁 ) ∪ 𝐴𝑁+1

⇐⇒ 𝜇
(

(𝐴1 ∪⋯ ∪ 𝐴𝑁 ) ∪ 𝐴𝑁+1
)

= ∞ = 𝜈
(

(𝐴1 ∪⋯ ∪ 𝐴𝑁 ) ∪ 𝐴𝑁+1
)

.

In particular we see that 𝜇(𝐹𝑁 ) = 𝜈(𝐹𝑁 ), 𝜈(𝐹𝑁 ) ⩽ 𝜈(𝐺1) + … + 𝜈(𝐺𝑁 ) < ∞ by subadditivity,
and that (think!) 𝜇(𝐺 ∩ 𝐹𝑁 ) = 𝜈(𝐺 ∩ 𝐹𝑁 ) for any 𝐺 ∈ 𝒢 (just work out the intersection, similar
to the step in the induction....). This shows that on the ∩-stable system

𝒢 ∶= {all finite unions of sets in 𝒢 }
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𝜇 and 𝜈 coincide. Moreover, 𝒢 ⊂ 𝒢 ⊂ 𝒜 so that, by assumption 𝒜 = 𝜎(𝒢 ) ⊂ 𝜎(𝒢 ) ⊂ 𝜎(𝒜 ) ⊂ 𝒜 ,
so that equality prevails in this chain of inclusions. This means that𝒢 is a generator of𝒜 satisfying
all the assumptions of Theorem 5.7, and we have reduced everything to this situation.

Remark. The last step shows that we only need the induction for sets from 𝒢 with finite 𝜇-, hence
𝜈-measure. Therefore, the extended discussion on finiteness is actually not needed, if the induction
is only used for the sequences (𝐺𝑖)𝑖 and (𝐹𝑛)𝑛.

■■

Problem 5.8 Solution: Intuition: in two dimensions we have rectangles. Take 𝐼, 𝐼 ′ ∈ 𝒥 . Denote
the lower left corner of 𝐼 by 𝑎 = (𝑎1, 𝑎2), the upper right corner by 𝑏 = (𝑏1, 𝑏2), and do the same
for 𝐼 ′ using 𝑎′, 𝑏′. This defines a rectangle uniquely. We are done, if 𝐼 ∩ 𝐼 ′ = ∅. If not (draw a
picture!) then we get an overlap which can be described by taking the right-and-upper-most of the
two lower left corners 𝑎, 𝑎′ and the left-and-lower-most of the two upper right corners 𝑏, 𝑏′. That
does the trick.

Now rigorously: since 𝐼, 𝐼 ′ ∈ 𝒥 , we have for suitable 𝑎𝑗 , 𝑏𝑗 , 𝑎′𝑗 , 𝑏′𝑗’s:

𝐼 =
𝑛
×
𝑗=1

[

𝑎𝑗 , 𝑏𝑗
) and 𝐼 ′ =

𝑛
×
𝑗=1

[

𝑎′𝑗 , 𝑏
′
𝑗
)

.

We want to find 𝐼 ∩ 𝐼 ′, or, equivalently the condition under which 𝑥 ∈ 𝐼 ∩ 𝐼 ′. Now

𝑥 = (𝑥1,… , 𝑥𝑛) ∈ 𝐼 ⇐⇒ 𝑥𝑗 ∈ [𝑎𝑗 , 𝑏𝑗) ∀𝑗 = 1, 2,… , 𝑛

⇐⇒ 𝑎𝑗 ⩽ 𝑥𝑗 < 𝑏𝑗 ∀𝑗 = 1, 2,… , 𝑛

and the same holds for 𝑥 ∈ 𝐼 ′ (same 𝑥, but 𝐼 ′—no typo). Clearly 𝑎𝑗 ⩽ 𝑥𝑗 < 𝑏𝑗 , and, at the same
time 𝑎′𝑗 ⩽ 𝑥𝑗 < 𝑏′𝑗 holds exactly if

max(𝑎𝑗 , 𝑎′𝑗) ⩽ 𝑥𝑗 < min(𝑏𝑗 , 𝑏′𝑗) ∀𝑗 = 1, 2,… , 𝑛

⇐⇒ 𝑥 ∈
𝑛
×
𝑗=1

[

max(𝑎𝑗 , 𝑎′𝑗),min(𝑏𝑗 , 𝑏′𝑗)
)

.

This shows that 𝐼 ∩𝐼 ′ is indeed a ‘rectangle’, i.e. in 𝒥 . This could be an empty set (which happens
if 𝐼 and 𝐼 ′ do not meet).

■■

Problem 5.9 Solution: First we must make sure that 𝑡 ⋅ 𝐵 is a Borel set if 𝐵 ∈ ℬ. We consider first
rectangles 𝐼 = [[𝑎, 𝑏)) ∈ 𝒥 where 𝑎, 𝑏 ∈ R𝑛. Clearly, 𝑡 ⋅𝐼 = [[𝑡𝑎, 𝑡𝑏)) where 𝑡𝑎, 𝑡𝑏 are just the scaled
vectors. So, scaled rectangles are again rectangles, and therefore Borel sets. Now fix 𝑡 > 0 and set

ℬ𝑡 ∶= {𝐵 ∈ ℬ(R𝑛) ∶ 𝑡 ⋅ 𝐵 ∈ ℬ(R𝑛)}.

It is not hard to see that ℬ𝑡 is itself a 𝜎-algebra and that 𝒥 ⊂ℬ𝑡 ⊂ℬ(R𝑛). But then we get

ℬ(R𝑛) = 𝜎(𝒥 ) ⊂ 𝜎(ℬ𝑡) = ℬ𝑡 ⊂ℬ(R𝑛),
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showing that ℬ𝑡 = ℬ(R𝑛), i.e. scaled Borel sets are again Borel sets.
Now define a new measure 𝜇(𝐵) ∶= 𝜆𝑛(𝑡 ⋅𝐵) for Borel sets 𝐵 ∈ ℬ(R𝑛) (which is, because of the
above, well-defined). For rectangles [[𝑎, 𝑏)) we get, in particular,

𝜇[[𝑎, 𝑏)) = 𝜆𝑛
(

(𝑡 ⋅ [[𝑎, 𝑏))
)

= 𝜆𝑛[[𝑡𝑎, 𝑡𝑏))

=
𝑛
∏

𝑗=1

(

(𝑡𝑏𝑗) − (𝑡𝑎𝑗)
)

=
𝑛
∏

𝑗=1
𝑡 ⋅

(

𝑏𝑗 − 𝑎𝑗
)

= 𝑡𝑛 ⋅
𝑛
∏

𝑗=1

(

𝑏𝑗 − 𝑎𝑗
)

= 𝑡𝑛𝜆𝑛[[𝑎, 𝑏))

which shows that 𝜇 and 𝑡𝑛𝜆𝑛 coincide on the ∩-stable generator 𝒥 of ℬ(R𝑛), hence they’re the
same everywhere. (Mind the small gap: we should make the mental step that for any measure
𝜈 a positive multiple, say, 𝑐 ⋅ 𝜈, is again a measure—this ensures that 𝑡𝑛𝜆𝑛 is a measure, and we
need this in order to apply Theorem 5.7. Mind also that we need that 𝜇 is finite on all rectangles
(obvious!) and that we find rectangles increasing to R𝑛, e.g. [−𝑘, 𝑘) ×…× [−𝑘, 𝑘) as in the proof
of Theorem 5.8(ii).)

■■

Problem 5.10 Solution: Define 𝜈(𝐴) ∶= 𝜇◦𝜃−1(𝐴). Obviously, 𝜈 is again a finite measure. Moreover,
since 𝜃−1(𝑋) = 𝑋, we have

𝜇(𝑋) = 𝜈(𝑋) <∞ and, by assumption, 𝜇(𝐺) = 𝜈(𝐺) ∀𝐺 ∈ 𝒢 .

Thus, 𝜇 = 𝜈 on 𝒢 ′ ∶= 𝒢 ∪ {𝑋}. Since 𝒢 ′ is a ∩-stable generator of 𝒜 containing the (trivial)
exhausting sequence𝑋,𝑋,𝑋,…, the assertion follows from the uniqueness theorem for measures,
Theorem 5.7.

■■

Problem 5.11 Solution: The necessity of the condition is trivial since 𝒢 ⊂ 𝜎(𝒢 ) = ℬ, resp., ℋ ⊂
𝜎(ℋ ) = 𝒞 .
Fix 𝐻 ∈ ℋ and define

𝜇(𝐵) ∶= 𝑃 (𝐵 ∩𝐻) and 𝜈(𝐵) ∶= 𝑃 (𝐵)𝑃 (𝐻).

Obviously, 𝜇 and 𝜈 are finite measures on ℬ having mass 𝑃 (𝐻) such that 𝜇 and 𝜈 coincide on
the ∩-stable generator 𝒢 ∪ {𝑋} of ℬ. Note that this generator contains the exhausting sequence
𝑋,𝑋,𝑋,…. By the uniqueness theorem for measures, Theorem 5.7, we conclude

𝜇 = 𝜈 on the whole of ℬ.
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Now fix 𝐵 ∈ ℬ and define

𝜌(𝐶) ∶= 𝑃 (𝐵 ∩ 𝐶) and 𝜏(𝐶) ∶= 𝑃 (𝐵)𝑃 (𝐶).

Then the same argument as before shows that 𝜌 = 𝜏 on 𝒞 and, since 𝐵 ∈ ℬ was arbitrary, the
claim follows.

■■

Problem 5.12 Solution:

(i) Following the hint we check that

𝒟 ∶= {𝐴 ∈ 𝒜 ∶ ∀ 𝜖 > 0 ∃𝐺 ∈ 𝒢 ∶ 𝜇(𝐴▵𝐺) ⩽ 𝜖}

is a Dynkin system.
(D1) By assumption, 𝐺 ∶= 𝑋 ∈ 𝒢 and so 𝜇(𝑋 ▵𝐺) = 𝜇(∅) = 0, hence 𝑋 ∈ 𝒟 .
(D2) Assume that 𝐴 ∈ 𝒟 . For every 𝜖 > 0 there is some 𝐺 ∈ 𝒢 such that 𝜇(𝐴▵𝐺) ⩽ 𝜖.

From

𝐴𝑐 ▵𝐺𝑐 = (𝐺𝑐 ⧵ 𝐴𝑐) ∪ (𝐴𝑐 ⧵ 𝐺𝑐)

= (𝐺𝑐 ∩ 𝐴) ∪ (𝐴𝑐 ∩ 𝐺)

= (𝐴 ⧵ 𝐺) ∪ (𝐺 ⧵ 𝐴)

= 𝐴▵𝐺

we conclude that 𝜇(𝐴𝑐 ▵𝐺𝑐) ⩽ 𝜖; consequently, 𝐴𝑐 ∈ 𝒟 (observe that 𝐺𝑐 ∈ 𝒢 !).
(D3) Let (𝐴𝑗)𝑗∈N ⊂ 𝒟 be a sequence of mutually disjoint sets and 𝜖 > 0. Since 𝜇 is a finite

measure, we get
∑

𝑗∈N
𝜇(𝐴𝑗) = 𝜇

(

⨃

𝑗∈N
𝐴𝑗

)

<∞,

and, in particular, we can pick 𝑁 ∈ N so large, that
∞
∑

𝑗=𝑁+1
𝜇(𝐴𝑗) ⩽ 𝜖.

For 𝑗 ∈ {1,… , 𝑁} there is some 𝐺𝑗 ∈ 𝒢 such that 𝜇(𝐴𝑗 ▵𝐺𝑗) ⩽ 𝜖. Thus, 𝐺 ∶=
⋃𝑁
𝑗=1𝐺𝑗 ∈ 𝒢 satisfies

(

⨃

𝑗∈N
𝐴𝑗

)

⧵ 𝐺 =

(

⨃

𝑗∈N
𝐴𝑗

)

∩ 𝐺𝑐

=

(

⨃

𝑗∈N
𝐴𝑗

)

∩

( 𝑁
⋂

𝑗=1
𝐺𝑐𝑗

)

=
⨃

𝑗∈N

(

𝐴𝑗 ∩
𝑁
⋂

𝑘=1
𝐺𝑐𝑘

)
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⊂
𝑁
⨃

𝑗=1
(𝐴𝑗 ∩ 𝐺𝑐𝑗 ) ∪

∞
⨃

𝑗=𝑁+1
𝐴𝑗 .

In the same way we get

𝐺 ⧵

(

⋃

𝑗∈N
𝐴𝑗

)

⊂ 𝐺 ⧵

( 𝑁
⨃

𝑗=1
𝐴𝑗

)

= 𝐺 ∩
𝑁
⋂

𝑗=1
𝐴𝑐𝑗

⊂
𝑁
⋃

𝑗=1
(𝐺𝑗 ∩ 𝐴𝑐𝑗 ).

Thus,

𝜇

((

⨃

𝑗∈N
𝐴𝑗

)

▵𝐺

)

⩽ 𝜇

( 𝑁
⋃

𝑗=1
(𝐴𝑗 ▵𝐺𝑗) ∪

∞
⨃

𝑗=𝑁+1
𝐴𝑗

)

⩽
𝑁
∑

𝑗=1
𝜇(𝐴𝑗 ▵𝐺𝑗) +

∞
∑

𝑗=𝑁+1
𝜇
(

𝐴𝑗
)

⩽
𝑁
∑

𝑗=1
𝜖2−𝑗 + 𝜖

⩽ 𝜖 + 𝜖.

Since 𝜖 > 0 is arbitrary, we conclude that ⨃𝑗∈N𝐴𝑗 ∈ 𝒟 .
Obviously, 𝒢 ⊂ 𝒟 (take 𝐺 = 𝐴 ∈ 𝒢 ). Since 𝒢 is ∩-stable, we get

𝒜 = 𝜎(𝒢 ) = 𝛿(𝒢 ) ⊂ 𝒟 .

(ii) Using the family

𝒟 ′ ∶= {𝐴 ∈ 𝒜 ∶ ∀ 𝜖 > 0 ∃𝐺 ∈ 𝒢 ∶ 𝜇(𝐴▵𝐺) ⩽ 𝜖, 𝜈(𝐴▵𝐺) ⩽ 𝜖},

we find, just as in (i), that 𝒟 ′ is a Dynkin system. The rest of the proof is as before.
(iii) “⇐”: Let𝐴 ∈ 𝒜 such that𝐴 ⊂

⋃

𝑛∈N 𝐼𝑛 and 𝜇 (⋃𝑛∈N 𝐼𝑛
)

⩽ 𝜖. Because of the monotonicity
of measures we get

𝜇(𝐴) ⩽ 𝜇

(

⋃

𝑛∈N
𝐼𝑛

)

⩽ 𝜖,

and so 𝜇(𝐴) = 0.
“⇒”: Set 𝒦 ∶= {𝐴 ⊂ R𝑛 ∶ ∃(𝐼𝑘)𝑘∈N ⊂ 𝒥 ∶ 𝐴 =

⋃

𝑘 𝐼𝑘 or 𝐴𝑐 = ⋃

𝑘 𝐼𝑘} and observe that
𝐼 ∈ 𝒦 ⇒ 𝐼𝑐 ∈ 𝒦 . Define, furthermore,

𝒟 ∶= {𝐴 ⊂ R𝑛 ∶ ∀ 𝜖∃ 𝐽 ,𝐾 ∈ 𝒦 , 𝐽 ⊂ 𝐴 ⊂ 𝐾, 𝜇(𝐾 ⧵ 𝐽 ) ⩽ 𝜖}.

We claim that 𝒟 is a Dynkin system.

57



R.L. Schilling: Measures, Integrals & Martingales

(D1) Clearly, 𝑋 = R𝑛 ∈ 𝒟 (take 𝐽 = 𝐾 = R𝑛).
(D2) Pick 𝐴 ∈ 𝒟 and 𝜖 > 0. Then there are 𝐽 ,𝐾 ∈ 𝒦 such that 𝐽 ⊂ 𝐴 ⊂ 𝐾 and

𝜇(𝐾 ⧵ 𝐽 ) ⩽ 𝜖. From 𝐽 𝑐 , 𝐾𝑐 ∈ 𝒦 , 𝜇(𝐾𝑐 ⧵ 𝐽 𝑐) = 𝜇(𝐽 ⧵𝐾) ⩽ 𝜖 and 𝐽 𝑐 ⊃ 𝐴𝑐 ⊃ 𝐾𝑐 we
get immediately 𝐴𝑐 ∈ 𝒟 .

(D3) Let (𝐴𝑗)𝑗∈N ⊂ 𝒟 be a sequence of mutually disjoint sets and 𝜖 > 0. Pick 𝐽𝑗 ∈ 𝒦 and
𝐾𝑗 ∈ 𝒦 such that 𝐽𝑗 ⊂ 𝐴𝑗 ⊂ 𝐾𝑗 , 𝜇(𝐾𝑗 ⧵ 𝐽𝑗) ⩽ 𝜖2−𝑗 and set

𝐽 ∶=
⋃

𝑗∈N
𝐴𝑗 𝐾 ∶=

⋃

𝑗∈N
𝐾𝑗 .

Since 𝒦 is stable under countable unions, we get 𝐽 ∈ 𝒦 , 𝐾 ∈ 𝒦 . Moreover, 𝐽 ⊂
⨃

𝑗 𝐴𝑗 ⊂ 𝐾 and

𝜇(𝐾 ⧵ 𝐽 ) = 𝜇

((

⋃

𝑗∈N
𝐾𝑗

)

∩

(

⋃

𝑗∈N
𝐽𝑗

)𝑐)

= 𝜇

((

⋃

𝑗∈N
𝐾𝑗

)

∩

(

⋂

𝑗∈N
𝐽 𝑐𝑗

))

= 𝜇

([

⋃

𝑗∈N

(

𝐾𝑗 ∩
⋂

𝑘∈N
𝐽 𝑐𝑘

)])

⩽ 𝜇

(

⋃

𝑗∈N
(𝐾𝑗 ∩ 𝐽 𝑐𝑗 )

)

⩽
∑

𝑗∈N
𝜇(𝐾𝑗 ∩ 𝐽 𝑐𝑗 )
⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝜇(𝐾𝑗⧵𝐽𝑗 )⩽𝜖2−𝑗

⩽ 𝜖.

Thus, ⨃𝑗 𝐴𝑗 ∈ 𝒟 .
Finally, 𝒥 ⊂ 𝒟 entails that ℬ(R𝑛) = 𝛿(𝒥 ) ⊂ 𝒟 .

Now let 𝐴 be a set satisfying 𝜇(𝐴) = 0. Therefore, for every 𝜖 > 0 there is a set 𝐾𝜖 = 𝐾 ∈ 𝒦

such that 𝐴 ⊂ 𝐾 and 𝜇(𝐾) < 𝜖. If 𝐾 =
⋃

𝑖 𝐼𝑖, we are done. If 𝐾𝑐 =
⋃

𝑖 𝐼𝑖 we have to argue like
this: Let 𝐽 ∶= 𝐽𝑅 ∶= [−𝑅,𝑅)𝑑 ∈ 𝒥 . Then

𝐾 =
⋂

𝑖
𝐼𝑐𝑖 and 𝐽 ∩𝐾 =

⋂

𝑖
𝐼𝑐𝑖 ∩ 𝐽 =

⋂

𝑖
𝐽 ⧵ 𝐼𝑖 =

⋂

𝑘

𝑘
⋂

𝑖=1
𝐽 ⧵ 𝐼𝑖

and each set 𝐽 ⧵ 𝐼𝑖 is a finite union of sets from 𝒥 (since 𝒥 is a semiring), hence ⋂𝑘
𝑖=1 𝐽 ⧵ 𝐼𝑖 is a

finite union of sets from 𝒥 . Since 𝜇(𝐽 ∩𝐾) ⩽ 𝜇(𝐾) ⩽ 𝜖, a continuity-of-measure argument shows
that there exists some 𝑘 such that 𝐽 ∩𝐾 ⊂

⋂𝑘
𝑖=1 𝐽 ⧵ 𝐼𝑖 and 𝜇(⋂𝑘

𝑖=1 𝐽 ⧵ 𝐼𝑖) ⩽ 2𝜖.
If we pick 𝜖 = 𝜖∕2𝑅, we see that we can cover 𝐴 ∩ [−𝑅,𝑅)𝑑 by a countable union of 𝒥 -sets, call
their union 𝑈𝑅, such that 𝜇(𝑈𝑅) ⩽ 𝜖∕2𝑅. Finally,

𝜇(𝐴) ⩽
∑

𝑅∈N
𝜇(𝑈𝑅) ⩽ 𝜖
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and we can combine all covers which make up the 𝑈𝑅, 𝑅 ∈ N.
■■

Problem 5.13 Solution:

(i) mind the misprint: we also need stability of ℳ under finite intersections. Clearly, any
𝜎-algebra is also a monotone class. Conversely, if ℳ is a monotone class such that 𝑀 ∈
ℳ ⇐⇒ 𝑀𝑐 ∈ ℳ, then the condition (Σ2) holds, while (Σ1) is satisfied by the very definition
of a monotone class. If ℳ is also stable under finite intersections, we get 𝑀,𝑁 ∈ ℳ ⇐⇒

𝑀 ∪𝑁 = (𝑀𝑐 ∩𝑁𝑐)𝑐 ∈ ℳ, so (Σ3) follows from the stability under finite unions and the
stability of monotone classes under increasing limits of sets.

(ii) Since 𝜎(𝒢 ) is a monotone class containing 𝒢 , we have – by minimality – that 𝔪(𝒢 ) ⊂ 𝜎(𝒢 ).
On the other hand, by the monotone class theorem, we get 𝒢 ⊂ 𝔪(𝒢 ) ⇐⇒ 𝜎(𝒢 ) ⊂ 𝔪(𝒢 )
which means that 𝔪(𝒢 ) = 𝜎(𝒢 ).

■■
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6 Existence of measures.

Solutions to Problems 6.1–6.14

Problem 6.1 Solution:

(i) Monotonicity: If 𝑥 ⩽ 0 ⩽ 𝑦, then 𝐹𝜇(𝑥) ⩽ 0 ⩽ 𝐹𝜇(𝑦).
If 0 < 𝑥 ⩽ 𝑦, we have [0, 𝑥) ⊂ [0, 𝑦) and so 0 ⩽ 𝐹𝜇(𝑥) = 𝜇[0, 𝑥) ⩽ 𝜇[0, 𝑦) = 𝐹𝜇(𝑦).
If 𝑥 ⩽ 𝑦 < 0, we have [𝑦, 0) ⊂ [𝑥, 0) and so 0 ⩽ −𝐹𝜇(𝑦) = 𝜇[𝑦, 0) ⩽ 𝜇[𝑥, 0) = −𝐹𝜇(𝑥), i.e.
𝐹𝜇(𝑥) ⩽ 𝐹𝜇(𝑦) ⩽ 0.
Left-continuity: Let us deal with the case 𝑥 ⩾ 0 only, the case 𝑥 < 0 is analogous (and
even easier). Assume first that 𝑥 > 0. Take any sequence 𝑥𝑘 < 𝑥 and 𝑥𝑘 ↑ 𝑥 as 𝑘 → ∞.
Without loss of generality we can assume that 0 < 𝑥𝑘 < 𝑥. Then [0, 𝑥𝑘) ↑ [0, 𝑥) and using
Proposition 4.3 (continuity of measures) implies

lim
𝑘→∞

𝐹𝜇(𝑥𝑘) = lim
𝑘→∞

𝜇[0, 𝑥𝑘) = 𝜇[0, 𝑥) = 𝐹𝜇(𝑥).

If 𝑥 = 0 we must take a sequence 𝑥𝑘 < 0 and we have then [𝑥𝑘, 0) ↓ [0, 0) = ∅. Again by
Proposition 4.3, now (𝑣𝑖𝑖), we get

lim
𝑘→∞

𝐹𝜇(𝑥𝑘) = − lim
𝑘→∞

𝜇[𝑥𝑘, 0) = 𝜇(∅) = 0 = 𝐹𝜇(0).

which shows left-continuity at this point, too.
We remark that, since for a sequence 𝑦𝑘 ↓ 𝑦, 𝑦𝑘 > 𝑦 we have [0, 𝑦𝑘) ↓ [0, 𝑦], and not [0, 𝑦),
we cannot expect right-continuity in general.

(ii) Since 𝒥 = {[𝑎, 𝑏), 𝑎 ⩽ 𝑏} is a semi-ring (cf. the remark preceding Proposition 6.3 or Propos-
ition 6.5) it is enough to check that 𝜈𝐹 is a premeasure on 𝒥 . This again amounts to showing
(M1) and (M2) relative to 𝒥 (mind you: 𝜈𝐹 is not a measure as 𝒥 is not a 𝜎-algebra....).
(i) 𝜈𝐹 (∅) = 𝜈𝐹 [𝑎, 𝑎) = 𝐹 (𝑎) − 𝐹 (𝑎) = 0 for any 𝑎.

(ii) Let 𝑎 ⩽ 𝑏 ⩽ 𝑐 so that [𝑎, 𝑏), [𝑏, 𝑐) ∈ 𝒥 are disjoint sets and [𝑎, 𝑐) = [𝑎, 𝑏) ⊍ [𝑏, 𝑐) ∈ 𝒥

(the latter is crucial). Then we have

𝜈𝐹 [𝑎, 𝑏) + 𝜈𝐹 [𝑏, 𝑐) = 𝐹 (𝑏) − 𝐹 (𝑎) + 𝐹 (𝑐) − 𝐹 (𝑏)

= 𝐹 (𝑐) − 𝐹 (𝑎)

= 𝜈𝐹 [𝑎, 𝑐)

= 𝜈𝐹
(

[𝑎, 𝑏) ⊍ [𝑏, 𝑐)
)

.
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(iii) We mimick the proof of existence of Lebesgue measure. Let 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛) ∈ 𝒥 be
disjoint such that 𝐼 = [𝑎, 𝑏) =

⨃∞
𝑛=1[𝑎𝑛, 𝑏𝑛) ∈ 𝒥 . Fix 𝜖𝑛, 𝜖 > 0 (these values will be

chosen later) and observe that
∞
⋃

𝑛=1
(𝑎𝑛 − 𝜖𝑛, 𝑏𝑛) ⊃ [𝑎, 𝑏 − 𝜖]

is an open cover of the compact interval [𝑎, 𝑏 − 𝜖]. Thus, there exists a finite open
subcover, hence some 𝑁 ∈ N such that

𝑁
⋃

𝑛=1
(𝑎𝑛 − 𝜖𝑛, 𝑏𝑛) ⊃ [𝑎, 𝑏 − 𝜖] ⇐⇒

𝑁
⋃

𝑛=1
[𝑎𝑛 − 𝜖𝑛, 𝑏𝑛) ⊃ [𝑎, 𝑏 − 𝜖).

We have to show that

𝜈𝐹 [𝑎, 𝑏) −
𝑁
∑

𝑛=1
𝜈𝐹 [𝑎𝑛, 𝑏𝑛) ←←←←←←←←←←←←←←←←←←←←←←←←→𝑁→∞

0.

First note that we can de- and increase 𝑎𝑛 ⩾ 𝑎′𝑛 and 𝑏𝑛 ⩽ 𝑏′𝑛 such that
𝑁
⨃

𝑛=1
[𝑎𝑛, 𝑏𝑛) ⊂

𝑁
⨃

𝑛=1
[𝑎′𝑛, 𝑏

′
𝑛) = [𝑎, 𝑏)

so that by the finite additivity of 𝜈𝐹 we get

0 = 𝜈𝐹 [𝑎, 𝑏) −
𝑁
∑

𝑛=1
𝜈𝐹 [𝑎′𝑛, 𝑏

′
𝑛) ⩽ 𝜈𝐹 [𝑎, 𝑏) −

𝑁
∑

𝑛=1
𝜈𝐹 [𝑎𝑛, 𝑏𝑛).

Thus, using only the finite additivity and sub-additivity of 𝜈𝐹

0 ⩽ 𝜈𝐹 [𝑎, 𝑏) −
𝑁
∑

𝑛=1
𝜈𝐹 [𝑎𝑛, 𝑏𝑛)

= 𝜈𝐹 [𝑎, 𝑏 − 𝜖) −
𝑁
∑

𝑛=1
𝜈𝐹 [𝑎𝑛 − 𝜖𝑛, 𝑏𝑛)

⩽0 finite covering & subadditivity

+𝜈𝐹 [𝑏 − 𝜖, 𝑏) +
𝑁
∑

𝑛=1
𝜈𝐹 [𝑎𝑛 − 𝜖𝑛, 𝑎𝑛)

⩽ 𝜈𝐹 [𝑏 − 𝜖, 𝑏) +
𝑁
∑

𝑛=1
𝜈𝐹 [𝑎𝑛 − 𝜖𝑛, 𝑎𝑛).

Now we choose 𝜖 and 𝜖𝑛. For any given 𝜂 > 0 we can find 𝜖 > 0 and 𝜖𝑛 > 0 such that

𝜈𝐹 [𝑏 − 𝜖, 𝑏) = 𝐹 (𝑏) − 𝐹 (𝑏 − 𝜖) ⩽ 𝜂
2

and 𝜈𝐹 [𝑎𝑛 − 𝜖𝑛, 𝑎𝑛) = 𝐹 (𝑎𝑛) − 𝐹 (𝑎𝑛 − 𝜖𝑛) ⩽ 2−𝑛 𝜂
2

here we use the left-continuity of 𝐹 . Thus,

0 ⩽ 𝜈𝐹 [𝑎, 𝑏) −
𝑁
∑

𝑛=1
𝜈𝐹 [𝑎𝑛, 𝑏𝑛) ⩽

𝜂
2
+

𝑁
∑

𝑛=1
2−𝑛 𝜂

2
⩽ 𝜂.

Letting first 𝑁 → ∞ and then 𝜂 → 0 proves the claim.
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Note that 𝜈𝐹 takes on only positive values because 𝐹 increases.
This means that we find at least one extension. Uniqueness follows since

𝜈𝐹 [−𝑘, 𝑘) = 𝐹 (𝑘) − 𝐹 (−𝑘) <∞ and [−𝑘, 𝑘) ↑ R.

(iii) Now let 𝜇 be a measure with 𝜇[−𝑛, 𝑛) < ∞. The latter means that the function 𝐹𝜇(𝑥),
as defined in part (i), is finite for every 𝑥 ∈ R. Now take this 𝐹𝜇 and define, as in (ii) a
(uniquely defined) measure 𝜈𝐹𝜇 . Let us see that 𝜇 = 𝜈𝐹𝜇 . For this, it is enough to show
equality on the sets of type [𝑎, 𝑏) (since such sets generate the Borel sets and the uniqueness
theorem applies....)
If 0 ⩽ 𝑎 ⩽ 𝑏,

𝜈𝐹𝜇 [𝑎, 𝑏) = 𝐹𝜇(𝑏) − 𝐹𝜇(𝑎) = 𝜇[0, 𝑏) − 𝜇[0, 𝑎)

= 𝜇
(

[0, 𝑏) ⧵ [0, 𝑎)
)

= 𝜇[𝑎, 𝑏) ✓

If 𝑎 ⩽ 𝑏 ⩽ 0,

𝜈𝐹𝜇 [𝑎, 𝑏) = 𝐹𝜇(𝑏) − 𝐹𝜇(𝑎) = −𝜇[𝑏, 0) − (−𝜇[𝑎, 0))

= 𝜇[𝑎, 0) − 𝜇[𝑏, 0)

= 𝜇
(

[𝑎, 0) ⧵ [𝑏, 0)
)

= 𝜇[𝑎, 𝑏) ✓

If 𝑎 ⩽ 0 ⩽ 𝑏,

𝜈𝐹𝜇 [𝑎, 𝑏) = 𝐹𝜇(𝑏) − 𝐹𝜇(𝑎) = 𝜇[0, 𝑏)) − (−𝜇[𝑎, 0))

= 𝜇[𝑎, 0)) + 𝜇[0, 𝑏)

= 𝜇
(

[𝑎, 0) ⊍ [0, 𝑏)
)

= 𝜇[𝑎, 𝑏) ✓

(iv) 𝐹 ∶ R→ R with 𝐹 (𝑥) = 𝑥, since 𝜆[𝑎, 𝑏) = 𝑏 − 𝑎 = 𝐹 (𝑏) − 𝐹 (𝑎).

(v) 𝐹 ∶ R → R, with, say, 𝐹 (𝑥) =
⎧

⎪

⎨

⎪

⎩

0, 𝑥 ⩽ 0

1, 𝑥 > 0
= 1(0,∞)(𝑥) since 𝛿0[𝑎, 𝑏) = 0 whenever

𝑎, 𝑏 < 0 or 𝑎, 𝑏 > 0. This means that 𝐹 must be constant on (−∞, 0) and (0,∞) If 𝑎 ⩽ 0 < 𝑏
we have, however, 𝛿0[𝑎, 𝑏) = 1 which indicates that 𝐹 (𝑥) must jump by 1 at the point 0.
Given the fact that 𝐹 must be left-continuous, it is clear that it has, in principle, the above
form. The only ambiguity is, that if 𝐹 (𝑥) does the job, so does 𝑐 + 𝐹 (𝑥) for any constant
𝑐 ∈ R.
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(vi) Assume that 𝐹 is continuous at the point 𝑥. Then
𝜇({𝑥}) = 𝜇

(

⋂

𝑘∈N

[

𝑥, 𝑥 + 1
𝑘

)

)

4.3
= lim

𝑘→∞
𝜇
([

𝑥, 𝑥 + 1
𝑘

))

def
= lim

𝑘→∞

(

𝐹
(

𝑥 + 1
𝑘

)

− 𝐹 (𝑥)
)

= lim
𝑘→∞

𝐹
(

𝑥 + 1
𝑘

)

− 𝐹 (𝑥)

(∗)
= 𝐹 (𝑥) − 𝐹 (𝑥) = 0

where we use (right-)continuity of 𝐹 at 𝑥 in the step marked (∗).
Now, let conversely 𝜇({𝑥}) = 0. A similar calculation as above shows, that for every se-
quence 𝜖𝑘 > 0 with 𝜖𝑘 → 0

𝐹 (𝑥+) − 𝐹 (𝑥) = lim
𝑘→∞

𝐹
(

𝑥 + 𝜖𝑘
)

− 𝐹 (𝑥)
def
= lim

𝑘→∞
𝜇[𝑥, 𝑥 + 𝜖𝑘)

4.3
= 𝜇

(

⋂

𝑘∈N
[𝑥, 𝑥 + 𝜖𝑘)

)

= 𝜇({𝑥}) = 0

which means that 𝐹 (𝑥) = 𝐹 (𝑥+) (𝑥+ indicates the right limit), i.e. 𝐹 is right-continuous at
𝑥, hence continuous, as 𝐹 is left-continuous anyway.

■■

Problem 6.2 Solution: Using the notion of measurability we get

𝜇∗
(

𝑄 ∩
∞
⋃

𝑖=1
𝐴𝑖

)

= 𝜇∗
((

𝑄 ∩
∞
⋃

𝑖=1
𝐴𝑖

)

∩ 𝐴1

)

+ 𝜇∗
((

𝑄 ∩
∞
⋃

𝑖=1
𝐴𝑖

)

∩ 𝐴𝑐1

)

= 𝜇∗(𝑄 ∩ 𝐴1) + 𝜇∗
(

𝑄 ∩
∞
⋃

𝑖=2
𝐴𝑖

)

= …

=
𝑛−1
∑

𝑖=1
𝜇∗(𝑄 ∩ 𝐴𝑖) + 𝜇∗(𝑄 ∩ (∪∞

𝑖=𝑛𝐴𝑖))

(6.1)

for any 𝑛 ∈ N. Thus, 𝜇∗(𝑄 ∩
⋃∞
𝑖=1𝐴𝑖) ⩾

∑𝑛−1
𝑖=1 𝜇

∗(𝑄 ∩ 𝐴𝑖) for all 𝑛 ∈ N. If 𝑛→ ∞ we obtain

𝜇∗
(

𝑄 ∩
∞
⋃

𝑖=1
𝐴𝑖

)

⩾
∞
∑

𝑖=1
𝜇∗(𝑄 ∩ 𝐴𝑖).

Case 1: ∑∞
𝑖=1 𝜇

∗(𝑄 ∩ 𝐴𝑖) = ∞. Nothing to show.
Case 2: ∑∞

𝑖=1 𝜇
∗(𝑄 ∩ 𝐴𝑖) <∞. Using the sub-additivity of outer measures we get

𝜇∗
(

𝑄 ∩
∞
⋃

𝑖=𝑛
𝐴𝑖

)

⩽
∞
∑

𝑖=𝑛
𝜇∗(𝑄 ∩ 𝐴𝑖)

𝑛→∞
←←←←←←←←←←←←←←←←←←←←→ 0
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and the claim follows from (6.1) as 𝑛→ ∞.
■■

Problem 6.3 Solution: We know already that ℬ[0,∞) is a 𝜎-algebra (it is a trace 𝜎-algebra) and, by
definition,

Σ =
{

𝐵 ∪ (−𝐵) ∶ 𝐵 ∈ ℬ[0,∞)
}

if we write −𝐵 ∶= {−𝑏 ∶ 𝑏 ∈ ℬ[0,∞)}.
Since the structure 𝐵 ∪ (−𝐵) is stable under complementation and countable unions it is clear that
Σ is indeed a 𝜎-algebra.
One possibility to extend 𝜇 defined on Σ would be to take𝐵 ∈ ℬ(R) and define 𝐵+ ∶= 𝐵∩[0,∞)
and 𝐵− ∶= 𝐵 ∩ (−∞, 0) and to set

𝜈(𝐵) ∶= 𝜇(𝐵+ ∪ (−𝐵+)) + 𝜇((−𝐵−) ∪ 𝐵−)

which is obviously a measure. We cannot expect uniqueness of this extension since Σ does not
generate ℬ(R)—not all Borel sets are symmetric.

■■

Problem 6.4 Solution: By definition we have

𝜇∗(𝑄) = inf
{

∑

𝑗
𝜇(𝐵𝑗) ∶ (𝐵𝑗)𝑗∈N ⊂ 𝒜 , ∪

𝑗∈N
𝐵𝑗 ⊃ 𝑄

}

.

(i) Assume first that 𝜇∗(𝑄) < ∞. By the definition of the infimum we find for every 𝜖 > 0 a
sequence (𝐵𝜖𝑗 )𝑗∈N ⊂ 𝒜 such that 𝐵𝜖 ∶= ⋃

𝑗 𝐵
𝜖
𝑗 ⊃ 𝑄 and, because of 𝜎-subadditivity,

𝜇(𝐵𝜖) − 𝜇∗(𝑄) ⩽
∑

𝑗
𝜇(𝐵𝜖𝑗 ) − 𝜇

∗(𝑄) ⩽ 𝜖.

Set 𝐵 ∶=
⋂

𝑘 𝐵
1∕𝑘 ∈ 𝒜 . Then 𝐵 ⊃ 𝑄 and 𝜇(𝐵) = 𝜇∗(𝐵) = 𝜇∗(𝑄).

Now let 𝑁 ∈ 𝒜 and 𝑁 ⊂ 𝐵 ⧵𝑄. Then

𝐵 ⧵𝑁 ⊃ 𝐵 ⧵ (𝐵 ⧵𝑄) = 𝐵 ∩ [(𝐵 ∩𝑄𝑐)𝑐] = 𝐵 ∩ [𝐵𝑐 ∪𝑄]

= 𝐵 ∩𝑄

= 𝑄.

So,

𝜇∗(𝑄) − 𝜇(𝑁) = 𝜇(𝐵) − 𝜇(𝑁) = 𝜇(𝐵 ⧵𝑁) = 𝜇∗(𝐵 ⧵𝑁) ⩾ 𝜇∗(𝑄)

which means that 𝜇(𝑁) = 0.

If 𝜇∗(𝑄) = ∞, we take the exhausting sequence (𝐴𝑘)𝑘∈N ⊂ 𝒜 with 𝐴𝑘 ↑ 𝑋 and 𝜇(𝐴𝑘) <∞
and set 𝑄𝑘 ∶= 𝐴𝑘 ∩ 𝑄 for every 𝑘 ∈ N. By the first part we can find sets 𝐵𝑘 ∈ 𝒜 with
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𝐵𝑘 ⊃ 𝑄𝑘, 𝜇(𝐵𝑘) = 𝜇∗(𝑄𝑘) and 𝜇(𝑁) = 0 for all 𝑁 ∈ 𝒜 with 𝑁 ⊂ 𝐵𝑘 ⧵ 𝑄𝑘. Without loss
of generality we can assume that 𝐵𝑘 ⊂ 𝐴𝑘, otherwise we replace 𝐵𝑘 by 𝐴𝑘 ∩ 𝐵𝑘. Indeed,
𝐵𝑘 ∩ 𝐴𝑘 ⊃ 𝑄𝑘, 𝐵𝑘 ∩ 𝐴𝑘 ∈ 𝒜 ,

𝜇∗(𝑄𝑘) = 𝜇(𝐵𝑘) ⩾ 𝜇(𝐴𝑘 ∩ 𝐵𝑘) ⩾ 𝜇∗(𝑄𝑘)

and 𝐵𝑘 ⧵𝑄𝑘 ⊃ (𝐵𝑘 ∩ 𝐴𝑘) ⧵𝑄𝑘, i.e. we have again that all measurable 𝑁 ⊂ (𝐵𝑘 ∩ 𝐴𝑘) ⧵𝑄𝑘

satisfy 𝜇(𝑁) = 0.
Assume now that 𝑁 ⊂ 𝐵 ⧵𝑄, 𝐵 =

⋃

𝑘 𝐵𝑘 and 𝑁 ∈ 𝒜 . Then 𝑁𝑘 ∶= 𝑁 ∩ 𝐵𝑘 ∈ 𝒜 and we
have 𝑁 =

⋃

𝑘𝑁𝑘 as well as

𝑁𝑘 = 𝑁 ∩ 𝐵𝑘 ⊂ (𝐵 ⧵𝑄) ∩ 𝐵𝑘 = 𝐵𝑘 ⧵𝑄 = 𝐵𝑘 ⧵𝑄𝑘.

Thus 𝜇(𝑁𝑘) = 0 and, by 𝜎-subadditivity, 𝜇(𝑁) ⩽
∑∞
𝑘=1 𝜇(𝑁𝑘) = 0.

(ii) Define 𝜇̄ ∶= 𝜇∗||
|𝒜 ∗

. We know from Theorem 6.1 that 𝜇̄ is a measure on 𝒜 ∗ and, because of
the monotonicity of 𝜇∗, we know that for all 𝑁∗ ∈ 𝒜 ∗ with 𝜇̄(𝑁∗) we have

∀𝑀 ⊂ 𝑁∗ ∶ 𝜇∗(𝑀) ⩽ 𝜇∗(𝑁∗) = 𝜇̄(𝑁∗) = 0.

It remains to show that 𝑀 ∈ 𝒜 ∗. Because of (6.2) we have to show that

∀𝑄 ⊂ 𝑋 ∶ 𝜇∗(𝑄) = 𝜇∗(𝑄 ∩𝑀) + 𝜇∗(𝑄 ⧵𝑀).

Since 𝜇∗ is subadditive we find for all 𝑄 ⊂ 𝑋

𝜇∗(𝑄) = 𝜇∗
(

(𝑄 ∩𝑀) ∪ (𝑄 ⧵𝑀)
)

⩽ 𝜇∗(𝑄 ∩𝑀) + 𝜇∗(𝑄 ⧵𝑀)

= 𝜇∗(𝑄 ⧵𝑀)

⩽ 𝜇∗(𝑄),

which means that 𝑀 ∈ 𝒜 ∗.
(iii) Obviously, (𝑋,𝒜 ∗, 𝜇̄) extends (𝑋,𝒜 , 𝜇) since 𝒜 ⊂ 𝒜 ∗ and 𝜇̄||

|𝒜
= 𝜇. In view of Problem

4.15 we have to show that

𝒜 ∗ = {𝐴 ∪𝑁 ∶ 𝐴 ∈ 𝒜 , 𝑁 ∈ 𝔑} (*)

with 𝔑 = {𝑁 ⊂ 𝑋 ∶ 𝑁 is subset of an 𝒜 -measurable null set or, alternatively,

𝒜 ∗ = {𝐴∗ ⊂ 𝑋 ∶ ∃𝐴,𝐵 ∈ 𝒜 , 𝐴 ⊂ 𝐴∗ ⊂ 𝐵, 𝜇(𝐵 ⧵ 𝐴) = 0}. (**)

We are going to use both equalities and show ‘⊃’ in (∗) and ‘⊂’ in (∗∗) (which is enough
since, cf. Problem 4.15 asserts the equality of the right-hand sides of (∗), (∗∗)!).

‘⊃’: By part (ii), subsets of 𝒜 -null sets are in 𝒜 ∗ so that every set of the form 𝐴 ∪𝑁 with
𝐴 ∈ 𝒜 and 𝑁 being a subset of an 𝒜 null set is in 𝒜 ∗.
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‘⊂’: By part (i) we find for every 𝐴∗ ∈ 𝒜 ∗ some 𝐴 ∈ 𝒜 such that 𝐴 ⊃ 𝐴∗ and 𝐴 ⧵ 𝐴∗ is
an 𝒜 ∗ null set. By the same argument we get 𝐵 ∈ 𝒜 , 𝐵 ⊃ (𝐴∗)𝑐 and 𝐵 ⧵ (𝐴∗)𝑐 = 𝐵 ∩𝐴∗ =
𝐴∗ ⧵ 𝐵𝑐 is an 𝒜 ∗ null set. Thus,

𝐵𝑐 ⊂ 𝐴∗ ⊂ 𝐴

and

𝐴 ⧵ 𝐵𝑐 ⊂
(

𝐴 ⧵ 𝐴∗) ∪
(

𝐴∗ ⧵ 𝐵𝑐
)

=
(

𝐴 ⧵ 𝐴∗) ∪
(

𝐵 ⧵ (𝐴∗)𝑐
)

which is the union of two 𝒜 ∗ null sets, i.e. 𝐴 ⧵ 𝐵𝑐 is an 𝒜 null set.
■■

Problem 6.5 Solution: Since, by assumption, 𝑚 is an additive set function such that 0 ⩽ 𝑚(𝑋) ⩽
𝜇(𝑋) <∞, it is enough to show (cf. Lemma 4.9) that 𝑚 is continuous at ∅ and 𝑚(∅) = 0.

• 𝑚(∅) = 0: This follows immediately from 𝑚(∅) ⩽ 𝜇(∅) = 0. (Note: ∅ = 𝑋𝑐 ∈ ℬ.)
• 𝑚 is continuous at ∅: Let (𝐵𝑘)𝑘∈N ⊂ℬ, 𝐵𝑘 ↓ ∅. Since 𝜇(𝐵𝑘) → 0 we get

𝑚(𝐵𝑘) ⩽ 𝜇(𝐵𝑘)
𝑘→∞
←←←←←←←←←←←←←←←←←←←←→ 0.

This shows that 𝑚 is continuous at ∅.
Remark. In order to be self-contained, let us check that any additive set function 𝑚 on a Boolean
algebra ℬ is a pre-measure (i.e. sigma-additive) if it is continuous at ∅:
Let (𝐵𝑛)𝑛∈N ⊂ ℬ be a sequence of mutually disjoint sets and 𝐵 ∶=

⋃

𝑛∈N 𝐵𝑛 ∈ ℬ. From
𝐵1 ⊍… ⊍ 𝐵𝑛 ∈ ℬ we get

𝐴𝑛 ∶= 𝐵 ⧵ (𝐵1 ⊍… ⊍ 𝐵𝑛) = 𝐵 ∩ (𝐵1 ⊍… ⊍ 𝐵𝑛)𝑐
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

∈ℬ

∈ ℬ.

Since 𝐴𝑛 ↓ ∅, continuity at ∅ proves 𝑚(𝐴𝑛) → 0. Since 𝑚 is additive,

𝑚(𝐵) = 𝑚(𝐵 ⧵ (𝐵1 ⊍… ⊍ 𝐵𝑛)) + 𝑚(𝐵1 ⊍… ⊍ 𝐵𝑛)

= 𝑚(𝐴𝑛) +
𝑛
∑

𝑗=1
𝑚(𝐵𝑗)

𝑛→∞
←←←←←←←←←←←←←←←←←←←←→ 0 +

∞
∑

𝑗=1
𝑚(𝐵𝑗).

■■

Problem 6.6 Solution:

(i) A little geometry first: a solid, open disk of radius 𝑟, centre 0 is the set 𝐵𝑟(0) ∶= {(𝑥, 𝑦) ∈
R2 ∶ 𝑥2+𝑦2 < 𝑟2}. The 𝑛-dimensional analogue is clearly {𝑥 ∈ R𝑛 ∶ 𝑥21+𝑥

2
2+…+𝑥2𝑛 < 𝑟

2}
(including 𝑛 = 1 where it reduces to an interval). We want to inscribe a box into a ball.
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Claim: 𝑄𝜖(0) ∶=
𝑛
×××
𝑗=1

[

− 𝜖
√

𝑛
, 𝜖
√

𝑛

)

⊂ 𝐵2𝜖(0). Indeed,

𝑥 ∈ 𝑄𝜖(0) ⇐⇒ 𝑥21 + 𝑥
2
2 +…+ 𝑥2𝑛 ⩽

𝜖2

𝑛
+ 𝜖2

𝑛
+…+ 𝜖2

𝑛
< (2𝜖)2

⇐⇒ 𝑥 ∈ 𝐵2𝜖(0),

and the claim follows.
Observe that 𝜆𝑛(𝑄𝜖(0)) =

∏𝑛
𝑗=1

2𝜖
√

𝑛
> 0. Now take some open set 𝑈 . By translating it we

can achieve that 0 ∈ 𝑈 and, as we know, this movement does not affect 𝜆𝑛(𝑈 ). As 0 ∈ 𝑈 we
find some 𝜖 > 0 such that 𝐵𝜖(0) ⊂ 𝑈 , hence

𝜆𝑛(𝑈 ) ⩾ 𝜆𝑛(𝐵𝜖(0)) ⩾ 𝜆(𝑄𝜖(0)) > 0.

(ii) For closed sets this is, in general, wrong. Trivial counterexample: the singleton {0} is closed,
it is Borel (take a countable sequence of nested rectangles, centered at 0 and going down to
{0}) and the Lebesgue measure is zero.
To get strictly positive Lebesgue measure, one possibility is to have interior points, i.e. closed
sets which have non-empty interior do have positive Lebesgue measure.

■■

Problem 6.7 Solution:

(i) Without loss of generality we can assume that 𝑎 < 𝑏. We have [𝑎 + 1
𝑘
, 𝑏) ↑ (𝑎, 𝑏) as 𝑘 → ∞.

Thus, by the continuity of measures, Proposition 4.3, we find (write 𝜆 = 𝜆1, for short)
𝜆(𝑎, 𝑏) = lim

𝑘→∞
𝜆
[

𝑎 + 1
𝑘
, 𝑏
)

= lim
𝑘→∞

(

𝑏 − 𝑎 − 1
𝑘

)

= 𝑏 − 𝑎.

Since 𝜆[𝑎, 𝑏) = 𝑏 − 𝑎, too, this proves again that
𝜆({𝑎}) = 𝜆([𝑎, 𝑏) ⧵ (𝑎, 𝑏)) = 𝜆[𝑎, 𝑏) − 𝜆(𝑎, 𝑏) = 0.

(ii) The hint says it all: 𝐻 is contained in the union 𝑦 +
⋃

𝑘∈N𝐴𝑘 for some 𝑦 and we have
𝜆2(𝐴𝑘) = (2𝜖 2−𝑘)⋅(2𝑘) = 4⋅𝜖⋅𝑘2−𝑘. Using the 𝜎-subadditivity and monotonicity of measures
(the 𝐴𝑘’s are clearly not disjoint) as well as the translational invariance of the Lebesgue
measure we get

0 ⩽ 𝜆2(𝐻) ⩽ 𝜆2
(

∞
∪
𝑘=1

𝐴𝑘

)

⩽
∞
∑

𝑘=1
𝜆(𝐴𝑘) =

∞
∑

𝑘=1
4 ⋅ 𝜖 ⋅ 𝑘2−𝑘 = 𝐶𝜖

where 𝐶 is the finite (!) constant 4∑∞
𝑘=1 𝑘2

−𝑘 (check convergence!). As 𝜖 was arbitrary, we
can let it → 0 and the claim follows.

(iii) 𝑛-dimensional version of (i): We have 𝐼 =
𝑛
×××
𝑗=1

(𝑎𝑗 , 𝑏𝑗). Set 𝐼𝑘 ∶=
𝑛
×××
𝑗=1

[𝑎𝑗 +
1
𝑘
, 𝑏𝑗). Then 𝐼𝑘 ↑ 𝐼

as 𝑘→ ∞ and we have (write 𝜆 = 𝜆𝑛, for short)

𝜆(𝐼) = lim
𝑘→∞

𝜆(𝐼𝑘) = lim
𝑘→∞

𝑛
∏

𝑗=1

(

𝑏𝑗 − 𝑎𝑗 −
1
𝑘

)

=
𝑛
∏

𝑗=1

(

𝑏𝑗 − 𝑎𝑗
)

.
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𝑛-dimensional version of (ii): The changes are obvious: 𝐴𝑘 = [−𝜖2−𝑘, 𝜖2−𝑘) × [−𝑘, 𝑘)𝑛−1

and 𝜆𝑛(𝐴𝑘) = 2𝑛 ⋅ 𝜖 ⋅ 2−𝑘 ⋅ 𝑘𝑛−1. The rest stays as before, since the sum ∑∞
𝑘=1 𝑘

𝑛−12−𝑘 still
converges to a finite value.

■■

Problem 6.8 Solution:

(i) All we have to show is that 𝜆1({𝑥}) = 0 for any 𝑥 ∈ R. But this has been shown already in
problem 6.6(i).

(ii) Take the Dirac measure: 𝛿0. Then {0} is an atom as 𝛿0({0}) = 1.
(iii) Let 𝐶 be countable and let {𝑐1, 𝑐2, 𝑐3,…} be an enumeration (could be finite, if 𝐶 is finite).

Since singletons are in 𝒜 , so is𝐶 as a countable union of the sets {𝑐𝑗}. Using the 𝜎-additivity
of a measure we get

𝜇(𝐶) = 𝜇(∪𝑗∈N{𝑐𝑗}) =
∑

𝑗∈N
𝜇({𝑐𝑗}) =

∑

𝑗∈N
0 = 0.

(iv) If 𝑦1, 𝑦2,… , 𝑦𝑁 are atoms of mass 𝑃 ({𝑦𝑗}) ⩾ 1
𝑘

we find by the additivity and monotonicity
of measures

𝑁
𝑘

⩽
𝑁
∑

𝑗=1
𝑃 ({𝑥𝑗})

= 𝑃
(

𝑁
∪
𝑗=1

{𝑦𝑗}
)

= 𝑃 ({𝑦1,… , 𝑦𝑁}) ⩽ 𝑃 (R) = 1

so 𝑁
𝑘
⩽ 1, i.e.𝑁 ⩽ 𝑘, and the claim in the hint (about the maximal number of atoms of given

size) is shown.
Now denote, as in the hint, the atoms with measure of size [ 1

𝑘
, 1
𝑘−1 ) by 𝑦(𝑘)1 ,… 𝑦(𝑘)𝑁(𝑘) where

𝑁(𝑘) ⩽ 𝑘 is their number. Since
⋃

𝑘∈N

[

1
𝑘
, 1
𝑘−1

)

= (0,∞)

we exhaust all possible sizes for atoms.
There are at most countably many (actually: finitely many) atoms in each size range. Since
the number of size ranges is countable and since countably many countable sets make up a
countable set, we can relabel the atoms as 𝑥1, 𝑥2, 𝑥3,… (could be finite) and, as we have seen
in exercise 4.7(ii), the set function

𝜈 ∶=
∑

𝑗
𝑃 ({𝑥𝑗}) ⋅ 𝛿𝑥𝑗

(no matter whether the sum is over a finite or countably infinite set of 𝑗’s) is indeed a measure
on R. But more is true: for any Borel set 𝐴

𝜈(𝐴) =
∑

𝑗
𝑃 ({𝑥𝑗}) ⋅ 𝛿𝑥𝑗 (𝐴)
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=
∑

𝑗∶𝑥𝑗∈𝐴
𝑃 ({𝑥𝑗})

= 𝑃 (𝐴 ∩ {𝑥1, 𝑥2,…}) ⩽ 𝑃 (𝐴)

showing that 𝜇(𝐴) ∶= 𝑃 (𝐴) − 𝜈(𝐴) is a positive number for each Borel set 𝐴 ∈ ℬ. This
means that 𝜇 ∶ ℬ → [0,∞]. Let us check𝑀1 and𝑀2. Using𝑀1,𝑀2 for 𝑃 and 𝜈 (for them
they are clear, as 𝑃 , 𝜈 are measures!) we get

𝜇(∅) = 𝑃 (∅) − 𝜈(∅) = 0 − 0 = 0

and for a disjoint sequence (𝐴𝑗)𝑗∈N ⊂ℬ we have

𝜇
(

⋃

𝑗
𝐴𝑗

)

= 𝑃
(

⋃

𝑗
𝐴𝑗

)

− 𝜈
(

⋃

𝑗
𝐴𝑗

)

=
∑

𝑗
𝑃 (𝐴𝑗) −

∑

𝑗
𝜈(𝐴𝑗)

=
∑

𝑗

(

𝑃 (𝐴𝑗) − 𝜈(𝐴𝑗)
)

=
∑

𝑗
𝜇(𝐴𝑗)

which is 𝑀2 for 𝜇.
■■

Problem 6.9 Solution:

(i) Fix a sequence of numbers 𝜖𝑘 > 0, 𝑘 ∈ N0 such that ∑𝑘∈N0
𝜖𝑘 < ∞. For example we

could take a geometric series with general term 𝜖𝑘 ∶= 2−𝑘. Now define open intervals 𝐼𝑘 ∶=
(𝑘 − 𝜖𝑘, 𝑘 + 𝜖𝑘), 𝑘 ∈ N0 (these are open sets!) and call their union 𝐼 ∶=

⋃

𝑘∈N0
𝐼𝑘. As

countable union of open sets 𝐼 is again open. Using the 𝜎-(sub-)additivity of 𝜆 = 𝜆1 we find
𝜆(𝐼) = 𝜆

(

⋃

𝑘∈N0

𝐼𝑘

)

(∗)
⩽

∑

𝑘∈N0

𝜆(𝐼𝑘) =
∑

𝑘∈N0

2𝜖𝑘 = 2
∑

𝑘∈N0

𝜖𝑘 <∞.

By 6.7(i), 𝜆(𝐼) > 0.
Note that in step (∗) equality holds (i.e. we would use 𝜎-additivity rather than 𝜎-subadditivity)
if the 𝐼𝑘 are pairwise disjoint. This happens, if all 𝜖𝑘 < 1

2 (think!), but to be on the safe side
and in order not to have to worry about such details we use sub-additivity.

(ii) Take the open interior of the sets 𝐴𝑘, 𝑘 ∈ N, from the hint to 6.7(ii). That is, take the
open rectangles 𝐵𝑘 ∶= (−2−𝑘, 2−𝑘) × (−𝑘, 𝑘), 𝑘 ∈ N, (we choose 𝜖 = 1 since we are after
finiteness and not necessarily smallness). That these are open sets will be seen below. Now set
𝐵 =

⋃

𝑘∈N 𝐵𝑘 and observe that the union of open sets is always open. 𝐵 is also unbounded
and it is geometrically clear that𝐵 is pathwise connected as it is some kind of lozenge-shaped
‘staircase’ (draw a picture!) around the 𝑦-axis. Finally, by 𝜎-subadditivity and using 6.7(ii)
we get

𝜆2(𝐵) = 𝜆2
(

⋃

𝑘∈N
𝐵𝑘

)

⩽
∑

𝑘∈N
𝜆2(𝐵𝑘)
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=
∑

𝑘∈N
2 ⋅ 2−𝑘 ⋅ 2 ⋅ 𝑘

= 4
∑

𝑘∈N
𝑘 ⋅ 2−𝑘 <∞.

It remains to check that an open rectangle is an open set. For this take any open rectangle
𝑅 = (𝑎, 𝑏) × (𝑐, 𝑑) and pick (𝑥, 𝑦) ∈ 𝑅. Then we know that 𝑎 < 𝑥 < 𝑏 and 𝑐 < 𝑦 < 𝑑 and
since we have strict inequalities, we have that the smallest distance of this point to any of the
four boundaries (draw a picture!) ℎ ∶= min{|𝑎−𝑥|, |𝑏−𝑥|, |𝑐−𝑦|, |𝑑−𝑦|} > 0. This means
that a square around (𝑥, 𝑦) with side-length 2ℎ is inside 𝑅 and what we’re going to do is to
inscribe into this virtual square an open disk with radius ℎ and centre (𝑥, 𝑦). Since the circle
is again in 𝑅, we are done. The equation for this disk is

(𝑥′, 𝑦′) ∈ 𝐵ℎ(𝑥, 𝑦) ⇐⇒ (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 < ℎ2

Thus,

|𝑥′ − 𝑥| ⩽
√

|𝑥 − 𝑥′|2 + |𝑦 − 𝑦′|2 < ℎ

and |𝑦′ − 𝑦| ⩽
√

|𝑥 − 𝑥′|2 + |𝑦 − 𝑦′|2 < ℎ

i.e. 𝑥 − ℎ < 𝑥′ < 𝑥 + ℎ and 𝑦 − ℎ < 𝑦′ < 𝑦 + ℎ or (𝑥′, 𝑦′) ∈ (𝑥 − ℎ, 𝑥 + ℎ) × (𝑦 − ℎ, 𝑦 + ℎ),
which means that (𝑥′, 𝑦′) is in the rectangle of sidelength 2ℎ centered at (𝑥, 𝑦). since (𝑥′, 𝑦′)
was an arbitrary point of 𝐵ℎ(𝑥, 𝑦), we are done.

(iii) No, this is impossible. Since we are in one dimension, pathwise connectedness forces us to
go between points in a straight, uninterrupted line. Since the set is unbounded, this means
that we must have a line of the sort (𝑎,∞) or (−∞, 𝑏) in our set and in both cases Lebesgue
measure is infinite. In all dimensions 𝑛 > 1, see part (ii) for two dimensions, we can, however,
construct pathwise connected, unbounded open sets with finite Lebesgue measure.

■■

Problem 6.10 Solution: Fix 𝜖 > 0 and let {𝑞𝑗}𝑗∈N be an enumeration of Q ∩ [0, 1]. Then

𝑈 ∶= 𝑈𝜖 ∶=
⋃

𝑗∈N

(

𝑞𝑗 − 𝜖2−𝑗−1, 𝑞𝑗 + 𝜖2−𝑗−1
)

∩ [0, 1]

is a dense open set in [0, 1] and, because of 𝜎-subadditivity,

𝜆(𝑈 ) ⩽
∑

𝑗∈N
𝜆
(

𝑞𝑗 − 𝜖2−𝑗−1, 𝑞𝑗 + 𝜖2−𝑗−1
)

=
∑

𝑗∈N

𝜖
2𝑗

= 𝜖.

■■

Problem 6.11 Solution: Assume first that for every 𝜖 > 0 there is some open set 𝑈𝜖 ⊃ 𝑁 such that
𝜆(𝑈𝜖) ⩽ 𝜖. Then

𝜆(𝑁) ⩽ 𝜆(𝑈𝜖) ⩽ 𝜖 ∀𝜖 > 0,
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which means that 𝜆(𝑁) = 0.

Conversely, let 𝜆∗(𝑁) = inf
{

∑

𝑗 𝜆(𝑈𝑗) ∶ 𝑈𝑗 ∈ 𝒪 , ∪𝑗∈N 𝑈𝑗 ⊃ 𝑁
}

. Since for the Borel set 𝑁
we have 𝜆∗(𝑁) = 𝜆(𝑁) = 0, the definition of the infimum guarantees that for every 𝜖 > 0 there is
a sequence of open sets (𝑈 𝜖

𝑗 )𝑗∈N covering 𝑁 , i.e. such that 𝑈 𝜖 ∶=
⋃

𝑗 𝑈
𝜖
𝑗 ⊃ 𝑁 . Since 𝑈 𝜖 is again

open we find because of 𝜎-subadditivity

𝜆(𝑁) ⩽ 𝜆(𝑈 𝜖) = 𝜆
(

⋃

𝑗
𝑈 𝜖
𝑗

)

⩽
∑

𝑗
𝜆(𝑈 𝜖

𝑗 ) ⩽ 𝜖.

Attention: A construction along the lines of Problem 3.15, hint to part (ii), using open sets 𝑈 𝛿 ∶=
𝑁 + 𝐵𝛿(0) is, in general not successful:

• it is not clear that𝑈 𝛿 has finite Lebesgue measure (o.k. one can overcome this by considering
𝑁 ∩ [−𝑘, 𝑘] and then letting 𝑘→ ∞...)

• 𝑈 𝛿 ↓ 𝑁̄ and not 𝑁 (unless 𝑁 is closed, of course). If, say, 𝑁 is a dense set of [0, 1], this
approach leads nowhere.

■■

Problem 6.12 Solution: Observe that the sets 𝐶𝑘 ∶=
⋃∞
𝑗=𝑘𝐴𝑗 , 𝑘 ∈ N, decrease as 𝑘 → ∞—we

admit less and less sets in the union, i.e. the union becomes smaller. Since 𝑃 is a probability
measure, 𝑃 (𝐶𝑘) ⩽ 1 and therefore Lemma 4.9 applies and shows that

𝑃
( ∞
⋂

𝑘=1

∞
⋃

𝑗=𝑘
𝐴𝑗

)

= 𝑃
( ∞
⋂

𝑘=1
𝐶𝑘

)

= lim
𝑘→∞

𝑃 (𝐶𝑘).

On the other hand, we can use 𝜎-subadditivity of the measure 𝑃 to get

𝑃 (𝐶𝑘) = 𝑃
( ∞
⋃

𝑗=𝑘
𝐴𝑗

)

⩽
∑∞
𝑗=𝑘 𝑃 (𝐴𝑗)

but this is the tail of the convergent (!) sum ∑∞
𝑗=1 𝑃 (𝐴𝑗) and, as such, it goes to zero as 𝑘 → ∞.

Putting these bits together, we see

𝑃
( ∞
⋂

𝑘=1

∞
⋃

𝑗=𝑘
𝐴𝑗

)

= lim
𝑘→∞

𝑃 (𝐶𝑘) ⩽ lim
𝑘→∞

∞
∑

𝑗=𝑘
𝑃 (𝐴𝑗) = 0,

and the claim follows.
■■

Problem 6.13 Solution:

(i) We can work out the ‘optimal’ 𝒜 -cover of (𝑎, 𝑏):
Case 1: 𝑎, 𝑏 ∈ [0, 1). Then [0, 1) is the best possible cover of (𝑎, 𝑏), thus 𝜇∗(𝑎, 𝑏) = 𝜇[0, 1) =
1
2 .
Case 2: 𝑎, 𝑏 ∈ [1, 2). Then [1, 2) is the best possible cover of (𝑎, 𝑏), thus 𝜇∗(𝑎, 𝑏) = 𝜇[1, 2) =
1
2 .

72



Solution Manual. Last update 20th June 2025

Case 3: 𝑎 ∈ [0, 1), 𝑏 ∈ [1, 2). Then [0, 1) ⊍ [1, 2) is the best possible cover of (𝑎, 𝑏), thus
𝜇∗(𝑎, 𝑏) = 𝜇[0, 1) + 𝜇[1, 2) = 1.
And in the case of a singleton {𝑎} the best possible cover is always either [0, 1) or [1, 2) so
that 𝜇∗({𝑎}) = 1

2 for all 𝑎.
(ii) Assume that (0, 1) ∈ 𝒜 ∗. Since 𝒜 ⊂ 𝒜 ∗, we have [0, 1) ∈ 𝒜 ∗, hence {0} = [0, 1) ⧵ (0, 1) ∈

𝒜 ∗. Since 𝜇∗(0, 1) = 𝜇∗({0}) = 1
2 , and since 𝜇∗ is a measure on 𝒜 ∗ (cf. Step 4 in the proof

of Theorem 6.1), we get
1
2
= 𝜇[0, 1) = 𝜇∗[0, 1) = 𝜇∗(0, 1) + 𝜇∗{0} = 1

2
+ 1

2
= 1

leading to a contradiction. Thus neither (0, 1) nor {0} are elements of 𝒜 ∗.
■■

Problem 6.14 Solution: Since 𝒜 ⊂ 𝒜 ∗, the only interesting sets (to which one could extend 𝜇) are
those 𝐵 ⊂ R where both 𝐵 and 𝐵𝑐 are uncountable. By definition,

𝛾∗(𝐵) = inf
{

∑

𝑗
𝛾(𝐴𝑗) ∶ 𝐴𝑗 ∈ 𝒜 ,

⋃

𝑗
𝐴𝑗 ⊃ 𝐵

}

.

The infimum is obviously attained for 𝐴𝑗 = R, so that 𝛾∗(𝐵) = 𝛾∗(𝐵𝑐) = 1. On the other hand,
since 𝛾∗ is necessarily additive on 𝒜 ∗, the assumption that 𝐵 ∈ 𝒜 ∗ leads to a contradiction:

1 = 𝛾(R) = 𝛾∗(R) = 𝛾∗(𝐵) + 𝛾∗(𝐵𝑐) = 2.

Thus, 𝒜 = 𝒜 ∗.
■■
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7 Measurable mappings.

Solutions to Problems 7.1–7.13

Problem 7.1 Solution: We have 𝜏−1𝑥 (𝑧) = 𝑧 + 𝑥. According to Lemma 7.2 we have to check that
𝜏−1𝑥 ([𝑎, 𝑏)) ∈ ℬ(R𝑛) ∀ [𝑎, 𝑏) ∈ 𝒥

since the rectangles 𝒥 generate ℬ(R𝑛). Clearly,
𝜏−1𝑥 ([𝑎, 𝑏)) = [𝑎, 𝑏) + 𝑥 = [𝑎 + 𝑥, 𝑏 + 𝑥) ∈ 𝒥 ⊂ℬ(R𝑛),

and the claim follows.
■■

Problem 7.2 Solution: We had Σ′ = {𝐴′ ⊂ 𝑋′ ∶ 𝑇 −1(𝐴′) ∈ 𝒜} where 𝒜 was a 𝜎-algebra of subsets
of 𝑋. Let us check the properties (Σ1)–(Σ3).
(Σ1) Take ∅ ⊂ 𝑋′. Then 𝑇 −1(∅) = ∅ ∈ 𝒜 , hence ∅ ∈ Σ′.
(Σ2) Take any 𝐵 ∈ Σ′. Then 𝑇 −1(𝐵) ∈ 𝒜 and therefore 𝑇 −1(𝐵𝑐) =

(

𝑇 −1(𝐵)
)𝑐 ∈ 𝒜 since all

set operations interchange with inverse maps and since 𝒜 is a 𝜎-algebra. This shows that
𝐵𝑐 ∈ Σ′.

(Σ3) Take any sequence (𝐵𝑗)𝑗∈N ⊂ Σ′. Then, using again the fact that𝒜 is a 𝜎-algebra, 𝑇 −1(∪𝑗𝐵𝑗) =
⋃

𝑗 𝑇
−1(𝐵𝑗) ∈ 𝒜 which proves that ⋃𝑗 𝐵𝑗 ∈ Σ′.

■■

Problem 7.3 Solution:

(i) (Σ1) ∅ ∈ 𝒜 is clear.
(Σ2) Let 𝐴 ∈ 𝒜 . If 2𝑛 ∈ 𝐴𝑐 , then 2𝑛 + 1 ∈ 𝐴𝑐 – this follows straight from the definition

of 𝒜 : if 2𝑛+1 ∈ 𝐴, then 2𝑛 ∈ 𝐴. In the same way we get 2𝑛+1 ∈ 𝐴𝑐 ⇐⇒ 2𝑛 ∈ 𝐴𝑐 .
Consequently, 𝐴𝑐 ∈ 𝒜 .

(Σ3) Let (𝐴𝑗)𝑗∈N ⊂ 𝒜 . If 2𝑛 ∈
⋃

𝑗 𝐴𝑗 , then there is some index 𝑗0 such that 2𝑛 ∈ 𝐴𝑗0 .
Since 𝐴𝑗0 ∈ 𝒜 , we get 2𝑛 + 1 ∈ 𝐴𝑗0 ⊆

⋃

𝑗 𝐴𝑗 . In the same way we find that
2𝑛 + 1 ∈

⋃

𝑗 𝐴𝑗 ⇐⇒ 2𝑛 ∈
⋃

𝐴𝑗 .
(ii) It is clear that the map 𝑇 is bijective as 𝑇 −1(𝑛) = 𝑛 − 2. Pick any set 𝐴 ∈ 𝒜 . In order to

verify the measurability of 𝑇 , we have to show that 𝑇 −1(𝐴) ∈ 𝒜 , i.e.
2𝑛 ∈ 𝑇 −1(𝐴) ⇔ 2𝑛 + 1 ∈ 𝑇 −1(𝐴) for all 𝑛 > 0.
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If 2𝑛 ∈ 𝑇 −1(𝐴), 𝑛 > 0, then we see that 2𝑛 + 2 = 2(𝑛 + 1) ∈ 𝐴. As 𝐴 ∈ 𝒜 this yields
2𝑛 + 3 ∈ 𝐴 and so 2𝑛 + 1 = 𝑇 −1(2𝑛 + 3) ∈ 𝑇 −1(𝐴). Therefore, 𝑇 is measurable.
On the other hand, 𝑇 −1 is not measurable: the set 𝐴 = {𝑘; 𝑘 ⩽ 0} is contained in 𝒜 , but
𝑇 (𝐴) = {𝑘 ∶ 𝑘 ⩽ 2} ∉ 𝒜 (use 2 = 2 ⋅ 1 ∈ 𝐴, but 2 ⋅ 1 + 1 = 3 ∉ 𝐴).

■■

Problem 7.4 Solution:

(i) First of all we remark that 𝑇 −1
𝑖 (𝒜𝑖) is itself a 𝜎-algebra, cf. Example 3.3(vii).

If 𝒞 is a 𝜎-algebra of subsets of 𝑋 such that 𝑇𝑖 ∶ (𝑋,𝒞 ) → (𝑋𝑖,𝒜𝑖) becomes measurable,
we know from the very definition that 𝑇 −1(𝒜𝑖) ⊂ 𝒞 . From this, however, it is clear that
𝑇 −1(𝒜𝑖) is the minimal 𝜎-algebra that renders 𝑇 measurable.

(ii) From part (i) we know that 𝜎(𝑇𝑖, 𝑖 ∈ 𝐼) necessarily contains 𝑇 −1
𝑖 (𝒜𝑖) for every 𝑖 ∈ 𝐼 . Since

⋃

𝑖 𝑇
−1
𝑖 (𝒜𝑖) is, in general, not a 𝜎-algebra, we have 𝜎

(

⋃

𝑖 𝑇
−1
𝑖 (𝒜𝑖)

)

⊂ 𝜎(𝑇𝑖, 𝑖 ∈ 𝐼). On the
other hand, each 𝑇𝑖 is, because of 𝑇 −1

𝑖 (𝒜𝑖) ⊂
⋃

𝑖 𝑇
−1
𝑖 (𝒜𝑖) ⊂ 𝜎(𝑇𝑖, 𝑖 ∈ 𝐼) measurable w.r.t.

𝜎
(

⋃

𝑖 𝑇
−1
𝑖 (𝒜𝑖)

)

and this proves the claim.
■■

Problem 7.5 Solution:

(i), (ii)
1𝑇 −1(𝐴′)(𝑥) = 1 ⇔ 𝑥 ∈ 𝑇 −1(𝐴′) ⇔ 𝑇 (𝑥) ∈ 𝐴′

⇔ 1𝐴′(𝑇 (𝑥)) = 1 ⇔ (1𝐴′◦𝑇 )(𝑥) = 1

Since an indicatior function can only assume the values 0 and 1, the claimed equality
follows for the value 0 by negating the previously shown equivalence.

(iii) “⇒”: Assume that 𝑇 is measurable. We have 𝑇 −1(𝐴′) ∈ 𝒜 ∀𝐴′ ∈ 𝒜 ′ and since 𝒜 is
a 𝜎-algebra, we conclude

𝜎(𝑇 ) = 𝜎({𝑇 −1(𝐴′) | 𝐴′ ∈ 𝒜 ′}) ⊂ 𝜎(𝒜 ) = 𝒜 .

“⇐”: 𝜎(𝑇 ) ⊂ 𝒜 implies, in particular,

𝑇 −1(𝐴′) ∈ 𝒜 ∀𝐴′ ∈ 𝒜 ′,

i.e., 𝑇 is measurable.
(iii) Theorem 7.6 shows that image measures are measures. By the definition of 𝑇 , we have

𝑇 −1(𝐸′) = 𝐸 and 𝜈◦𝑇 −1(𝐸′) < ∞, resp., 𝜈◦𝑇 −1(𝐸′) = 1 follows from the definition
of image measures.
The image measure obtained from a 𝜎-finite measure need not be 𝜎-finite!
Counterexample: Let 𝜇 be the counting measure on Z2 and define 𝑇 ((𝑥, 𝑦)) = 𝑥.
While 𝜇 is 𝜎-finite, the image measure 𝑇 (𝜇) isn’t.
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■■

Problem 7.6 Solution: We have

𝑇 −1(𝒢 ) ⊂ 𝑇 −1(𝜎(𝒢 ))
⏟⏞⏞⏞⏟⏞⏞⏞⏟

is itself a 𝜎-algebra

⇐⇒ 𝜎(𝑇 −1(𝒢 )) ⊂ 𝑇 −1(𝜎(𝒢 )).

For the converse consider 𝑇 ∶ (𝑋, 𝜎(𝑇 −1(𝒢 ))) → (𝑌 , 𝜎(𝒢 )). By the very choice of the 𝜎-algebras
and since 𝑇 −1(𝒢 ) ⊂ 𝜎(𝑇 −1(𝒢 )) we find that 𝑇 is 𝜎(𝑇 −1(𝒢 ))∕𝜎(𝒢 ) measurable—mind that we
only have to check measurability at a generator (here: 𝒢 ) in the image region. Thus,

𝑇 −1(𝜎(𝒢 )) ⊂ 𝜎(𝑇 −1(𝒢 )).

Alternative: We have

𝑇 −1(𝒢 ) ⊂ 𝑇 −1(𝜎(𝒢 ))
⏟⏞⏞⏞⏟⏞⏞⏞⏟

is itself a 𝜎-algebra

⇐⇒ 𝜎(𝑇 −1(𝒢 )) ⊂ 𝑇 −1(𝜎(𝒢 )).

For the converse, set Σ ∶= {𝐺 ∈ 𝜎(𝒢 ) ∶ 𝑇 −1(𝐺) ∈ 𝜎(𝑇 −1(𝒢 ))}. It is not hard to see that Σ is
itself a 𝜎-algebra and that 𝒢 ⊂ Σ ⊂ 𝜎(𝒢 ). Thus, 𝜎(𝒢 ) = Σ and so 𝑇 −1(𝜎(𝒢 )) ⊂ 𝜎(𝑇 −1(𝒢 )).

■■

Problem 7.7 Solution: We have to show that

𝑓 ∶ (𝐹 ,ℱ ) → (𝑋, 𝜎(𝑇𝑖, 𝑖 ∈ 𝐼)) measurable
⇐⇒ ∀ 𝑖 ∈ 𝐼 ∶ 𝑇𝑖◦𝑓 ∶ (𝐹 ,ℱ ) → (𝑋𝑖,𝒜𝑖) measurable.

Now

∀ 𝑖 ∈ 𝐼 ∶ (𝑇𝑖◦𝑓 )−1(𝒜𝑖) ⊂ ℱ ⇐⇒ ∀ 𝑖 ∈ 𝐼 ∶ 𝑓−1(𝑇 −1
𝑖 (𝒜𝑖)

)

⊂ ℱ

⇐⇒ 𝑓−1
(

⋃

𝑖∈𝐼
𝑇 −1
𝑖 (𝒜𝑖)

)

⊂ ℱ

(∗)
⇐⇒ 𝜎

[

𝑓−1
(

⋃

𝑖∈𝐼
𝑇 −1
𝑖 (𝒜𝑖)

)

]

⊂ ℱ

(∗∗)
⇐⇒ 𝑓−1

(

𝜎
[

⋃

𝑖∈𝐼
𝑇 −1
𝑖 (𝒜𝑖)

])

⊂ ℱ .

Only (*) and (**) are not immediately clear. The direction ‘⇐⇐’ in (*) is trivial, while ‘ ⇐⇒ ’ follows
if we observe that the right-hand side, ℱ , is a 𝜎-algebra. The equivalence (**) is another case of
Problem 7.6 (see there for the solution!).

■■

Problem 7.8 Solution: Using the notation of the foregoing Problem 7.7 we put

𝐼 = {1, 2,… , 𝑚} and 𝑇𝑗 ∶= 𝜋𝑗 ∶ R𝑚 → R, 𝜋𝑗(𝑥1,… , 𝑥𝑚) ∶= 𝑥𝑗

i.e. 𝜋𝑗 is the coordinate projection, 𝒜𝑗 ∶= ℬ(R).
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Since each 𝜋𝑗 is continuous, we have 𝜎(𝜋1,… , 𝜋𝑚) ⊂ ℬ(R𝑚) so that Problem 7.7 applies and
proves

𝑓 is ℬ(R𝑚)-measurable ⇐⇒

𝑓𝑗 = 𝜋𝑗◦𝑓 is ℬ(R)-measurable for all 𝑗 = 1, 2,… , 𝑚.

Remark. We will see, in fact, in Chapter 14 (in particular in Theorem 14.17) that we have the
equality 𝜎(𝜋1,… , 𝜋𝑚) = ℬ(R𝑚).

■■

Problem 7.9 Solution: In general the direct image 𝑇 (𝒜 ) of a 𝜎-algebra is not any longer a 𝜎-algebra.
(Σ1) and (Σ3) hold, but (Σ2) will, in general, fail. Here is an example: Take 𝑋 = 𝑋′ = N, take
any 𝜎-algebra 𝒜 other than {∅,N} inN, and let 𝑇 ∶ N → N, 𝑇 (𝑗) = 1 be the constant map. Then
𝑇 (∅) = ∅ but 𝑇 (𝐴) = {1} whenever 𝐴 ≠ ∅. Thus, {1} = 𝑇 (𝐴𝑐) ≠ [𝑇 (𝐴)]𝑐 = N⧵ {1} but equality
would be needed if 𝑇 (𝒜 ) were a 𝜎-algebra. This means that Σ2 fails.
Necessary and sufficient for 𝑇 (𝒜 ) to be a 𝜎-algebra is, clearly, that 𝑇 −1 is a measurable map
𝑇 −1 ∶ 𝑋′ → 𝑋.
Warning. Direct images of measurable sets behave badly – even if the mapping is good. For
example, the continuous (direct) image of a Borel set need not be Borel! (It is, however, analytic
or Souslin).

■■

Problem 7.10 Solution: Consider for 𝑡 > 0 the dilation 𝑚𝑡 ∶ R𝑛 → R𝑛, 𝑥 → 𝑡 ⋅ 𝑥. Since 𝑚𝑡 is
continuous, it is Borel measurable. Moreover, 𝑚−1

𝑡 = 𝑚1∕𝑡 and so
𝑡 ⋅ 𝐵 = 𝑚−1

1∕𝑡(𝐵)

which shows that 𝜆𝑛(𝑡 ⋅ 𝐵) = 𝜆𝑛◦𝑚−1
1∕𝑡(𝐵) = 𝑚1∕𝑡(𝜆𝑛)(𝐵) is actually an image measure of 𝜆𝑛. Now

show the formula first for rectangles 𝐵 =
𝑛
×××
𝑗=1

[𝑎𝑗 , 𝑏𝑗) (as in Problem 5.9) and deduce the statement
from the uniqueness theorem for measures.

■■

Problem 7.11 Solution:

(i) The hint is indeed already the proof. Almost, that is... Let 𝜇 be some measure as specified
in the problem. From Problam 6.1(iii) we know that the Stieltjes function 𝐹 ∶= 𝐹𝜇 then
satisfies

𝜇[𝑎, 𝑏) = 𝐹 (𝑏) − 𝐹 (𝑎) = 𝜆1[𝐹 (𝑎), 𝐹 (𝑏))
(#)
= 𝜆1(𝐹 ([𝑎, 𝑏)))
(##)
= 𝜆1◦𝐹 ([𝑎, 𝑏)).

The crunching points in this argument are the steps (#) and (##).
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(#) This is o.k. since 𝐹 was continuous, and the intermediate value theorem for continuous
functions tells us that intervals are mapped to intervals. So, no problem here, just a little
thinking needed.

(##) This is more subtle. We have defined image measures only for inverse maps, i.e. for
expressions of the type 𝜆1◦𝐺−1 where𝐺 was measurable. So our job is to see that 𝐹 can
be obtained in the form 𝐹 = 𝐺−1 where 𝐺 is measurable. In other words, we have to
invert 𝐹 . The problem is that we need to understand that, if 𝐹 (𝑥) is flat on some interval
(𝑎, 𝑏) inversion becomes a problem (since then 𝐹−1 has a jump—horizontals become
verticals in inversions, as inverting is somehow the mirror-image w.r.t. the 45-degree
line in the coordinate system.).
So, if there are no flat bits, then this means that 𝐹 is strictly increasing, and it is clear
that 𝐺 exists and is even continuous there.
If we have a flat bit, let’s say exactly if 𝑥 ∈ [𝑎, 𝑏] and call 𝐹 (𝑥) = 𝐹 (𝑎) = 𝐹 (𝑏) = 𝐶
for those 𝑥; clearly, 𝐹−1 jumps at 𝐶 and we must see to it that we take a version of 𝐹−1,
say one which makes 𝐹−1 left-continuous at 𝐶—note that we could assign any value
from [𝑎, 𝑏] to 𝐹−1(𝐶)—which is accomplished by setting 𝐹−1(𝐶) = 𝑎. (Draw a graph
to illustrate this!)
There is A canonical expression for such a ‘generalized’ left-continuous inverse of an
increasing function (which may have jumps and flat bits—jumps of 𝐹 become just flat
bits in the graph of 𝐹−1, think!) and this is:

𝐺(𝑦) = inf{𝑥 ∶ 𝐹 (𝑥) ⩾ 𝑦}

Let us check measurability:

𝑦0 ∈ {𝐺 ⩾ 𝜆} ⇐⇒ 𝐺(𝑦0) ⩾ 𝜆
def
⇐⇒ inf{𝐹 ⩾ 𝑦0} ⩾ 𝜆
(‡)
⇐⇒ 𝐹 (𝜆) ⩽ 𝑦0

⇐⇒ 𝑦0 ∈ [𝐹 (𝜆),∞).

Since 𝐹 is monotonically increasing, we find also ‘⇐⇐’ in step (‡), hence

{𝐺 ⩾ 𝜆} = [𝐹 (𝜆),∞) ∈ ℬ(R)

which shows that 𝐺 is measurable. Even more: it shows that 𝐺−1(𝑥) ∶= inf{𝐺 ⩾ 𝜆} =
𝐹 (𝑥). Thus, 𝜆1◦𝐹 = 𝜆1◦𝐺−1 = 𝜇 is indeed an image measure of 𝜆1.

(ii) We have 𝐹 (𝑥) = 𝐹𝛿0(𝑥) = 1(0,∞)(𝑥) and its left-continuous inverse 𝐺(𝑦) in the sense of part
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(i) is given by

𝐺(𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+∞, 𝑦 > 1

0, 0 < 𝑦 ⩽ 1

−∞, 𝑦 ⩽ 0

.

This function is clearly measurable (use ℬ̄ to accommodate ±∞) and so the claim holds in
this case. Observe that in this case 𝐹 is not any longer continuous but only left-continuous.

■■

Problem 7.12 Solution:

(i) See Figure 1.4 on page 4.
(ii) Each 𝐶𝑛 is a finite union of 2𝑛 closed and bounded intervals. As such, 𝐶𝑛 is itself a closed

and bounded set, hence compact. The intersection of closed and bounded sets is again closed
and bounded, so compact. This shows that 𝐶 is compact. That 𝐶 is non-empty follows from
the intersection principle: if one has a nested sequence of non-empty compact sets, their
intersection is not empty. (This is sometimes formulated in a somewhat stronger form and
called: finite intersection property. The general version is then: Let (𝐾𝑛)𝑛∈N be a sequence
of compact sets such that each finite sub-family has non-void intersection, then ⋂

𝑛𝐾𝑛 ≠
∅). This is an obvious generalization of the interval principle: nested non-void closed and
bounded intervals have a non-void intersection.

(iii) At step 𝑛 we remove open middle-third intervals of length 3−𝑛. To be precise, we partition
𝐶𝑛−1 in pieces of length 3−𝑛 and remove every other interval. The same effect is obtained if
we partition [0,∞) in pieces of length 3−𝑛 and remove every other piece. Call the taken out
pieces 𝐹𝑛 and set 𝐶𝑛 = 𝐶𝑛−1 ⧵ 𝐹𝑛, i.e. we remove from 𝐶𝑛−1 even pieces which were already
removed in previous steps. It is clear that 𝐹𝑛 exactly consists of sets of the form (3𝑘+13𝑛 ,

3𝑘+2
3𝑛 ),

𝑘 ∈ N0 which comprises exactly ‘every other’ set of length 3−𝑛. Since we do this for every
𝑛, the set 𝐶 is disjoint to the union of these intervals over 𝑘 ∈ N0 and 𝑛 ∈ N.

(iv) Since 𝐶𝑛 consists of 2𝑛 intervals 𝐽1 ⊍… ⊍ 𝐽2𝑛 , each of which has length 3−𝑛 (prove this by a
trivial induction argument!), we get

𝜆(𝐶𝑛) = 𝜆(𝐽1) +… + 𝜆(𝐽2𝑛) = 2𝑛 ⋅ 3−𝑛 =
(2
3

)𝑛

where we also use (somewhat pedantically) that
𝜆[𝑎, 𝑏] = 𝜆([𝑎, 𝑏) ⊍ {𝑏}) = 𝜆[𝑎, 𝑏) + 𝜆{𝑏} = 𝑏 − 𝑎 + 0 = 𝑏 − 𝑎.

Now using Proposition 4.3 we conclude that 𝜆(𝐶) = inf𝑛 𝜆(𝐶𝑛) = 0.
(v) Fix 𝜖 > 0 and choose 𝑛 so big that 3−𝑛 < 𝜖. Then 𝐶𝑛 consists of 2𝑛 disjoint intervals of length

3−𝑛 < 𝜖 and cannot possibly contain a ball of radius 𝜖. Since 𝐶 ⊂ 𝐶𝑛, the same applies to 𝐶 .
Since 𝜖 was arbitrary, we are done. (Remark: an open ball inR with centre 𝑥 is obviously an
open interval with midpoint 𝑥, i.e. (𝑥 − 𝜖, 𝑥 + 𝜖).)
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(vi) Fix 𝑛 and let 𝑘 = 0, 1, 2,… , 3𝑛−1 − 1. We saw in (c) that at step 𝑛 we remove the intervals
𝐹𝑛, i.e. the intervals of the form

(

3𝑘 + 1
3𝑛

, 3𝑘 + 2
3𝑛

)

=
(

0. ∗∗∗ … ∗ 1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑛

000… , 0. ∗∗∗ … ∗ 2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑛

000…
)

where we use the ternary representation of 𝑥. These are exactly the numbers in [0, 1] whose
ternary expansion has a 1 at the 𝑛th digit. As 0. ∗∗∗ … ∗ 1 = 0. ∗∗∗ … ∗ 022222… has
two representations, the left endpoint stays in. Since we do this for every step 𝑛 ∈ N, the
claim follows.

(vii) Take 𝑡 ∈ 𝐶 with ternary representation 𝑡 = 0.𝑡1𝑡2𝑡3… 𝑡𝑗 …, 𝑡𝑗 ∈ {0, 2} and map it to the
binary number 𝑏 = 0. 𝑡12

𝑡2
2
𝑡3
2 … 𝑡𝑗

2 with digits 𝑏𝑗 = 𝑡𝑗
2 ∈ {0, 1}. This gives a bijection between

𝐶 and [0, 1], i.e. both have ‘as infinitely many’ points, i.e. #𝐶 = #[0, 1]. Despite of that

𝜆(𝐶) = 0 ≠ 1 = 𝜆([0, 1])

which is, by the way, another proof for the fact that 𝜎-additivity for the Lebesgue measure
does not extend to general uncountable unions.

■■

Problem 7.13 Solution:

(i) Since ∅ ∈ ℰ and ∅ ∈ ℱ we get

∀𝐸 ∈ ℰ ∶ 𝐸 ∪ ∅ ∈ ℰ ⋓ ℱ ⇐⇒ ℰ ⊂ ℰ ⋓ ℱ

and

∀𝐹 ∈ ℱ ∶ ∅ ∪ 𝐹 ∈ ℰ ⋓ ℱ ⇐⇒ ℱ ⊂ ℰ ⋓ ℱ

so that ℰ ∪ ℱ ⊂ ℰ ⋓ ℱ . A similar argument, using that 𝑋 ∈ ℰ and 𝑋 ∈ ℱ , shows
ℰ ∪ℱ ⊂ ℰ ⋒ ℱ .

(ii) Let 𝐴,𝐵 ⊂ 𝑋 such that 𝐴 ∩ 𝐵 ≠ ∅, 𝐴 ∪ 𝐵 ≠ 𝑋 and that 𝐴 ⊄ 𝐵, 𝐵 ⊄ 𝐴. Then we find for
ℰ ∶= {∅, 𝐴, 𝐴𝑐 , 𝑋} and ℱ ∶= {∅, 𝐵, 𝐵𝑐 , 𝑋} that

ℰ ∪ℱ = {∅, 𝐴, 𝐵, 𝐴𝑐 , 𝐵𝑐 , 𝑋}

while

ℰ ⋓ ℱ = {∅, 𝐴, 𝐵, 𝐴𝑐 , 𝐵𝑐 , 𝐴 ∪ 𝐵,𝐴𝑐 ∪ 𝐵𝑐 , 𝐴 ∪ 𝐵𝑐 , 𝐴𝑐 ∪ 𝐵,𝑋}.

A similar example works for ℰ ⋒ ℱ .
(iii) Part (i) shows immediately that

𝜎(ℰ ⋓ ℱ ) ⊃ 𝜎(ℰ ∪ℱ ) and 𝜎(ℰ ⋒ ℱ ) ⊃ 𝜎(ℰ ∪ℱ ).
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Conversely, it is obvious that

ℰ ⋓ ℱ ⊂ 𝜎(ℰ ∪ℱ ) and ℰ ⋒ ℱ ⊂ 𝜎(ℰ ∪ℱ )

so that

𝜎(ℰ ⋓ ℱ ) ⊂ 𝜎(ℰ ∪ℱ ) and 𝜎(ℰ ⋒ ℱ ) ⊂ 𝜎(ℰ ∪ℱ )

which proves

𝜎(ℰ ⋓ ℱ ) = 𝜎(ℰ ∪ℱ ) = 𝜎(ℰ ⋒ ℱ ).

■■
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8 Measurable functions.

Solutions to Problems 8.1–8.26

Problem 8.1 Solution: We remark, first of all, that {𝑢 ⩾ 𝛼} = 𝑢−1([𝑥,∞)) and, similarly, for the
other sets. Now assume that {𝑢 ⩾ 𝛽} ∈ 𝒜 for all 𝛽. Then

{𝑢 > 𝛼} = 𝑢−1((𝛼,∞)) = 𝑢−1
(

⋃

𝑘∈N

[

𝛼 + 1
𝑘
,∞

)

)

=
⋃

𝑘∈N
𝑢−1

([

𝛼 + 1
𝑘
,∞

))

=
⋃

𝑘∈N
{𝑢 ⩾ 𝛼 + 1

𝑘
}

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
by assumption ∈𝒜

∈ 𝒜

since 𝒜 is a 𝜎-algebra.
Conversely, assume that {𝑢 > 𝛽} ∈ 𝒜 for all 𝛽. Then

{𝑢 ⩾ 𝛼} = 𝑢−1([𝛼,∞)) = 𝑢−1
(

⋂

𝑘∈N

(

𝛼 − 1
𝑘
,∞

)

)

=
⋂

𝑘∈N
𝑢−1

((

𝛼 − 1
𝑘
,∞

))

=
⋂

𝑘∈N
{𝑢 > 𝛼 − 1

𝑘
}

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
by assumption ∈𝒜

∈ 𝒜 .

since 𝒜 is a 𝜎-algebra. Finally, as
{𝑢 > 𝛼}𝑐 = {𝑢 ⩽ 𝛼} and {𝑢 ⩾ 𝛼}𝑐 = {𝑢 < 𝛼}

we have that {𝑢 > 𝛼} ∈ 𝒜 if, and only if, {𝑢 ⩽ 𝛼} ∈ 𝒜 and the same holds for the sets {𝑢 ⩾
𝛼}, {𝑢 < 𝛼}.

■■

Problem 8.2 Solution: Recall that 𝐵∗ ∈ ℬ if, and only if 𝐵∗ = 𝐵∪𝐶 where 𝐵 ∈ ℬ and 𝐶 is any of
the following sets: ∅, {−∞}, {∞}, {−∞,∞}. Using the fact that ℬ is a 𝜎-algebra and using this
notation (that is: ℬ-sets carry an asterisk ∗) we see
(Σ1) Take 𝐵 = ∅ ∈ ℬ, 𝐶 = ∅ to see that ∅∗ = ∅ ∪ ∅ ∈ ℬ;
(Σ2) Let 𝐵∗ ∈ ℬ. Then (complements are to be taken in ℬ

(𝐵∗)𝑐 = (𝐵 ∪ 𝐶)𝑐
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= 𝐵𝑐 ∩ 𝐶𝑐

= (R ⧵ 𝐵) ∩ (R ⧵ 𝐶)

= (R ⧵ 𝐵 ∪ {−∞,+∞}) ∩ (R ⧵ 𝐶)

= ((R ⧵ 𝐵) ∩ (R ⧵ 𝐶)) ∪ ({−∞,+∞} ∩ (R ⧵ 𝐶))

= (R ⧵ 𝐵) ∪ ({−∞,+∞} ∩ (R ⧵ 𝐶))

which is again of the type ℬ-set union a set of the list ∅, {−∞}, {∞}, {−∞,∞}, hence it is
in ℬ.

(Σ3) Let 𝐵∗
𝑛 ∈ ℬ and 𝐵∗

𝑛 = 𝐵𝑛 ∪ 𝐶𝑛. Then
𝐵∗ =

⋃

𝑛∈N
𝐵∗
𝑛 =

⋃

𝑛∈N
(𝐵𝑛 ∪ 𝐶𝑛) =

⋃

𝑛∈N
𝐵𝑛 ∪

⋃

𝑛∈N
𝐶𝑛 = 𝐵 ∪ 𝐶

with 𝐵 ∈ ℬ and 𝐶 from the list ∅, {−∞}, {∞}, {−∞,∞}, hence 𝐵∗ ∈ ℬ.
A problem is the notation ℬ = ℬ(R). While the left-hand side can easily be defined by (8.5),
ℬ(R) has a well-defined meaning as the (topological) Borel 𝜎-algebra over the set R, i.e. the 𝜎-
algebra in R which is defined via the open sets in R. To describe the open sets 𝒪(R) of R we
use require, that each point 𝑥 ∈ 𝑈∗ ∈ 𝒪(R) admits an open neighbourhood 𝐵(𝑥) inside 𝑈∗. If
𝑥 ≠ ±∞, we take 𝐵(𝑥) as the usual open 𝜖-interval around 𝑥 with 𝜖 > 0 sufficiently small. If
𝑥 = ±∞ we take half-lines [−∞, 𝑎) or (𝑏,+∞] respectively with |𝑎|, |𝑏| sufficiently large. Thus,
𝒪(R) adds to 𝒪(R) a few extra sets and open sets are therefore of the form 𝑈∗ = 𝑈 ∪ 𝐶 with
𝑈 ∈ 𝒪(R) and 𝐶 being of the form [−∞, 𝑎) or (𝑏,+∞] or ∅ or R or unions thereof.
Thus, 𝒪(R) = R ∩ 𝒪(R) and therefore

ℬ(R) = R ∩ℬ(R)

(this time in the proper topological sense).
■■

Problem 8.3 Solution:

(i) Notice that the indicator functions 1𝐴 and 1𝐴𝑐 are measurable. By Corollary 8.11 sums and
products of measurable functions are again measurable. Since ℎ(𝑥) can be written in the form
ℎ(𝑥) = 1𝐴(𝑥)𝑓 (𝑥) + 1𝐴𝑐 (𝑥)𝑔(𝑥), the claim follows.

(ii) The condition 𝑓𝑗|𝐴𝑗∩𝐴𝑘 = 𝑓𝑘|𝐴𝑗∩𝐴𝑘 just guarantees that 𝑓 (𝑥) is well-defined if we set 𝑓 (𝑥) =
𝑓𝑗(𝑥) for 𝑥 ∈ 𝐴𝑗 . Using ⋃

𝑗 𝐴𝑗 = 𝑋 we find for 𝐵 ∈ ℬ(R)

𝑓−1(𝐵) =
⋃

𝑗∈N
𝐴𝑗 ∩ 𝑓−1(𝐵) =

⋃

𝑗∈N
𝐴𝑗 ∩ 𝑓−1

𝑗 (𝐵)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

∈𝒜

∈ 𝒜 .

An alternative solution would be to make the𝐴𝑗’s disjoint, e.g. by setting 𝐶1 ∶= 𝐴1, 𝐶𝑘 ∶=
𝐴𝑘 ⧵ (𝐴1 ∪⋯ ∪ 𝐴𝑘−1). Then

𝑓 =
∑

𝑗
1𝐶𝑗𝑓 =

∑

𝑗
1𝐶𝑗𝑓𝑗
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and the claim follows from Corollaries 8.11 and 8.10.
■■

Problem 8.4 Solution: Since 1𝐵 is ℬ-measurable if, and only if, 𝐵 ∈ ℬ the claim follows by taking
𝐵 ∈ ℬ such that 𝐵 ∉ 𝒜 (this is possible as ℬ ⊊ 𝒜 .

■■

Problem 8.5 Solution: By definition, 𝑓 ∈  if it is a step-function of the form 𝑓 =
∑𝑁
𝑗=0 𝑎𝑗1𝐴𝑗 with

some 𝑎𝑗 ∈ R and 𝐴𝑗 ∈ 𝒜 . Since

𝑓+ =
∑

0⩽𝑗⩽𝑁
𝑎𝑗⩾0

𝑎𝑗1𝐴𝑗 and 𝑓− =
∑

0⩽𝑗⩽𝑁
𝑎𝑗⩽0

𝑎𝑗1𝐴𝑗 ,

𝑓± are again of this form and therefore simple functions.
The converse is also true since 𝑓+

𝑓 −𝑓
−—see (8.8) or Problem 8.6—and since sums and differences

of simple functions are again simple.
■■

Problem 8.6 Solution: By definition

𝑢+(𝑥) = max{𝑢(𝑥), 0} and 𝑢−(𝑥) = −min{𝑢(𝑥), 0}.

Now the claim follows from the elementary identities that for any two numbers 𝑎, 𝑏 ∈ R

𝑎 + 0 = max{𝑎, 0} + min{𝑎, 0} and |𝑎| = max{𝑎, 0} − min{𝑎, 0}

which are easily verified by considering all possible cases 𝑎 ⩽ 0 resp. 𝑎 ⩾ 0.
■■

Problem 8.7 Solution: If we show that {𝑢 > 𝛼} is an open set, it is also a Borel set, hence 𝑢 is
measurable.
Let us first understand what openness means: {𝑢 > 𝛼} is open means that for 𝑥 ∈ {𝑢 > 𝛼} we find
some (symmetric) neighbourhood (a ‘ball’) of the type (𝑥 − ℎ, 𝑥 + ℎ) ⊂ {𝑢 > 𝛼}. What does this
mean? Obviously, that 𝑢(𝑦) > 𝛼 for any 𝑦 ∈ (𝑥−ℎ, 𝑥+ℎ) and, in other words, 𝑢(𝑦) > 𝛼 whenever
𝑦 is such that |𝑥 − 𝑦| < ℎ. And this is the hint of how to use continuity: we use it in order to find
the value of ℎ.
𝑢 being continuous at 𝑥 means that

∀ 𝜖 > 0 ∃ 𝛿 > 0 ∀𝑦 ∶ |𝑥 − 𝑦| < 𝛿 ∶ |𝑢(𝑥) − 𝑢(𝑦)| < 𝜖.

Since 𝑢(𝑥) > 𝛼 we know that for a sufficiently small 𝜖 we still have 𝑢(𝑥) ⩾ 𝛼 + 𝜖. Take this 𝜖 and
find the corresponding 𝛿. Then

𝑢(𝑥) − 𝑢(𝑦) ⩽ |𝑢(𝑥) − 𝑢(𝑦)| < 𝜖 ∀ |𝑥 − 𝑦| < 𝛿
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and since 𝛼 + 𝜖 ⩽ 𝑢(𝑥) we get

𝛼 + 𝜖 − 𝑢(𝑦) < 𝜖 ∀ |𝑥 − 𝑦| < 𝛿

i.e. 𝑢(𝑦) > 𝛼 for 𝑦 such that |𝑥 − 𝑦| < 𝛿. This means, however, that ℎ = 𝛿 does the job.
■■

Problem 8.8 Solution: The minimum/maximum of two numbers 𝑎, 𝑏 ∈ R can be written in the form

min{𝑎, 𝑏} = 1
2
(

𝑎 + 𝑏 − |𝑎 − 𝑏|
)

max{𝑎, 𝑏} = 1
2
(

𝑎 + 𝑏 + |𝑎 − 𝑏|
)

which shows that we can write min{𝑥, 0} and max{𝑥, 0} as a combination of continuous functions.
As such they are again continuous, hence measurable. Thus,

𝑢+ = max{𝑢, 0}, 𝑢− = −min{𝑢, 0}

are compositions of measurable functions, hence measurable.
■■

Problem 8.9 Solution:

(i) From the definition of the supremum we get

sup
𝑖
𝑓𝑖(𝑥) > 𝜆 ⇐⇒ ∃𝑖0 ∈ 𝐼 ∶ 𝑓𝑖0(𝑥) > 𝜆

⇐⇒ ∃𝑖0 ∈ 𝐼 ∶ 𝑓𝑖0(𝑥) > 𝜆

⇐⇒ 𝑥 ∈
⋃

𝑖
{𝑓𝑖 > 𝜆}.

(ii) Let 𝑥 ∈ {sup𝑖 𝑓𝑖 < 𝜆}. Then we have 𝑓𝑗(𝑥) ⩽ sup𝑖∈𝐼 𝑓𝑖(𝑥) < 𝜆 for all 𝑗 ∈ 𝐼 ; this
means 𝑥 ∈ {𝑓𝑗 < 𝜆} for all 𝑗 ∈ 𝐼 and so 𝑥 ∈

⋂

𝑗∈𝐼{𝑓𝑗 < 𝜆}.
(Note: ‘⊃’ is, in general, wrong. To see this, use e.g. 𝑓𝑖(𝑥) ∶= −1

𝑖
, 𝑖 ∈ N, and

𝜆 = 0. Then we have {sup𝑖 𝑓𝑖 < 0} = ∅ ≠ R =
⋂

𝑖{𝑓𝑖 < 0}.)
(iii) Let 𝑥 ∈

⋃

𝑖{𝑓𝑖 ⩾ 𝜆}. Then there is some 𝑖0 ∈ 𝐼 such that 𝑥 ∈ {𝑓𝑖0 ⩾ 𝜆}, hence

sup
𝑖∈𝐼

𝑓 (𝑥) ⩾ 𝑓𝑖0(𝑥) ⩾ 𝜆.

(iv) This follows from

sup
𝑖∈𝐼

𝑓𝑖(𝑥) ⩽ 𝜆 ⇐⇒ ∀𝑖 ∈ 𝐼 ∶ 𝑓𝑖(𝑥) ⩽ 𝜆

⇐⇒ ∀𝑖 ∈ 𝐼 ∶ 𝑥 ∈ {𝑓𝑖 ⩽ 𝜆}

⇐⇒ 𝑥 ∈
⋂

𝑖∈𝐼
{𝑓𝑖 ⩽ 𝜆}.

(v)–(viii) can be proved like parts (i)–(iv).
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■■

Problem 8.10 Solution: The 𝑓𝑗 are step-functions where the bases of the steps are the sets 𝐴𝑗𝑘 and
𝐴𝑗 . Since they are of the form, e.g. {𝑘2−𝑗 ⩽ 𝑢 < (𝑘 + 1)2−𝑗

}

=
{

𝑘2−𝑗 ⩽ 𝑢
}

∩
{

𝑢 < (𝑘 + 1)2−𝑗
},

it is clear that they are not only in 𝒜 but in 𝜎(𝑢).
■■

Problem 8.11 Solution:

Corollary 8.12 If 𝑢± are measurable, it is clear that 𝑢 = 𝑢+ − 𝑢− is measurable since differences
of measurable functions are measurable.
(For the converse we could use the previous Problem 8.10, but we give an alternative proof...)
Conversely, let 𝑢 be measurable. Then 𝑠𝑛 ↑ 𝑢 (this is short for: lim𝑛→∞ 𝑠𝑛(𝑥) = 𝑢(𝑥) and this
is an increasing limit) for some sequence of simple functions 𝑠𝑛. Now it is clear that 𝑠+𝑛 ↑ 𝑢+,
and 𝑠+𝑛 is simple, i.e. 𝑢+ is measurable. As 𝑢 = 𝑢+−𝑢− we conclude that 𝑢− = 𝑢+−𝑢 is again
measurable as difference of two measurable functions. (Notice that in no case ‘∞−∞’ can
occur!)

Corollary 8.13 This is trivial if the difference 𝑢 − 𝑣 is defined. In this case it is measurable as
difference of measurable functions, so

{𝑢 < 𝑣} = {0 < 𝑢 − 𝑣}

etc. is measurable.
Let us be a bit more careful and consider the case where we could encounter expressions of
the type ‘∞−∞’. Since 𝑠𝑛 ↑ 𝑢 for simple functions (they are always R-valued...) we get

{𝑢 ⩽ 𝑣} = {sup
𝑛
𝑠𝑛 ⩽ 𝑢}

(∗)
=

⋂

𝑛
{𝑠𝑛 ⩽ 𝑢} =

⋂

𝑛
{0 ⩽ 𝑢 − 𝑠𝑛}

and the latter is a union of measurable sets, hence measurable. Now {𝑢 < 𝑣} = {𝑢 ⩾ 𝑣}𝑐 and
we get measurability after switching the roles of 𝑢 and 𝑣. Finally {𝑢 = 𝑣} = {𝑢 ⩽ 𝑣}∩{𝑢 ⩾ 𝑣}
and {𝑢 ≠ 𝑣} = {𝑢 = 𝑣}𝑐 .
Let me stress the importance of ‘⩽’ in (∗) above: we use here

𝑥 ∈ {sup
𝑛
𝑠𝑛 ⩽ 𝑢} ⇐⇒ sup

𝑛
𝑠𝑛(𝑥) ⩽ 𝑢(𝑥)

(∗∗)
⇐⇒ 𝑠𝑛(𝑥) ⩽ 𝑢(𝑥) ∀ 𝑛

⇐⇒ 𝑥 ∈
⋂

{𝑠𝑛 ⩽ 𝑢}

and this would be incorrect if we had had ‘<’, since the argument would break down at (∗∗)
(only one implication would be valid: ‘ ⇐⇒ ’).

■■

Problem 8.12 Solution: Since𝑋 is 𝜎-finite, there is an exhausting sequence𝐴𝑛 ↑ 𝑋 with𝜇(𝐴𝑛) <∞.
Let 𝑢 ∈ (𝒜 ).
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• It is clearly enough to consider 𝑢 ⩾ 0, otherwise we consider positive and negative parts
separately. By the Sombrero lemma (Theorem 8.8) there is a sequence (𝑢𝑛)𝑛 ⊂ (𝒜 ) with
0 ⩽ 𝑢𝑛(𝑥) ↑ 𝑢(𝑥) for all 𝑥 ∈ 𝑋. Since 𝐴𝑛 ↑ 𝑋, we also get 𝑢𝑛1𝐴𝑛 ↑ 𝑢, i.e. we can without
loss of generality assume that the standard representation of each 𝑢𝑛 is of the form

𝑢𝑛 =
𝑀(𝑛)
∑

𝑚=1
𝛼𝑛,𝑚1𝐴𝑛,𝑚 , 𝛼𝑛,𝑚 ⩾ 0, 𝐴𝑛,𝑚 ∈ 𝒜 , 𝜇(𝐴𝑛,𝑚) <∞.

• From (an obvious variant of) Problem 5.12 we know that we can approximate 𝐴𝑛,𝑚 having
finite measure by some 𝐺𝑛,𝑚 ∈ 𝒢 in such a way that 𝜇{1𝐺𝑛,𝑚 ≠ 1𝐴𝑛,𝑚} ⩽ 2−𝑛∕𝑀(𝑛) (note:
|1𝐴 − 1𝐵| = 1𝐴▵𝐵).
Moreover,

𝑓𝑛(𝑥) ∶=
𝑀(𝑛)
∑

𝑚=1
𝛼𝑛,𝑚1𝐺𝑛,𝑚(𝑥)

and since {𝑓𝑛 ≠ 𝑢𝑛} ⊂
⋃

𝑚𝐺𝑛,𝑚 ▵𝐴𝑛,𝑚, we get 𝜇{𝑓𝑛 ≠ 𝑢𝑛} ⩽ 2−𝑛.
As lim𝑛→∞ 𝑢𝑛(𝑥) = 𝑢(𝑥) for all 𝑥, we find from the continuity of the measure (from above)

𝜇( lim
𝑛→∞

𝑓𝑛 ≠ 𝑢) ⩽ 𝜇

(

⋂

𝑘∈N

⋃

𝑛⩾𝑘
{𝑓𝑛 ≠ 𝑢𝑛}

)

⩽ lim
𝑘→∞

∞
∑

𝑛=𝑘
𝜇{𝑓𝑛 ≠ 𝑢𝑛}

⩽ lim
𝑘→∞

∞
∑

𝑛=𝑘
2−𝑛 = 0.

This shows that (𝒢 ) ∋ 𝑓𝑛(𝑥) → 𝑢(𝑥) for all 𝑥 ∉ 𝑁 with 𝜇(𝑁) = 0.
An alternative proof can be based on the monotone class theorem. We sketch the steps below
(notation as above and in Theorem 8.15):

• Set𝑛 ∶=
{

𝑢 ∈ (𝐴𝑛 ∩𝒜 ) ∶ ∃(𝑓𝑖)𝑖 ⊂ (𝐴𝑛 ∩ 𝒢 ), ∃𝑁𝑛 ∈ 𝒜 , 𝜇(𝑁𝑛) = 0, ∀𝑥 ∉ 𝑁𝑛 ∶ 𝑓𝑖(𝑥) → 𝑢(𝑥)
}.

Obviously 𝑛 is a vector space which is stable under bounded suprema (use a diagonal argu-
ment and the fact that the union of countably many null sets is again a null set).

• Observe that 1𝐴𝑛 ,1𝐴𝑛∩𝐴 ∈ 𝑛 for all 𝐴 ∈ 𝒜 by the result of Problem 5.12.
• Use the monotone class theorem.
• Glue together the sets 𝑛 by considering 𝑢 = lim𝑛 𝑢1𝐴𝑛 . This leads again to a countable union

of null sets.
■■

Problem 8.13 Solution: If 𝑢 is differentiable, it is continuous, hence measurable. Moreover, since 𝑢′
exists, we can write it in the form

𝑢′(𝑥) = lim
𝑘→∞

𝑢
(

𝑥 + 1
𝑘

)

− 𝑢(𝑥)
1
𝑘
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i.e. as limit of measurable functions. Thus, 𝑢′ is also measurable.
■■

Problem 8.14 Solution: It is sometimes necessary to distinguish between domain and range. We use
the subscript 𝑥 to signal the domain, the subscript 𝑦 for the range.

(i) Since 𝑓 ∶ R𝑥 → R𝑦 is 𝑓 (𝑥) = 𝑥, the inverse function is clearly 𝑓−1(𝑦) = 𝑦. So if we
take any Borel set 𝐵 ∈ ℬ(R𝑦) we get 𝐵 = 𝑓−1(𝐵) ⊂ R𝑥. Since, as we have seen, 𝜎(𝑓 ) =
𝑓−1(ℬ(R𝑦)), the above argument shows that 𝑓−1(ℬ(R𝑦)) = ℬ(R𝑥), hence 𝜎(𝑓 ) = ℬ(R𝑥).

(ii) The inverse map of 𝑔(𝑥) = 𝑥2 is multi-valued, i.e. if 𝑦 = 𝑥2, then 𝑦 = ±
√

𝑥. So 𝑔−1 ∶
[0,∞) → R, 𝑔−1(𝑦) = ±

√

𝑦. Let us take some 𝐵 ∈ ℬ(R𝑦). Since 𝑔−1 is only defined
for positive numbers (squares yield positive numbers only!) we have that 𝑔−1(𝐵) = 𝑔−1(𝐵 ∩
[0,∞)) =

√

𝐵 ∩ [0,∞)∪(−
√

𝐵 ∩ [0,∞)) (where we use the obvious notation √

𝐴 = {
√

𝑎 ∶
𝑎 ∈ 𝐴} and −𝐴 = {−𝑎 ∶ 𝑎 ∈ 𝐴} whenever 𝐴 is a set). This shows that

𝜎(𝑔) = {
√

𝐵 ∪ (−
√

𝐵) ∶ 𝐵 ∈ ℬ, 𝐵 ⊂ [0,∞)}

= {
√

𝐵 ∪ (−
√

𝐵) ∶ 𝐵 ∈ [0,∞) ∩ℬ}

where we use the notation of trace 𝜎-algebras in the latter identity.
(It is an instructive exercise to check that 𝜎(𝑔) is indeed a 𝜎-algebra. This is, of course, clear
from the general theory since 𝜎(𝑔) = 𝑔−1([0,∞) ∩ ℬ), i.e. it is the pre-image of the trace
𝜎-algebra and pre-images of 𝜎-algebras are always 𝜎-algebras.

(iii) A very similar calculation as in part (ii) shows that

𝜎(ℎ) = {𝐵 ∪ (−𝐵) ∶ 𝐵 ∈ ℬ, 𝐵 ⊂ [0,∞)}

= {𝐵 ∪ (−𝐵) ∶ 𝐵 ∈ [0,∞) ∩ℬ}.

(iv) As warm-up we follow the hint. The set {(𝑥, 𝑦) ∶ 𝑥 + 𝑦 = 𝛼} is the line 𝑦 = 𝛼 − 𝑥 in the
𝑥-𝑦-plane, i.e. a line with slope −1 and shift 𝛼. So {(𝑥, 𝑦) ∶ 𝑥 + 𝑦 ⩾ 𝛼} would be the points
above this line and {(𝑥, 𝑦) ∶ 𝛽 ⩾ 𝑥 + 𝑦 ⩾ 𝛼} = {(𝑥, 𝑦) ∶ 𝑥 + 𝑦 ∈ [𝛼, 𝛽]} would be the points
in the strip which has the lines 𝑦 = 𝛼 − 𝑥 and 𝑦 = 𝛽 − 𝑥 as boundaries.
More general, take a Borel set 𝐵 ∈ ℬ(R) and observe that

𝐹−1(𝐵) = {(𝑥, 𝑦) ∶ 𝑥 + 𝑦 ∈ 𝐵}.

This set is, in an abuse of notation, 𝑦 = 𝐵 − 𝑥, i.e. these are all lines with slope −1 (135
degrees) and every possible shift from the set 𝐵—it gives a kind of stripe-pattern. To sum
up:

𝜎(𝐹 ) = {all 135-degree diagonal stripes in R2 with ‘base’ 𝐵 ∈ ℬ(R)}.

(v) Again follow the hint to see that {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 = 𝑟} is a circle, radius 𝑟, centre (0, 0). So
{(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 ⩽ 𝑟} is the solid disk, radius 𝑟, centre (0, 0) and {(𝑥, 𝑦) ∶ 𝑅 ⩾ 𝑥2 + 𝑦2 ⩾
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𝑟} = {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 ∈ [𝑟, 𝑅]} is the annulus with exterior radius 𝑅 and interior radius 𝑟
about (0, 0).
More general, take a Borel set 𝐵 ⊂ [0,∞), 𝐵 ∈ ℬ(R), i.e. 𝐵 ∈ [0,∞) ∩ ℬ(R) (negative
radii don’t make sense!) and observe that the set {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 ∈ 𝐵} gives a ring-pattern
which is ‘supported’ by the set 𝐵 (i.e. we take all circles passing through 𝐵...). To sum up:

𝜎(𝐺) ={a set consists of all circles in R2 about (0, 0)
passing through 𝐵 ∈ ℬ[0,∞) ∩ 𝐵(R)}.

■■

Problem 8.15 Solution: Assume first that 𝑢 is injective. This means that every point in the range
𝑢(R) comes exactly from one uniquely defined 𝑥 ∈ R. This can be expressed by saying that
{𝑥} = 𝑢−1({𝑢(𝑥)}) — but the singleton {𝑢(𝑥)} is a Borel set in the range, so {𝑥} ∈ 𝜎(𝑢) as
𝜎(𝑢) = 𝑢−1(𝑢(R) ∩ℬ).
Conversely, assume that for each 𝑥 we have {𝑥} ∈ 𝜎(𝑢). Fix an 𝑥0 and call 𝑢(𝑥0) = 𝛼. Since 𝑢
is measurable, the set {𝑢 = 𝛼} = {𝑥 ∶ 𝑢(𝑥) = 𝛼} is measurable and, clearly, {𝑥0} ⊂ {𝑢 = 𝛼}.
But if we had another 𝑥0 ≠ 𝑥1 ∈ {𝑢 = 𝛼} this would mean that we could never ‘produce’ {𝑥0} on
its own as a pre-image of some set, but we must be able to do so as {𝑥0} ∈ 𝜎(𝑢), by assumption.
Thus, 𝑥1 = 𝑥0. To sum up, we have shown that {𝑢 = 𝛼} consists of one point only, i.e. we have
shown that 𝑢(𝑥0) = 𝑢(𝑥1) implies 𝑥0 = 𝑥1 which is just injectivity.

■■

Problem 8.16 Solution: Clearly 𝑢 ∶ R → [0,∞). So let’s take 𝐼 = (𝑎, 𝑏) ⊂ [0,∞). Then
𝑢−1((𝑎, 𝑏)) = (−𝑏,−𝑎) ∪ (𝑎, 𝑏). This shows that for 𝜇 ∶= 𝜆◦𝑢−1

𝜇(𝑎, 𝑏) = 𝜆◦𝑢−1((𝑎, 𝑏)) = 𝜆
(

(−𝑏,−𝑎) ∪ (𝑎, 𝑏)
)

= 𝜆(−𝑏,−𝑎) + 𝜆(𝑎, 𝑏)

= (−𝑎 − (−𝑏)) + (𝑏 − 𝑎) = 2(𝑏 − 𝑎) = 2𝜆((𝑎, 𝑏)).

This shows that 𝜇 = 2𝜆 if we allow only intervals from [0,∞), i.e.

𝜇(𝐼) = 2𝜆
(

𝐼 ∩ [0,∞)
) for any interval 𝐼 ⊂ R.

Since a measure on the Borel sets is completely described by (either: open or closed or half-open
or half-closed) intervals (the intervals generate the Borel sets!), we can invoke the uniqueness
theorem to guarantee that the above equality holds for all Borel sets.

■■

Problem 8.17 Solution:
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(i) Because of Lemma 7.2 it is enough to check measurability for some generator. Let 𝐵 =
[𝑎, 𝑏) ∈ 𝒥 , 𝑎 < 𝑏. We have

𝑄−1(𝐵) = 𝐸 ∩

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∅ if 𝑎, 𝑏 ⩽ 0

(−
√

𝑏,+
√

𝑏) if 𝑎 ⩽ 0, 𝑏 > 0
(

−
√

𝑏,−
√

𝑎
]

∪
[

√

𝑎,
√

𝑏
)

if 𝑎, 𝑏 > 0

These sets are in ℬ(𝐸), therefore 𝑄 is ℬ(𝐸)∕ℬ(R)-measurable.
(ii) Denote by 𝑇 the embedding of 𝐸 into R, i.e. 𝑇 ∶ 𝑥 → 𝑥. Formally, we get

𝜈(𝑇 2 ∈ 𝐵) = 𝜈(±𝑇 ∈
√

𝐵).

More precisely: we have already seen that 𝜈◦𝑄−1 is a measure (Theorem 7.6). Since 𝒥

is ∩-stable and 𝜈◦𝑄−1 a finite measure (𝜈 comes from a finite Lebesgue measure), we get
uniqueness from Theorem 5.7, and it enough to consider sets of the form 𝐵 = [𝑎, 𝑏) ∈ 𝒥 ,
𝑎 ⩽ 𝑏.

• Part (i) gives

𝜈(𝑄−1(𝐵)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑏 ⩽ 0 or 𝑎 > 1

𝜆([0,
√

𝑏)), 𝑎 < 0, 𝑏 > 0

𝜆([
√

𝑎,
√

𝑏 ∧ 1)), 0 < 𝑎 < 1

=
⎧

⎪

⎨

⎪

⎩

0, 𝑏 ⩽ 0 or 𝑎 > 1
√

𝑏 ∧ 1 −
√

0 ∨ 𝑎 ∧ 1, otherwise.

• Again by part (i)

𝜈(𝑄−1(𝐵)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑏 ⩽ 0 or 𝑎 > 1

𝜆([(−
√

𝑏) ∨ (−1),
√

𝑏 ∧ 1)), 𝑎 < 0, 𝑏 > 0
1
2𝜆([(−

√

𝑏) ∨ (−1),
√

𝑎) ∪ [
√

𝑎,
√

𝑏 ∧ 1)), 0 < 𝑎 < 1

=
⎧

⎪

⎨

⎪

⎩

0, 𝑏 ⩽ 0 or 𝑎 > 1

21
2𝜆([0 ∨

√

𝑎 ∧ 1,
√

𝑏 ∧ 1)), otherwise

=
⎧

⎪

⎨

⎪

⎩

0, 𝑏 ⩽ 0 or 𝑎 > 1

(
√

𝑏 ∧ 1)) − (0 ∧
√

𝑎 ∧ 1), otherwise

■■

Problem 8.18 Solution:
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• clear, since 𝑢(𝑥− 2) is a combination of the measurable shift 𝜏2 and the measurable function
𝑢.

• this is trivial since 𝑢 → 𝑒𝑢 is a continuous function, as such it is measurable and combinations
of measurable functions are again measurable.

• this is trivial since 𝑢 → sin(𝑢 + 8) is a continuous function, as such it is measurable and
combinations of measurable functions are again measurable.

• iterate Problem 8.13
• obviously, sgn 𝑥 = (−1) ⋅ 1(−∞,0)(𝑥) + 0 ⋅ 1{0}(𝑥) + 1 ⋅ 1(0,∞)(𝑥), i.e. a measurable function.

Using the first example, we see now that sgn 𝑢(𝑥 − 7) is a combination of three measurable
functions.

■■

Problem 8.19 Solution: Consider, for instance, 𝑇 ∶ [0, 1) → [0, 1) where 𝑇 (𝑥) = 𝑥
2 and 𝑤𝑛 ∶

[0, 1) → R with 𝑤𝑛(𝑥) = (−1)𝑛1[1∕2,1)(𝑥).
■■

Problem 8.20 Solution: Let𝐴 ⊂ R be such that𝐴 ∉ ℬ. Then it is clear that 𝑢(𝑥) = 1𝐴(𝑥)−1𝐴𝑐 (𝑥) is
NOT measurable (take, e.g. 𝐴 = {𝑓 = 1} which should be measurable for measurable functions),
but clearly, |𝑓 (𝑥)| = 1 and as constant function this IS measurable.

■■

Problem 8.21 Solution: We want to show that the sets {𝑢 ⩽ 𝛼} are Borel sets. We will even show
that they are intervals, hence Borel sets. Imagine the graph of an increasing function and the line
𝑦 = 𝛼 cutting through. Essentially we have three scenarios: the cut happens at a point where (a) 𝑢
is continuous and strictly increasing or (b) 𝑢 is flat or (c) 𝑢 jumps—i.e. has a gap; these three cases
are shown in the following pictures: From the three pictures it is clear that we get in any case an

✻

✲

�

�
ab

✻

✲

�

�
c b a

✻

✲

�

�
ab

1

interval for the sub-level sets {𝑢 ⩽ 𝛾} where 𝛾 is some level (in the pic’s 𝛾 = 𝛼 or = 𝛽), you can
read off the intervals on the abscissa where the dotted lines cross the abscissa.
Now let’s look at the additional conditions: First the intuition: From the first picture, the continuous
and strictly increasing case, it is clear that we can produce any interval (−∞, 𝑏] to (−∞, 𝑎] by
looking at {𝑢 ⩽ 𝛽} to {𝑢 ⩽ 𝛼} my moving up the 𝛽-line to level 𝛼. The point is here that we get
all intervals, so we get a generator of the Borel sets, so we should get all Borel sets.
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The second picture is bad: the level set {𝑢 ⩽ 𝛽} is (−∞, 𝑏] and all level sets below will only come
up to the point (−∞, 𝑐], so there is no chance to get any set contained in (𝑐, 𝑏), i.e. we cannot get
all Borel sets.
The third picture is good again, because the vertical jump does not hurt. The only ‘problem’ is
whether {𝑢 ⩽ 𝛽} is (−∞, 𝑏] or (−∞, 𝑏) which essentially depends on the property of the graph
whether 𝑢(𝑏) = 𝛽 or not, but this is not so relevant here, we just must make sure that we can get
more or less all intervals. The reason, really, is that jumps as we described them here can only
happen countably often, so this problem occurs only countably often, and we can overcome it
therefore.
So the point is: we must disallow flat bits, i.e. 𝜎(𝑢) is the Borel 𝜎-algebra if, and only, if 𝑢 is strictly
increasing, i.e. if, and only if, 𝑢 is injective. (Note that this would have been clear already from
Problem 8.15, but our approach here is much more intuitive.)

■■

Problem 8.22 Solution: For every 𝑛 ∈ N the function

𝑔𝑛(𝑥) ∶=
𝑛
∑

𝑖=1
2−𝑖1𝐺𝑖(𝑥), 𝑥 ∈ 𝑋,

is 𝒜∕ℬ(R)-measurable. Therefore, 𝑔 = lim𝑛→∞ 𝑔𝑛 is 𝒜∕ℬ(R)-measurable (pointwise limit of
measurable functions), and so 𝜎(𝑔) ⊂ 𝒜 . For the inclusion 𝒜 ⊂ 𝜎(𝑔) we define

Σ ∶= {𝐴 ∈ 𝒜 ∶ 𝐴 ∈ 𝜎(𝑔)}.

Σ ist a 𝜎-Algebra:
(Σ1) 𝑋 ∈ Σ since 𝑋 ∈ 𝒜 and 𝑋 ∈ 𝜎(𝑔).
(Σ2) For 𝐴 ∈ Σ we have 𝐴 ∈ 𝜎(𝑔); since 𝜎(𝑔) is a 𝜎-algebra, we see that 𝐴𝑐 ∈ 𝜎(𝑔); hence,

𝐴𝑐 ∈ Σ.
(Σ3) For (𝐴𝑛)𝑛∈N ⊂ Σ we see ⋃

𝑛∈N𝐴𝑛 ∈ 𝜎(𝑔), thus ⋃𝑛𝐴𝑛 ∈ Σ.
Since 𝐺𝑖 = {𝑔 = 2−𝑖} ∈ 𝜎(𝑔) we see that 𝒢 ⊂ Σ. Consequently, 𝒜 = 𝜎(𝒢 ) ⊂ 𝜎(𝑔).

■■

Problem 8.23 Solution: Without loss of generality, assume that 𝑢 is right-continuous (left-continuity
works analogously). Approximate 𝑢 with simple functions:

𝑢𝑛(𝑥) ∶=
2𝑛2
∑

𝑖=1
𝑢(𝑥𝑛𝑖+1)1[𝑥𝑛𝑖 ,𝑥𝑛𝑖+1)(𝑥)

where 𝑥𝑛𝑖 ∶= −𝑛 + 𝑖
𝑛
. The functions 𝑢𝑛 are obviously Borel measurable. We claim:

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥).
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Indeed: For each 𝑥 ∈ R there is some 𝑁 ∈ N such that 𝑥 ∈ [−𝑁,𝑁]. By definition, we find for
all 𝑛 ⩾ 𝑁 ,

𝑢𝑛(𝑥) = 𝑢
(

⌊𝑛𝑥⌋ + 1
𝑛

)

( ⌊𝑛𝑥⌋+1
𝑛

is the smallest number of the form 𝑘
𝑛
, 𝑘 ∈ Z, which exceeds 𝑥.) Because of the right-

continuity of 𝑢 we get 𝑢𝑛(𝑥) → 𝑢(𝑥) as 𝑛 → ∞. Therefore, 𝑢 is Borel-measurable (pointwise limit
of measurable functions).

■■

Problem 8.24 Solution: Every linear map on a finite-dimensional vector space is continuous, hence
Borel measurable.
Note that 𝑓 ∶ R → R2, 𝑓 (𝑥) ∶= (𝑥, 0)⊤, is continuous, hence Borel measurable. This map is,
however, not measurable with respect to the completed Borel 𝜎-algebras:
To see this, let 𝐴 ⊂ R, 𝐴 ∉ ℬ(R), be a subset of a Lebesgue null set. For 𝐴 × {0} we see
that 𝐴 × {0} ∈ ℬ(R2); this follows from 𝐴 × {0} ⊂ 𝑁 ∶= R × {0} and 𝜆2(𝑁) = 0 (cf.
Problem 4.15, Problem 6.7). On the other hand, 𝑓−1(𝐴 × {0}) = 𝐴 ∉ ℬ(R) ⊂ ℬ(R), i.e.
𝑓 ∶ (R,ℬ(R)) → (R2,ℬ(R2)) is not measurable.

■■

Problem 8.25 Solution: Without loss of generality we consider the right-continuous situation. The
left-continuous counterpart is very similar.

• Fix 𝜔 ∈ Ω. Note that it is enough to show that 𝑡 → 𝜉(𝑡, 𝜔)1[𝑎,𝑏](𝑡) =∶ 𝜉𝑎,𝑏(𝑡, 𝜔) is measurable
for all 𝑎 < 𝑏.
Indeed: Because of

𝜉(𝑡, 𝜔) = lim
𝑅→∞

𝜉−𝑅,𝑅(𝑡, 𝜔)

the map 𝑡 → 𝜉(𝑡, 𝜔) is measurable (pointwise limit of measurable functions, cf. Corol-
lary 8.10.
In order to keep notation simple, we assume that 𝑎 = 0 and 𝑏 = 1; the general case is similar.
Define

𝜉𝑛(𝑡, 𝜔) ∶=
2𝑛−1
∑

𝑖=0
𝜉
(

𝑖+1
2𝑛 , 𝜔

)

1[ 𝑖
2𝑛 ,

𝑖+1
2𝑛 ∧1

)(𝑡).

For any 𝑡 ∈ [0, 1] we have ⌊2𝑛𝑡⌋+1
2𝑛 ↓ 𝑡, and because of right-continuity,

𝜉𝑛(𝑡, 𝜔) = 𝜉
(

⌊2𝑛𝑡⌋ + 1
2𝑛

, 𝜔
)

←←←←←←←←←←←←←←←←←←←←→
𝑛→∞

𝜉(𝑡, 𝜔)
𝑡 ∈ [0, 1]
= 𝜉0,1(𝑡, 𝜔).

For 𝑡 ∉ [0, 1] we have 𝜉𝑛(𝑡, 𝜔) = 0 = 𝜉0,1(𝑡, 𝜔) and, thus,

𝜉0,1(𝑡, 𝜔) = lim
𝑛→∞

𝜉𝑛(𝑡, 𝜔) ∀𝑡 ∈ R, 𝜔 ∈ Ω.
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Consequently, it is enough to show (by Corollary 8.10) that each 𝑡 → 𝜉𝑛(𝑡, 𝜔) is measurable.
For 𝛼 ∈ R we get

{𝑡 ∶ 𝜉𝑛(𝑡, 𝜔) ⩽ 𝛼} =
⋃

𝑖∈𝐼

[

𝑖
2𝑛
, 𝑖 + 1

2𝑛

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
∈ℬ(R)

∈ ℬ(R)

where
𝐼 ∶=

{

𝑖 ∈ {0,… , 2𝑛 − 1}; 𝜉
( 𝑖 + 1

2𝑛
, 𝜔

)

⩽ 𝛼
}

.

This proves that 𝑡 → 𝜉𝑛(𝑡, 𝜔) is measurable.
• Since 𝑡 → 𝜉(𝑡, 𝜔) is right-continuous, we have

sup
𝑡∈R

𝜉(𝑡, 𝜔) = sup
𝑡∈Q

𝜉(𝑡, 𝜔). (⋆)

Indeed: The estimate ‘⩾’ is clear, i.e. we only have to show ‘⩽’. Using the definition of the
supremum, there is for each 𝜖 > 0 some 𝑠 ∈ R such that

𝜉(𝑠, 𝜔) ⩾ sup
𝑡∈R

𝜉(𝑡, 𝜔) − 𝜖.

Because of right-continuity we find some 𝑟 ∈ Q, 𝑟 > 𝑠, such that |𝜉(𝑟, 𝜔) − 𝜉(𝑠, 𝜔)| ⩽ 𝜖.
Therefore,

sup
𝑡∈Q

𝜉(𝑡, 𝜔) ⩾ 𝜉(𝑟, 𝜔) ⩾ 𝜉(𝑠, 𝜔) − 𝜖 ⩾ sup
𝑡∈R

𝜉(𝑡, 𝜔) − 2𝜖.

Since 𝜖 > 0 is arbitrary, the claim follows.
From (⋆) we get that the map 𝜔 → sup𝑡∈R 𝜉(𝑡, 𝜔) is measurable (as supremum of countably
many measurable functions, cf. Corollary 8.10).

■■

Problem 8.26 Solution: ‘⇐’: Assume that there are 𝒜∕ℬ(R)-measurable functions 𝑓, 𝑔 ∶ 𝑋 → R

satisfying 𝑓 ⩽ 𝜙 ⩽ 𝑔 and 𝜇{𝑓 ≠ 𝑔} = 0. For any 𝑥 ∈ R we get

{𝜙 ⩽ 𝑥} = {𝜙 ⩽ 𝑥, 𝑓 = 𝑔} ∪ {𝜙 ⩽ 𝑥, 𝑓 ≠ 𝑔}

= {𝑔 ⩽ 𝑥, 𝑓 = 𝑔}
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝐴

∪ {𝜙 ⩽ 𝑥, 𝑓 ≠ 𝑔}
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝑁

.

Since 𝑓 and 𝑔 are measurable, we see that 𝐴 ∈ 𝒜 . For 𝑁 we only get 𝑁 ⊂ {𝑓 ≠ 𝑔}, i.e. 𝑁 is a
subset of a 𝜇-null set. By the definition of 𝒜 (see Problem 4.15) we find {𝜙 ⩽ 𝑥} ∈ 𝒜 .
‘⇒’: Assume, first, that 𝜙 is a simple function, i.e.

𝜙(𝑥) =
𝑁
∑

𝑖=1
𝑐𝑖1𝐴𝑖(𝑥), 𝑥 ∈ 𝑋,

with 𝑐𝑖 ∈ R, 𝐴𝑖 ∈ 𝒜 (𝑖 = 1,… , 𝑛). From the definition of 𝒜 we get that the 𝐴𝑖 are of the form

𝐴𝑖 = 𝐵𝑖 +𝑁𝑖
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with 𝐵𝑖 ∈ 𝒜 and 𝑁𝑖 being a subset of a 𝜇-null set 𝑀𝑖 ∈ 𝒜 . Define

𝑓 (𝑥) ∶=
𝑛
∑

𝑖=1
𝑐𝑖1𝐵𝑖(𝑥), 𝑔(𝑥) ∶=

𝑛
∑

𝑖=1
𝑐𝑖1𝐵𝑖∪𝑀𝑖

(𝑥), 𝑥 ∈ 𝑋.

These are clearly 𝒜∕ℬ(R)-measurable functions and 𝑓 ⩽ 𝜙 ⩽ 𝑔. Moreover,

𝜇(𝑓 ≠ 𝑔) ⩽ 𝜇

( 𝑛
⋃

𝑖=1
𝑀𝑖

)

⩽
𝑛
∑

𝑖=1
𝜇(𝑀𝑖) = 0.

This proves that the claim holds for simple functions.
Let 𝜙 be any 𝒜∕ℬ(R)-measurable function. Using Corollary 8.9, we get a sequence (𝜙𝑛)𝑛∈N of
𝒜∕ℬ(R)-measurable simple functions such that 𝜙𝑛(𝑥) → 𝜙(𝑥) for all 𝑥 ∈ 𝑋. By the first part of
this proof, there are 𝒜∕ℬ(R)-measurable funcitons 𝑓𝑛, 𝑔𝑛, 𝑛 ∈ N, such that 𝑓𝑛 ⩽ 𝜙𝑛 ⩽ 𝑔𝑛 and
𝜇(𝑓𝑛 ≠ 𝑔𝑛) = 0. Set

𝑓 (𝑥) ∶= lim inf
𝑛→∞

𝑓𝑛(𝑥), 𝑔(𝑥) ∶= lim inf
𝑛→∞

𝑔𝑛(𝑥), 𝑥 ∈ 𝑋.

The functions 𝑓 and 𝑔 are again 𝒜∕ℬ(R)-measurable (Corollary 8.10) and we have 𝑓 ⩽ 𝜙 ⩽ 𝑔.
Moreover,

𝜇(𝑓 ≠ 𝑔) ⩽ 𝜇

(

⋃

𝑛∈N
{𝑓𝑛 ≠ 𝑔𝑛}

)

⩽
∑

𝑛∈N
𝜇(𝑓𝑛 ≠ 𝑔𝑛) = 0.

■■
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9 Integration of positive functions.

Solutions to Problems 9.1–9.14

Problem 9.1 Solution: We know that for any two simple functions 𝑓, 𝑔 ∈ + we have 𝐼𝜇(𝑓 + 𝑔) =
𝐼𝜇(𝑓 ) + 𝐼𝜇(𝑔) (= additivity), and this is easily extended to finitely many, say, 𝑚 different positive
simple functions. Observe now that each 𝜉𝑛1𝐴𝑛 is a positive simple function, hence

𝐼𝜇

( 𝑚
∑

𝑛=1
𝜉𝑛1𝐴𝑛

)

=
𝑚
∑

𝑛=1
𝐼𝜇

(

𝜉𝑛1𝐴𝑛
)

=
𝑚
∑

𝑛=1
𝜉𝑛𝐼𝜇

(

1𝐴𝑛

)

=
𝑚
∑

𝑛=1
𝜉𝑛𝜇

(

𝐴𝑛
)

.

Put in other words: we have used the linearity of 𝐼𝜇.
■■

Problem 9.2 Solution: We use indicator functions. Note that any fixed 𝑥 can be contained in 𝑘 ∈
{0, 1,… , 𝑁} of the sets 𝐴𝑛. Then 𝑥 is contained in 𝐴1 ∪ ⋯ ∪ 𝐴𝑁 as well as in (𝑘

2

) of the pairs
𝐴𝑛 ∪ 𝐴𝑘 where 𝑛 < 𝑘; as usual: (𝑚

𝑛

)

= 0 if 𝑚 < 𝑛. This gives
∑

𝑛
1𝐴𝑛 = 𝑘 ⩽ 1 +

(

𝑘
2

)

= 1𝐴1∪⋯∪𝐴𝑁 +
∑

𝑛<𝑘
1𝐴𝑛1𝐴𝑘

= 1𝐴1∪⋯∪𝐴𝑁 +
∑

𝑛<𝑘
1𝐴𝑛∩𝐴𝑘 .

Integrating this inequality w.r.t. 𝜇 yields the result.
■■

Problem 9.3 Solution: We check Properties 9.8(i)–(iv).
(i) This follows from Properties 9.3 and Lemma 9.5 since ∫ 1𝐴 𝑑𝜇 = 𝐼𝜇(1𝐴) = 𝜇(𝐴).

(ii) This follows again from Properties 9.3 and Corollary 9.7 since for 𝑢𝑛 ∈ + with 𝑢 = sup𝑛 𝑢𝑛
(note: the sup’s are increasing limits!) we have

∫ 𝛼𝑢 𝑑𝜇 = ∫ 𝛼 sup
𝑛
𝑢𝑛 𝑑𝜇 = sup

𝑛
𝐼𝜇(𝛼𝑢𝑛)

= sup
𝑛
𝛼𝐼𝜇(𝑢𝑛)

= 𝛼 sup
𝑛
𝐼𝜇(𝑢𝑛)

= 𝛼 ∫ 𝑢 𝑑𝜇.
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(iii) This follows again from Properties 9.3 and Corollary 9.7 since for 𝑢𝑛, 𝑣𝑛 ∈ + with 𝑢 =
sup𝑛 𝑢𝑛, 𝑣 = sup𝑛 𝑣𝑛 (note: the sup’s are increasing limits!) we have

∫ (𝑢 + 𝑣) 𝑑𝜇 = ∫ lim
𝑛→∞

(𝑢𝑛 + 𝑣𝑛) 𝑑𝜇 = lim
𝑛→∞

𝐼𝜇(𝑢𝑛 + 𝑣𝑛)

= lim
𝑛→∞

(

𝐼𝜇(𝑢𝑛) + 𝐼𝜇(𝑣𝑛)
)

= lim
𝑛→∞

𝐼𝜇(𝑢𝑛) + lim
𝑛→∞

𝐼𝜇(𝑣𝑛)

= ∫ 𝑢 𝑑𝜇 + ∫ 𝑣 𝑑𝜇.

(iv) This was shown in Step 1 of the proof of the Beppo Levi theorem 9.6
■■

Problem 9.4 Solution: Consider on the space ([−1, 0], 𝜆), 𝜆(𝑑𝑥) = 𝑑𝑥 is Lebesgue measure on [0, 1],
the sequence of ‘tent-type’ functions

𝑓𝑘(𝑥) =
⎧

⎪

⎨

⎪

⎩

0, −1 ⩽ 𝑥 ⩽ − 1
𝑘
,

𝑘3
(

𝑥 + 1
𝑘
), − 1

𝑘
⩽ 𝑥 ⩽ 0,

(𝑘 ∈ N),

(draw a picture!). These are clearly monotonically increasing functions but, as a sequence, we do
not have 𝑓𝑘(𝑥) ⩽ 𝑓𝑘+1(𝑥) for every 𝑥! Note also that each function is integrable (with integral 1

2𝑘)
but the pointwise limit is not integrable.

■■

Problem 9.5 Solution: The first part is trivial since it just says that the sequence becomes increasing
only from index 𝐾 onwards. This 𝐾 does not depend on 𝑥 but is uniform for the whole sequence.
Since we are anyway only interested in 𝑢 = lim𝑛→∞ 𝑢𝑛 = sup𝑛⩾𝐾 𝑢𝑛, we can neglect the elements
𝑢1,… , 𝑢𝐾 and consider only the then increasing sequence (𝑢𝑛+𝐾 )𝑛. Then we can directly apply
Beppo Levi’s theorem, Theorem 9.6.
The other condition says that the sequence 𝑢𝑛+𝐾 (𝑥) is increasing for some𝐾 = 𝐾(𝑥). But since𝐾
may depend on 𝑥, we will never get some overall increasing behaviour of the sequence of functions.
Take, for example, on (R,ℬ(R), 𝜆 ∶= 𝜆1),

𝑢𝑛(𝑥) = 𝑛2(𝑥 + 1
𝑛
)1(−1∕𝑛,0)(𝑥) − 𝑛2(𝑥 −

1
𝑛
)1(0,1∕𝑛)(𝑥).

This is a sequence of symmetric tent-like functions of tents with base (−1∕𝑛, 1∕𝑛) and tip at 𝑛2
(which we take out and replace by the value 0). Clearly:

𝑢𝑛(𝑥) ←←←←←←←←←←←←←←←←←←←←→𝑛→∞
0 and ∫ 𝑢𝑛(𝑥) 𝑑𝑥 = 1 ∀ 𝑛.

Moreover, if 𝑛 ⩾ 𝐾 = 𝐾(𝑥) with 𝐾(𝑥) defined to be the smallest integer > 1∕|𝑥|, then 𝑢𝑛(𝑥) = 0
so that the second condition is clearly satisfied, but ∫ 𝑢𝑛(𝑥) 𝑑𝑥 = 1 cannot converge to ∫ 0 𝑑𝑥 =
∫ 𝑢(𝑥) 𝑑𝑥 = 0.

■■
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Problem 9.6 Solution: Following the hint we set 𝑠𝑚 = 𝑢1 + 𝑢2 +…+ 𝑢𝑚. As a finite sum of positive
measurable functions this is again positive and measurable. Moreover, 𝑠𝑚 increases to 𝑠 = ∑∞

𝑛=1 𝑢𝑛
as 𝑚→ ∞. Using the additivity of the integral (9.8 (iii)) and the Beppo Levi theorem 9.6 we get

∫

∞
∑

𝑛=1
𝑢𝑛 𝑑𝜇 = ∫ sup

𝑚
𝑠𝑚 𝑑𝜇 = sup

𝑚 ∫ 𝑠𝑚 𝑑𝜇

= sup
𝑚 ∫ (𝑢1 +…+ 𝑢𝑚) 𝑑𝜇

= sup
𝑚

𝑚
∑

𝑛=1
∫ 𝑢𝑛 𝑑𝜇

=
∞
∑

𝑛=1
∫ 𝑢𝑛 𝑑𝜇.

Conversely, assume that 9.9 is true. We want to deduce from it the validity of Beppo Levi’s theorem
9.6. So let (𝑤𝑛)𝑛∈N be an increasing sequence of measurable functions with limit 𝑤 = sup𝑛𝑤.
For ease of notation we set 𝑤0 ≡ 0. Then we can write each 𝑤𝑛 as a partial sum

𝑤𝑛 = (𝑤𝑛 −𝑤𝑛−1) +⋯ + (𝑤1 −𝑤0)

of positive measurable summands of the form 𝑢𝑘 ∶= 𝑤𝑘 −𝑤𝑘−1. Thus,

𝑤𝑚 =
𝑚
∑

𝑘=1
𝑢𝑘 and 𝑤 =

∞
∑

𝑘=1
𝑢𝑘

and, using the additivity of the integral,

∫ 𝑤𝑑𝜇
9.9
=

∞
∑

𝑘=1
∫ 𝑢𝑘 𝑑𝜇 = sup

𝑚 ∫

𝑚
∑

𝑘=1
𝑢𝑘 𝑑𝜇 = sup

𝑚 ∫ 𝑤𝑚 𝑑𝜇.

■■

Problem 9.7 Solution: Set 𝜈(𝐴) ∶= ∫ 1𝐴𝑢 𝑑𝜇. Then 𝜈 is a [0,∞]-valued set function defined for
𝐴 ∈ 𝒜 .
(𝑀1) Since 1∅ ≡ 0 we have clearly 𝜈(∅) = ∫ 0 ⋅ 𝑢 𝑑𝜇 = 0.
(𝑀1) Let 𝐴 =

⨃

𝑛∈N𝐴𝑛 a disjoint union of sets 𝐴𝑛 ∈ 𝒜 . Then
∞
∑

𝑛=1
1𝐴𝑛 = 1𝐴

and we get from Corollary 9.9

𝜈(𝐴) = ∫

( ∞
∑

𝑛=1
1𝐴𝑛

)

⋅ 𝑢 𝑑𝜇 = ∫

∞
∑

𝑛=1

(

1𝐴𝑛 ⋅ 𝑢
)

𝑑𝜇

=
∞
∑

𝑛=1
∫ 1𝐴𝑛 ⋅ 𝑢 𝑑𝜇

=
∞
∑

𝑛=1
𝜈(𝐴𝑛).
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■■

Problem 9.8 Solution: This is actually trivial: since our 𝜎-algebra is 𝒫 (N), all subsets of N are
measurable. Now the sub-level sets {𝑢 ⩽ 𝛼} = {𝑘 ∈ N ∶ 𝑢(𝑘) ⩽ 𝛼} are always ⊂ N and as such
they are ∈ 𝒫 (N), hence 𝑢 is always measurable.

■■

Problem 9.9 Solution: We have seen in Problem 4.7 that 𝜇 is indeed a measure. We follow the
instructions. First, for 𝐴 ∈ 𝒜 we get

∫ 1𝐴 𝑑𝜇 = 𝜇(𝐴) =
∑

𝑗∈N
𝜇𝑗(𝐴) =

∑

𝑗∈N
∫ 1𝐴 𝑑𝜇𝑗 .

By the linearity of the integral, this easily extends to functions of the form 𝛼1𝐴 + 𝛽1𝐵 where
𝐴,𝐵 ∈ 𝒜 and 𝛼, 𝛽 ⩾ 0:

∫ (𝛼1𝐴 + 𝛽1𝐵) 𝑑𝜇 = 𝛼 ∫ 1𝐴 𝑑𝜇 + 𝛽 ∫ 1𝐵 𝑑𝜇

= 𝛼
∑

𝑗∈N
∫ 1𝐴 𝑑𝜇𝑗 + 𝛽

∑

𝑗∈N
∫ 1𝐵 𝑑𝜇𝑗

=
∑

𝑗∈N
∫ (𝛼1𝐴 + 𝛽1𝐵) 𝑑𝜇𝑗

and this extends obviously to simple functions which are finite sums of the above type.

∫ 𝑓 𝑑𝜇 =
∑

𝑗∈N
∫ 𝑓 𝑑𝜇𝑗 ∀𝑓 ∈ +.

Finally, take 𝑢 ∈ + and take an approximating sequence 𝑢𝑛 ∈ + with sup𝑛 𝑢𝑛 = 𝑢. Then we get
by Beppo Levi (indicated by an asterisk ∗)

∫ 𝑢 𝑑𝜇
∗
= sup

𝑛 ∫ 𝑢𝑛 𝑑𝜇 = sup
𝑛

∞
∑

𝑗=1
∫ 𝑢𝑛 𝑑𝜇𝑗

= sup
𝑛

sup
𝑚

𝑚
∑

𝑗=1
∫ 𝑢𝑛 𝑑𝜇𝑗

= sup
𝑚

sup
𝑛

𝑚
∑

𝑗=1
∫ 𝑢𝑛 𝑑𝜇𝑗

= sup
𝑚

lim
𝑛

𝑚
∑

𝑗=1
∫ 𝑢𝑛 𝑑𝜇𝑗

= sup
𝑚

𝑚
∑

𝑗=1
lim
𝑛 ∫ 𝑢𝑛 𝑑𝜇𝑗

∗
= sup

𝑚

𝑚
∑

𝑗=1
∫ lim

𝑛
𝑢𝑛 𝑑𝜇𝑗

=
∞
∑

𝑗=1
∫ 𝑢 𝑑𝜇𝑗
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where we repeatedly use that all sup’s are increasing limits and that we may swap any two sup’s
(this was the hint to Problem 4.7.)

■■

Problem 9.10 Solution: Set 𝑤𝑛 ∶= 𝑢 − 𝑢𝑛. Then the 𝑤𝑛 are a sequence of positive measurable
functions. By Fatou’s lemma we get

∫ lim inf
𝑛

𝑤𝑛 𝑑𝜇 ⩽ lim inf
𝑛 ∫ 𝑤𝑛 𝑑𝜇

= lim inf
𝑛

(

∫ 𝑢 𝑑𝜇 − ∫ 𝑢𝑛 𝑑𝜇
)

= ∫ 𝑢 𝑑𝜇 − lim sup
𝑛 ∫ 𝑢𝑛 𝑑𝜇

(see, e.g. the rules for lim inf and lim sup in Appendix A). Thus,

∫ 𝑢 𝑑𝜇 − lim sup
𝑛 ∫ 𝑢𝑛 𝑑𝜇 ⩾ ∫ lim inf

𝑛
𝑤𝑛 𝑑𝜇

= ∫ lim inf
𝑛

(𝑢 − 𝑢𝑛) 𝑑𝜇

= ∫
(

𝑢 − lim sup
𝑛

𝑢𝑛
)

𝑑𝜇

and the claim follows by subtracting the finite value ∫ 𝑢 𝑑𝜇 on both sides.
Remark. The uniform domination of 𝑢𝑛 by an integrable function 𝑢 is really important. Have a look
at the following situation: (R,ℬ(R), 𝜆), 𝜆(𝑑𝑥) = 𝑑𝑥 denotes Lebesgue measure, and consider the
positive measurable functions 𝑢𝑛(𝑥) = 1[𝑛,2𝑛](𝑥). Then lim sup𝑛 𝑢𝑛(𝑥) = 0 but lim sup𝑛 ∫ 𝑢𝑛 𝑑𝜆 =
lim sup𝑛 𝑛 = ∞ ≠ ∫ 0 𝑑𝜆.

■■

Problem 9.11 Solution:

(i) Have a look at Appendix A, Lemma A.2.
(ii) You have two possibilities: the set-theoretic version:

𝜇
(

lim inf
𝑛

𝐴𝑛
)

= 𝜇
(

⋃

𝑘

⋂

𝑛⩾𝑘
𝐴𝑛

)

∗
= sup

𝑘
𝜇
(

⋂

𝑛⩾𝑘
𝐴𝑛

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
⩽𝜇(𝐴𝑛) ∀ 𝑛⩾𝑘hence, ⩽ inf𝑛⩾𝑘 𝜇(𝐴𝑛)

⩽ sup
𝑘

inf
𝑛⩾𝑘

𝜇(𝐴𝑛)

= lim inf
𝑛

𝜇(𝐴𝑛)
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which uses at the point ∗ the continuity of measures, Proposition 4.3.
The alternative would be (i) combined with Fatou’s lemma:

𝜇
(

lim inf
𝑛

𝐴𝑛
)

= ∫ 1lim inf𝑛 𝐴𝑛 𝑑𝜇

= ∫ lim inf
𝑛

1𝐴𝑛 𝑑𝜇

⩽ lim inf
𝑛 ∫ 1𝐴𝑛 𝑑𝜇

(iii) Again, you have two possibilities: the set-theoretic version:

𝜇
(

lim sup
𝑛

𝐴𝑛
)

= 𝜇
(

⋂

𝑘

⋃

𝑛⩾𝑘
𝐴𝑛

)

#
= inf

𝑘
𝜇
(

⋃

𝑛⩾𝑘
𝐴𝑛

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
⩾𝜇(𝐴𝑛) ∀ 𝑛⩾𝑘hence, ⩾ sup𝑛⩾𝑘 𝜇(𝐴𝑛)

⩾ inf
𝑘
sup
𝑛⩾𝑘

𝜇(𝐴𝑛)

= lim sup
𝑛

𝜇(𝐴𝑛)

which uses at the point # the continuity of measures, Proposition 4.3. This step uses the
finiteness of 𝜇.
The alternative would be (i) combined with the reversed Fatou lemma of Problem 9.10:

𝜇
(

lim sup
𝑛

𝐴𝑛
)

= ∫ 1lim sup𝑛 𝐴𝑛 𝑑𝜇

= ∫ lim sup
𝑛

1𝐴𝑛 𝑑𝜇

⩾ lim sup
𝑛 ∫ 1𝐴𝑛 𝑑𝜇

(iv) Take the example in the remark to the solution for Problem 9.10. We will discuss it here in its
set-theoretic form: take (R,ℬ(R), 𝜆) with 𝜆 denoting Lebesgue measure 𝜆(𝑑𝑥) = 𝑑𝑥. Put
𝐴𝑛 = [𝑛, 2𝑛] ∈ ℬ(R). Then

lim sup
𝑛

𝐴𝑛 =
⋂

𝑘

⋃

𝑛⩾𝑘
[𝑛, 2𝑛] =

⋂

𝑘
[𝑘,∞) = ∅

But 0 = 𝜆(∅) ⩾ lim sup𝑛 𝜆(𝐴𝑛) = lim sup𝑛 𝑛 = ∞ is a contradiction. (The problem is that
𝜆[𝑘,∞) = ∞!)

■■

Problem 9.12 Solution: We use the fact that, because of disjointness,

1 = 1𝑋 =
∞
∑

𝑛=1
1𝐴𝑛
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so that, because of Corollary 9.9,

∫ 𝑢 𝑑𝜇 = ∫

( ∞
∑

𝑛=1
1𝐴𝑛

)

⋅ 𝑢 𝑑𝜇 = ∫

∞
∑

𝑛=1

(

1𝐴𝑛 ⋅ 𝑢
)

𝑑𝜇

=
∞
∑

𝑛=1
∫ 1𝐴𝑛 ⋅ 𝑢 𝑑𝜇.

Assume now that (𝑋,𝒜 , 𝜇) is 𝜎-finite with an exhausting sequence of sets (𝐵𝑛)𝑛 ⊂ 𝒜 such that
𝐵𝑛 ↑ 𝑋 and 𝜇(𝐵𝑛) <∞. Then we make the 𝐵𝑛’s pairwise disjoint by setting

𝐴1 ∶= 𝐵1, 𝐴𝑘 ∶= 𝐵𝑘 ⧵ (𝐵1 ∪⋯ ∪ 𝐵𝑘−1) = 𝐵𝑘 ⧵ 𝐵𝑘−1.

Now take any sequence (𝑎𝑘)𝑘 ⊂ (0,∞) with ∑

𝑘 𝑎𝑘𝜇(𝐴𝑘) <∞—e.g. 𝑎𝑘 ∶= 2−𝑘∕(𝜇(𝐴𝑘)+1)—and
put

𝑤(𝑥) ∶=
∞
∑

𝑛=1
𝑎𝑘1𝐴𝑘 .

Then 𝑤 is integrable and, obviously, 𝑤(𝑥) > 0 everywhere.
■■

Problem 9.13 Solution:

(i) We check (𝑀1), (𝑀2). Using the fact that 𝑁(𝑥, ⋅) is a measure, we find

𝜇𝑁(∅) = ∫ 𝑁(𝑥, ∅)𝜇(𝑑𝑥) = ∫ 0𝜇(𝑑𝑥) = 0.

Further, let (𝐴𝑛)𝑛∈N ⊂ 𝒜 be a sequence of disjoint sets and set 𝐴 =
⨃

𝑛𝐴𝑛. Then

𝜇𝑁(𝐴) = ∫ 𝑁
(

𝑥,
⨃

𝑛
𝐴𝑛

)

𝜇(𝑑𝑥) = ∫
∑

𝑛
𝑁(𝑥,𝐴𝑛)𝜇(𝑑𝑥)

9.9
=

∑

𝑛 ∫ 𝑁(𝑥,𝐴𝑛)𝜇(𝑑𝑥)

=
∑

𝑛
𝜇𝑁(𝐴𝑛).

(ii) We have for 𝐴,𝐵 ∈ 𝒜 and 𝛼, 𝛽 ⩾ 0,

𝑁(𝛼1𝐴 + 𝛽1𝐵)(𝑥) = ∫
(

𝛼1𝐴(𝑦) + 𝛽1𝐵(𝑦)
)

𝑁(𝑥, 𝑑𝑦)

= 𝛼 ∫ 1𝐴(𝑦)𝑁(𝑥, 𝑑𝑦) + 𝛽 ∫ 1𝐵(𝑦)𝑁(𝑥, 𝑑𝑦)

= 𝛼𝑁1𝐴(𝑥) + 𝛽𝑁1𝐵(𝑥).

Thus𝑁(𝑓 + 𝑔)(𝑥) = 𝑁𝑓 (𝑥) +𝑁𝑔(𝑥) for positive simple 𝑓, 𝑔 ∈ +(𝒜 ). Moreover, since by
Beppo Levi (marked by an asterisk ∗) for an increasing sequence 𝑓𝑘 ↑ 𝑢

sup
𝑘
𝑁𝑓𝑘(𝑥) = sup

𝑘 ∫ 𝑓𝑘(𝑦)𝑁(𝑥, 𝑑𝑦)
∗
= ∫ sup

𝑘
𝑓𝑘(𝑦)𝑁(𝑥, 𝑑𝑦)
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= ∫ 𝑢(𝑦)𝑁(𝑥, 𝑑𝑦)

= 𝑁𝑢(𝑥)

and since the sup is actually an increasing limit, we see for positive measurable 𝑢, 𝑣 ∈ +(𝒜 )
and the corresponding increasing approximations via positive simple functions 𝑓𝑘, 𝑔𝑘:

𝑁(𝑢 + 𝑣)(𝑥) = sup
𝑘
𝑁(𝑓𝑘 + 𝑔𝑘)(𝑥)

= sup
𝑘
𝑁𝑓𝑘(𝑥) + sup

𝑘
𝑁𝑔𝑘(𝑥)

= 𝑁𝑢(𝑥) +𝑁𝑣(𝑥).

Moreover, 𝑥 → 𝑁1𝐴(𝑥) = 𝑁(𝑥,𝐴) is a measurable function, thus 𝑁𝑓 (𝑥) is a measurable
function for all simple 𝑓 ∈ +(𝒜 ) and, by Beppo Levi (see above) 𝑁𝑢(𝑥), 𝑢 ∈ +(𝒜 ), is
for every 𝑥 an increasing limit of measurable functions 𝑁𝑓𝑘(𝑥). Therefore, 𝑁𝑢 ∈ +(𝒜 ).

(iii) If 𝑢 = 1𝐴, 𝐴 ∈ 𝒜 , we have

∫ 1𝐴(𝑦)𝜇𝑁(𝑑𝑦) = 𝜇𝑁(𝐴) = ∫ 𝑁(𝑥,𝐴)𝜇(𝑑𝑥)

= ∫ 𝑁1𝐴(𝑥)𝜇(𝑑𝑥).

By linearity this carries over to 𝑓 ∈ +(𝒜 ) and, by a Beppo Levi-argument, to 𝑢 ∈ +(𝒜 ).
■■

Problem 9.14 Solution: Put
𝜈(𝐴) ∶= ∫ 𝑢 ⋅ 1𝐴+

𝜎
𝑑𝜇 + ∫ (1 − 𝑢) ⋅ 1𝐴−

𝜎
𝑑𝜇.

If 𝐴 is symmetric w.r.t. the origin, 𝐴+ = −𝐴− and 𝐴±
𝜎 = 𝐴. Therefore,

𝜈(𝐴) = ∫ 𝑢 ⋅ 1𝐴 𝑑𝜇 + ∫ (1 − 𝑢) ⋅ 1𝐴 𝑑𝜇 = ∫ 1𝐴 𝑑𝜇 = 𝜇(𝐴).

This means that 𝜈 extends 𝜇. It also shows that 𝜈(∅) = 0. Since 𝜈 is defined for all sets from ℬ(R)
and since 𝜈 has values in [0,∞], it is enough to check 𝜎-additivity.
For this, let (𝐴𝑛)𝑛 ⊂ℬ(R) be a sequence of pairwise disjoint sets. From the definitions it is clear
that the sets (𝐴𝑛)±𝜎 are again pairwise disjoint and that ⨃𝑛(𝐴𝑛)±𝜎 =

(
⨃

𝑛𝐴𝑛
)±
𝜎 . Since each of the

set functions
𝐵 → ∫ 𝑢 ⋅ 1𝐵 𝑑𝜇, 𝐶 → ∫ (1 − 𝑢) ⋅ 1𝐶 𝑑𝜇

is 𝜎-additive, it is clear that their sum 𝜈 will be 𝜎-additive, too.

The obvious non-uniqueness of the extension does not contradict the uniqueness theorem for ex-
tensions, since Σ does not generate ℬ(R)!

■■
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10 Integrals of measurable functions.

Solutions to Problems 10.1–10.9

Problem 10.1 Solution: Let 𝑢, 𝑣 be integrable functions and 𝑎, 𝑏 ∈ R. Assume that either 𝑢, 𝑣 are
real-valued or that 𝑎𝑢 + 𝑏𝑣 makes sense (i.e. avoiding the case ‘∞−∞’). Then we have

|𝑎𝑢 + 𝑏𝑣| ⩽ |𝑎𝑢| + |𝑏𝑣| = |𝑎| ⋅ |𝑢| + |𝑏| ⋅ |𝑣| ⩽ 𝐾(|𝑢| + |𝑣|)

with 𝐾 = max{|𝑎|, |𝑏|}. Since the RHS is integrable (because of Theorem 10.3 and Properties
9.8) we have that 𝑎𝑢 + 𝑏𝑣 is integrable by Theorem 10.3. So we get from Theorem 10.4 that

∫ (𝑎𝑢 + 𝑏𝑣) 𝑑𝜇 = ∫ 𝑎𝑢 𝑑𝜇 + ∫ 𝑏𝑣 𝑑𝜇 = 𝑎∫ 𝑢 𝑑𝜇 + 𝑏∫ 𝑣 𝑑𝜇

and this is what was claimed.
■■

Problem 10.2 Solution: Without loss of generality we consider 𝑢 on (0, 1] (otherwise we have to
single out the point 𝑥 = 1, and this is just awkward in the notation...) We follow the hint and
show first that 𝑢(𝑥) ∶= 𝑥−1∕2, 0 < 𝑥 ⩽ 1, is Lebesgue integrable. The idea here is to construct a
sequence of simple functions approximating 𝑢 from below. Set 𝑥𝑖 =

(

𝑖
𝑛

)2, 𝑖 = 0, 1,… , 𝑛 and

𝑢𝑛(𝑥) ∶=
𝑛−1
∑

𝑖=0
𝑢(𝑥𝑖+1)1(𝑥𝑖,𝑥𝑖+1](𝑥) =

𝑛−1
∑

𝑖=0

𝑛
𝑖 + 1

1(𝑥𝑖,𝑥𝑖+1](𝑥)

This is clearly a simple function. Also 𝑢𝑛 ⩽ 𝑢 and lim𝑛→∞ 𝑢𝑛(𝑥) = sup𝑛 𝑢𝑛(𝑥) = 𝑢(𝑥) for all 𝑥.
Since 𝑃 (𝐴) is just 𝜆(𝐴 ∩ (0, 1]), the integral of 𝑢𝑛 is given by

∫ 𝑢𝑛 𝑑𝑃 = 𝐼𝑃 (𝑢𝑛) =
𝑛−1
∑

𝑖=0

𝑛
𝑖 + 1

[

( 𝑖 + 1
𝑛

)2
−
( 𝑖
𝑛

)2]

= 1
𝑛

𝑛−1
∑

𝑖=0

1
𝑖 + 1

[

(𝑖 + 1)2 − 𝑖2
]

= 1
𝑛

𝑛−1
∑

𝑖=0

1
𝑖 + 1

[2𝑖 + 1]

⩽ 1
𝑛

𝑛−1
∑

𝑖=0

1
𝑖 + 1

[2𝑖 + 2] = 1
𝑛
⋅ 2𝑛 = 2

and is thus finite, even uniformly in 𝑛. So, Beppo Levi’s theorem tells us that

∫ 𝑢 𝑑𝑃 = sup
𝑛 ∫ 𝑢𝑛 𝑑𝑃 ⩽ sup

𝑛
2 = 2 <∞
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showing integrability.
Now 𝑢 is clearly not bounded but integrable.

■■

Problem 10.3 Solution: Clearly, 𝜈 is defined on 𝒜 and takes values in [0,∞]. Since 1∅ ≡ 0 we have

𝜈(∅) = ∫ 1∅ ⋅ 𝑢 𝑑𝜇 = ∫ 0 𝑑𝜇 = 0.

If (𝐴𝑛)𝑛∈N ⊂ 𝒜 are mutually disjoint measurable sets, we get

𝜈
(

∞
⨃

𝑛=1
𝐴𝑛

)

= ∫ 1⨃∞
𝑛=1 𝐴𝑛

⋅ 𝑢 𝑑𝜇

= ∫

∞
∑

𝑛=1
1𝐴𝑛 ⋅ 𝑢 𝑑𝜇

=
∞
∑

𝑛=1
∫ 1𝐴𝑛 ⋅ 𝑢 𝑑𝜇 =

∞
∑

𝑛=1
𝜈(𝐴𝑛)

which proves 𝜎-additivity.
■■

Problem 10.4 Solution: ‘⇐⇒’: since the 𝐴𝑗 are disjoint we get the identities

1⨃
𝑗 𝐴𝑗 =

∞
∑

𝑘=1
1𝐴𝑗 and so 𝑢 ⋅ 1⨃

𝑗 𝐴𝑗 =
∞
∑

𝑘=1
𝑢 ⋅ 1𝐴𝑗 ,

hence |𝑢1𝐴𝑛| = |𝑢|1𝐴𝑛 ⩽ |𝑢|1⨃
𝑗 𝐴𝑗 = |𝑢1⨃

𝑗 𝐴𝑗 | showing the integrability of each 𝑢1𝐴𝑛 by Theorem
10.3. By a Beppo Levi argument (Theorem 9.6) or, directly, by Corollary 9.9 we get

∞
∑

𝑗=1
∫𝐴𝑗

|𝑢| 𝑑𝜇 =
∞
∑

𝑗=1
∫ |𝑢|1𝐴𝑗 𝑑𝜇 = ∫

∞
∑

𝑗=1
|𝑢|1𝐴𝑗 𝑑𝜇

= ∫ |𝑢|1⨃
𝑗 𝐴𝑗 𝑑𝜇 < ∞.

The converse direction ‘⇐⇐’ follows again from Corollary 9.9, now just the other way round:

∫ |𝑢|1⨃
𝑗 𝐴𝑗 𝑑𝜇 = ∫

∞
∑

𝑗=1
|𝑢|1𝐴𝑗 𝑑𝜇 =

∞
∑

𝑗=1
∫ |𝑢|1𝐴𝑗 𝑑𝜇

=
∞
∑

𝑗=1
∫𝐴𝑗

|𝑢| 𝑑𝜇 < ∞

showing that 𝑢1⨃
𝑗 𝐴𝑗 is integrable.

■■

Problem 10.5 Solution: For any measurable function 𝑢 we have 𝑢 ∈ 1(𝜇) ⇐⇒ |𝑢| ∈ 1(𝜇). This
means that we may assume that 𝑢 ⩾ 0. Since

𝑘
∑

𝑛=−𝑘
1{2𝑛⩽𝑢<2𝑛+1}𝑢 ↑ 𝑢1{𝑢>0}
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we can use Beppo Levi’s theorem to conclude

∫ 𝑢 𝑑𝜇 = ∫{𝑢>0}
𝑢 𝑑𝜇 =

∑

𝑛∈Z
∫{2𝑛⩽𝑢<2𝑛+1}

𝑢 𝑑𝜇.

Because of the monotonicity of the integral,

𝐶 ∶=
∑

𝑛∈Z
∫{2𝑛⩽𝑢<2𝑛+1}

2𝑛 𝑑𝜇 ⩽
∑

𝑛∈Z
∫{2𝑛⩽𝑢<2𝑛+1}

𝑢 𝑑𝜇 ⩽
∑

𝑛∈Z
∫{2𝑛⩽𝑢<2𝑛+1}

2𝑛+1 𝑑𝜇,

i.e.
𝐶 ⩽

∑

𝑛∈Z
∫{2𝑛⩽𝑢<2𝑛+1}

𝑢 𝑑𝜇 ⩽ 2𝐶.

Therefore the following assertions are equivalent:

𝑢 ∈ 1(𝜇) ⇐⇒
∑

𝑛∈Z
∫{2𝑛⩽𝑢<2𝑛+1}

𝑢 𝑑𝜇 < ∞

⇐⇒ 𝐶 =
∑

𝑛∈Z
2𝑛𝜇{2𝑛 ⩽ 𝑢 < 2𝑛+1} <∞.

■■

Problem 10.6 Solution: Let us show the following inequalities:
∞
∑

𝑖=1
1{|𝑢|⩾𝑖}(𝑥) ⩽ |𝑢(𝑥)| ⩽

∞
∑

𝑖=0
1{|𝑢|⩾𝑖}(𝑥) ∀𝑥 ∈ 𝑋.

First proof:

∞
∑

𝑖=1
1{|𝑢|⩾𝑖} =

∞
∑

𝑖=1

∞
∑

𝑘=𝑖
1{𝑘+1>|𝑢|⩾𝑘} =

∞
∑

𝑘=1

𝑘
∑

𝑖=1
1{𝑘+1>|𝑢|⩾𝑘} =

∞
∑

𝑘=1
𝑘1{𝑘+1>|𝑢|⩾𝑘}

and
∞
∑

𝑘=1
𝑘1{𝑘+1>|𝑢|⩾𝑘} ⩽

∞
∑

𝑘=1
|𝑢|1{𝑘+1>|𝑢|⩾𝑘} = |𝑢|1{|𝑢|⩾1}

and
∞
∑

𝑘=1
𝑘1{𝑘+1>|𝑢|⩾𝑘} ⩾

∞
∑

𝑘=1
(|𝑢| − 1)1{𝑘+1>|𝑢|⩾𝑘} = (|𝑢| − 1)1{|𝑢|⩾1} ⩾ |𝑢|1{|𝑢|⩾1} − 1{|𝑢|⩾0}.

So,
∞
∑

𝑖=1
1{|𝑢|⩾𝑖} ⩽ |𝑢|1{|𝑢|⩾1} ⩽ |𝑢| ⩽ 1 +

∞
∑

𝑖=1
1{|𝑢|⩾𝑖} =

∞
∑

𝑖=0
1{|𝑢|⩾𝑖}.

Second proof: For 𝑥 ∈ 𝑋, there is some 𝑘 ∈ N0 such that 𝑘 ⩽ |𝑢(𝑥)| < 𝑘 + 1. Therefore,

𝑥 ∈ {|𝑢| ⩾ 𝑖} ∀𝑖 ∈ {0,… , 𝑘}

and
𝑥 ∉ {|𝑢| ⩾ 𝑖} ∀𝑖 ⩾ 𝑘 + 1.

107



R.L. Schilling: Measures, Integrals & Martingales

Thus,
∑

𝑖∈N0

1{|𝑢|⩾𝑖}(𝑥) = 𝑘 + 1.

Since 𝑘 ⩽ |𝑢(𝑥)| ⩽ 𝑘 + 1 we get
∑

𝑖∈N0

1{|𝑢|⩾𝑖}(𝑥) = 𝑘 + 1 ⩾ |𝑢(𝑥)| ⩾ 𝑘 = (𝑘 + 1) − 1 =

(

∑

𝑖∈N0

1{|𝑢|⩾𝑖}(𝑥)

)

− 1.

As 1 = 1{|𝑢|⩾0} (𝑢 ⩾ 0, by assumption) we get the claimed estimates.

Integrating these inequalities we get
∞
∑

𝑖=1
𝜇{|𝑢| ⩾ 𝑖} ⩽ ∫ |𝑢| 𝑑𝜇 ⩽

∞
∑

𝑖=0
𝜇{|𝑢| ⩾ 𝑖},

and (ii) follows. If 𝑢 ∈ 1(𝜇), then we get ∑𝑖⩾1 𝜇(|𝑢| ⩾ 1) < ∞. On the other hand, if 𝑢 is
measurable, and ∑

𝑖 𝜇(|𝑢| ⩾ 𝑖) <∞, then we get ∫ |𝑢| 𝑑𝜇 <∞, i.e. 𝑢 ∈ 1(𝜇) and (i) follows.
The finiteness of the measure 𝜇 was only used for ∫ 1 𝑑𝜇 <∞ or 𝜇{|𝑢| ⩾ 0} <∞ – which is only
needed for the second estimate in (ii). Hence, the lower estimate in (ii) holds for all measures!

■■

Problem 10.7 Solution: One possibility to solve the problem is to follow the hint. We provide an
alternative (and shorter) solution.

(i) Observe that 𝑢𝑗 − 𝑣 ⩾ 0 is a sequence of positive and integrable functions. Applying Fatou’s
lemma (in the usual form) yields (observing the rules for lim inf , lim sup from Appendix A,
compare also Problem 9.10):

∫ lim inf
𝑗

𝑢𝑗 𝑑𝜇 − ∫ 𝑣 𝑑𝜇 = ∫ lim inf
𝑗

(𝑢𝑗 − 𝑣) 𝑑𝜇

⩽ lim inf
𝑗 ∫ (𝑢𝑗 − 𝑣) 𝑑𝜇

= lim inf
𝑗 ∫ 𝑢𝑗 𝑑𝜇 − ∫ 𝑣 𝑑𝜇

and the claim follows upon subtraction of the finite (!) number ∫ 𝑣 𝑑𝜇.
(ii) Very similar to (i) by applying Fatou’s lemma to the positive, integrable functions𝑤−𝑢𝑗 ⩾ 0:

∫ 𝑤𝑑𝜇 − ∫ lim sup
𝑗

𝑢𝑗 𝑑𝜇 = ∫ lim inf
𝑗

(𝑤 − 𝑢𝑗) 𝑑𝜇

⩽ lim inf
𝑗 ∫ (𝑤 − 𝑢𝑗) 𝑑𝜇

= ∫ 𝑤𝑑𝜇 − lim sup
𝑗 ∫ 𝑢𝑗 𝑑𝜇

Now subtract the finite number ∫ 𝑤𝑑𝜇 on both sides.
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(iii) We had the counterexample, in principle, already in Problem 9.10. Nevertheless...
Consider Lebesgue measure on R. Put 𝑓𝑗(𝑥) = −1[−2𝑗,−𝑗](𝑥) and 𝑔𝑗(𝑥) = 1[𝑗,2𝑗](𝑥).
Then lim inf 𝑓𝑗(𝑥) = 0 and lim sup 𝑔𝑗(𝑥) = 0 for every 𝑥 and neither admits an integrable
minorant resp. majorant.

Remark. Here is an even stronger version of Fatou’s Lemma. For this we introduced the extended
integrable functions

1(𝜇) ∶=
{

𝑢 ∈ (𝒜 ) ∶ ∫ 𝑢+ 𝑑𝜇 <∞,∫ 𝑢− 𝑑𝜇 <∞
}

1,𝑒(𝜇) ∶=
{

𝑢 ∈ (𝒜 ) ∶ ∫ 𝑢+ 𝑑𝜇 ∈ [0,∞],∫ 𝑢− 𝑑𝜇 <∞
}

.

For 𝑢 ∈ 1(𝜇) or 𝑢 ∈ 1,𝑒(𝜇) we may define ∫ 𝑢 𝑑𝜇 = ∫ 𝑢+ 𝑑𝜇 − ∫ 𝑢− 𝑑𝜇 in R or R ∪ {+∞},
respectively. Note that 1,𝑒(𝜇) is not a vector space, but it is still additive and positively homogen-
eous. Then we have
Let (𝑢𝑛)𝑛∈N ⊂(𝒜 ) such that 𝑢𝑛 ⩾ 𝑢 for some 𝑢 ∈ 1,𝑒(𝜇).

i) lim inf𝑛→∞ 𝑢𝑛 ∈ 1,𝑒(𝜇);

ii) lim inf𝑛→∞ ∫ 𝑢𝑛 𝑑𝜇 ⩾ ∫ lim inf𝑛→∞ 𝑢𝑛 𝑑𝜇;

iii) if lim inf𝑛→∞ ∫ 𝑢𝑛 𝑑𝜇 <∞, then lim inf𝑛→∞ 𝑢𝑛 ∈ 1(𝜇).

Proof. i) We have

𝑢𝑛 ⩾ 𝑢 ⇐⇒ lim inf
𝑛

𝑢𝑛 ⩾ 𝑢 ⇐⇒

⎧

⎪

⎨

⎪

⎩

(

lim inf𝑛 𝑢𝑛
)+ ⩾ 𝑢+

(

lim inf𝑛 𝑢𝑛
)− ⩽ 𝑢−

and so ∫
(

lim inf𝑛 𝑢𝑛
)− 𝑑𝜇 ⩽ ∫ 𝑢− 𝑑𝜇 <∞, i.e. lim inf𝑛 𝑢𝑛 ∈ 1,𝑒(𝜇).

ii) Note that 𝑢𝑛 − 𝑢 ⩾ 0. By (the ordinary) Fatou’s lemma,

lim inf
𝑛 ∫ (𝑢𝑛 − 𝑢) 𝑑𝜇 ⩾ ∫ lim inf

𝑛
(𝑢𝑛 − 𝑢) 𝑑𝜇.

Adding on both sides ∫ 𝑢 𝑑𝜇 – this is possible since we do not get an expression of type
“∞−∞”, we get

lim inf
𝑛 ∫ 𝑢𝑛 𝑑𝜇 ⩾ ∫ lim inf

𝑛
𝑢𝑛 𝑑𝜇.

iii) We have

∫

(

lim inf
𝑛

𝑢𝑛
)+

𝑑𝜇 = ∫ lim inf
𝑛

𝑢𝑛 +
(

lim inf
𝑛

𝑢𝑛
)−

𝑑𝜇

⩽ ∫ lim inf
𝑛

𝑢𝑛 + 𝑢− 𝑑𝜇

= ∫ lim inf
𝑛

𝑢𝑛 𝑑𝜇 + ∫ 𝑢− 𝑑𝜇
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⩽ lim inf
𝑛 ∫ 𝑢𝑛 𝑑𝜇 + ∫ 𝑢− 𝑑𝜇 <∞.

This proves the claim. (Note that in the inequality-step in the last formula we could have used
directly the ordinary Fatou lemma, and not step ii), as 𝑢𝑛 + 𝑢− ⩾ 0).

■■

Problem 10.8 Solution: For 𝑢 = 1𝐵 and 𝑣 = 1𝐶 we have, because of independence,

∫ 𝑢𝑣 𝑑𝑃 = 𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴)𝑃 (𝐵) = ∫ 𝑢 𝑑𝑃 ∫ 𝑣 𝑑𝑃 .

For positive, simple functions 𝑢 = ∑

𝑗 𝛼𝑗1𝐵𝑗 and 𝑣 = ∑

𝑘 𝛽𝑘1𝐶𝑘 we find

∫ 𝑢𝑣 𝑑𝑃 =
∑

𝑗,𝑘
𝛼𝑗𝛽𝑘 ∫ 1𝐴𝑗1𝐵𝑘 𝑑𝑃

=
∑

𝑗,𝑘
𝛼𝑗𝛽𝑘𝑃 (𝐴𝑗 ∩ 𝐵𝑘)

=
∑

𝑗,𝑘
𝛼𝑗𝛽𝑘𝑃 (𝐴𝑗)𝑃 (𝐵𝑘)

=
(

∑

𝑗
𝛼𝑗𝑃 (𝐴𝑗)

)(

∑

𝑘
𝛽𝑘𝑃 (𝐵𝑘)

)

= ∫ 𝑢 𝑑𝑃 ∫ 𝑣 𝑑𝑃 .

For measurable 𝑢 ∈ +(ℬ) and 𝑣 ∈ +(𝒞 ) we use approximating simple functions 𝑢𝑘 ∈
+(ℬ), 𝑢𝑘 ↑ 𝑢, and 𝑣𝑘 ∈ +(𝒞 ), 𝑣𝑘 ↑ 𝑣. Then, by Beppo Levi,

∫ 𝑢𝑣 𝑑𝑃 = lim
𝑘 ∫ 𝑢𝑘𝑣𝑘 𝑑𝑃 = lim

𝑘 ∫ 𝑢𝑘 𝑑𝑃 lim
𝑗 ∫ 𝑣𝑗 𝑑𝑃

= ∫ 𝑢 𝑑𝑃 ∫ 𝑣 𝑑𝑃 .

Integrable independent functions: If 𝑢 ∈ 1(ℬ) and 𝑣 ∈ 1(𝒞 ), the above calculation when
applied to |𝑢|, |𝑣| shows that 𝑢 ⋅ 𝑣 is integrable since

∫ |𝑢𝑣| 𝑑𝑃 ⩽ ∫ |𝑢| 𝑑𝑃 ∫ |𝑣| 𝑑𝑃 <∞.

Considering positive and negative parts finally also gives

∫ 𝑢𝑣 𝑑𝑃 = ∫ 𝑢 𝑑𝑃 ∫ 𝑣 𝑑𝑃 .

Counterexample: Just take 𝑢 = 𝑣 which are integrable but not square integrable, e.g. 𝑢(𝑥) =
𝑣(𝑥) = 𝑥−1∕2. Then ∫(0,1) 𝑥

−1∕2 𝑑𝑥 <∞ but ∫(0,1) 𝑥−1 𝑑𝑥 = ∞, compare also Problem 10.2.
■■

Problem 10.8 Solution:
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(i) Since the map 𝑔 ∶ C→ R2 is continuous, we have 𝑔−1(ℬ(R2)) ⊂ℬ(C).
On the other hand, for 𝑧 ∈ C and 𝜖 > 0 we have 𝐵𝜖(𝑧) = 𝑔−1(𝐵𝑔(𝑧)(𝜖)) ∈ 𝑔−1(ℬ(R2));
thus, 𝜎(𝒪C) ⊂ 𝑔−1(ℬ(R2)) (Note that the 𝜎-algebra 𝜎(𝒪C) is generated by the open
balls 𝐵𝜖(𝑧), 𝑧 ∈ C, 𝜖 > 0, cf. the proof of Problem 3.12.)

(ii) Part (i) shows that a map ℎ ∶ 𝐸 → C is𝒜∕𝒞 -measurable if, and only if, 𝑔◦ℎ ∶ 𝐸 → R2

is 𝒜∕ℬ(R2)-measurable.
Indeed: The map ℎ ∶ (𝐸,𝒜 ) → (C,𝒞 ) is, by definition, measureable if ℎ−1(𝐴) ∈ 𝒜 for
all𝐴 ∈ 𝒞 . Since𝒞 = 𝑔−1(ℬ(R2)), this is the same as ℎ−1(𝑔−1(𝐵)) = (𝑔◦ℎ)−1(𝐵) ∈ 𝒜

for all 𝐵 ∈ ℬ(R2), hence it is the same as the measurability of 𝑔◦ℎ.
"⇒": Assume that ℎ ∶ 𝐸 → C is 𝒜∕𝒞 -measurable. Then we have that

(𝑔◦ℎ) =

(

Reℎ
Imℎ

)

is 𝒜∕ℬ(R2)-measurable. Since the projections 𝜋𝑗 ∶ R2 ∋ (𝑥1, 𝑥2) → 𝑥𝑗 ∈ R are
Borel measurable (due to continuity!), we get that Reℎ = 𝜋1(𝑔◦ℎ) and Imℎ = 𝜋2(𝑔◦ℎ)
are measurable (composition of measurable functions).
"⇐": Assume that Reℎ and Imℎ are 𝒜∕ℬ(R)-measurable. Then the map (𝑔◦ℎ) =
(Reℎ, Imℎ) is 𝒜∕ℬ(R2)-measurable. With the above arguments we conclude that
ℎ ∶ (𝐸,𝒜 ) → (C,𝒞 ) is measurable.

(iii) We show first additivity: let 𝑔, ℎ ∈ 1
C
(𝜇). From

|Re(𝑔+ℎ)| ⩽ |Re 𝑔|+|Reℎ| ∈ 1(𝜇), | Im(𝑔+ℎ)| ⩽ | Im(𝑔)|+| Im(ℎ)| ∈ 1(𝜇)

we conclude that 𝑔 + ℎ ∈ 1(𝜇). Since Re(𝑔 + ℎ) = Re(𝑔) + Re(ℎ) and Im(𝑔 + ℎ) =
Im(𝑔) + Im(ℎ), we get from the definition of the integral

∫ (𝑔 + ℎ) 𝑑𝜇 = ∫ Re(𝑔 + ℎ) 𝑑𝜇 + 𝑖∫ Im(𝑔 + ℎ) 𝑑𝜇

= ∫ (Re(𝑔) + Re(ℎ)) 𝑑𝜇 + 𝑖(Im(𝑔) + Im(ℎ)) 𝑑𝜇

= ∫ Re(𝑔) 𝑑𝜇 + ∫ Re(ℎ) 𝑑𝜇 + 𝑖∫ Im(𝑔) 𝑑𝜇 + 𝑖∫ Im(ℎ) 𝑑𝜇

=
(

∫ Re(𝑔) 𝑑𝜇 + 𝑖∫ Im(𝑔) 𝑑𝜇
)

+
(

∫ Re(ℎ) 𝑑𝜇 + 𝑖∫ Im(ℎ) 𝑑𝜇
)

= ∫ 𝑔 𝑑𝜇 + ∫ ℎ 𝑑𝜇.

Note that we have used the R-linearity of the integral for real-valued functions. The
homogeneity of the complex integral is shown in a very similar way.

(iv) Since Reℎ and Imℎ are real, we get ∫ Reℎ 𝑑𝜇 ∈ R and ∫ Imℎ 𝑑𝜇 ∈ R. Therefore,

Re
(

∫ ℎ 𝑑𝜇
)

= Re
(

∫ Reℎ 𝑑𝜇 + 𝑖∫ Imℎ 𝑑𝜇
)
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= ∫ Reℎ 𝑑𝜇.

Similarly, we see

Im
(

∫ ℎ 𝑑𝜇
)

= Im
(

∫ Reℎ 𝑑𝜇 + 𝑖∫ Imℎ 𝑑𝜇
)

= ∫ Imℎ 𝑑𝜇.

(v) We follow the hint: as ∫ ℎ 𝑑𝜇 ∈ Cwe can pick some 𝜃 ∈ (−𝜋, 𝜋] such that 𝑒𝑖𝜃 ∫ ℎ 𝑑𝜇 ⩾
0. Thus, (iii) and (iv) entail

|

|

|

|

∫ ℎ 𝑑𝜇
|

|

|

|

= 𝑒𝑖𝜃 ∫ ℎ 𝑑𝜇

= Re
(

𝑒𝑖𝜃 ∫ ℎ 𝑑𝜇
)

= ∫ Re(𝑒𝑖𝜃ℎ) 𝑑𝜇

⩽ ∫ |𝑒𝑖𝜃ℎ| 𝑑𝜇

= ∫ |ℎ| 𝑑𝜇.

(vi) We know from (ii) that ℎ ∶ (𝐸,𝒜 ) → (C,𝒞 ) is measurable if, and only if, Reℎ and
Imℎ are 𝒜∕ℬ(R2)-measurable. If Reℎ and Imℎ are 𝜇-integrable, then so is

|ℎ| =
√

(Reℎ)2 + (Imℎ)2 ⩽ |Reℎ| + | Imℎ|.

If |ℎ| ∈ 1
R
(𝜇), then we conclude from |Reℎ| ⩽ |ℎ| and | Imℎ| ⩽ |ℎ|, that Reℎ and

Imℎ are 𝜇-integrable.
■■
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11 Null sets and the ‘almost everywhere’.

Solutions to Problems 11.1–11.12

Problem 11.1 Solution: True, we can change an integrable function on a null set, even by setting it to
the value +∞ or −∞ on the null set. This is just the assertion of Theorem 11.2 and its Corollaries
11.3, 11.4.

■■

Problem 11.2 Solution: We have seen that a single point is a Lebesgue null set: {𝑥} ∈ ℬ(R) for
all 𝑥 ∈ R and 𝜆({𝑥}) = 0, see e.g. Problems 4.13 and 6.7. If 𝑁 is countable, we know that
𝑁 = {𝑥𝑗 ∶ 𝑗 ∈ N} =

⨃

𝑗∈N{𝑥𝑗} and by the 𝜎-additivity of measures

𝜆(𝑁) = 𝜆

(

⨃

𝑗∈N
{𝑥𝑗}

)

=
∑

𝑗∈N
𝜆
(

{𝑥𝑗}
)

=
∑

𝑗∈N
0 = 0.

The Cantor set 𝐶 from Problem 7.12 is, as we have seen, uncountable but has measure 𝜆(𝐶) = 0.
This means that there are uncountable sets with measure zero.
In R2 and for two-dimensional Lebesgue measure 𝜆2 the situation is even easier: every line 𝐿 in
the plane has zero Lebesgue measure and 𝐿 contains certainly uncountably many points. That
𝜆2(𝐿) = 0 is seen from the fact that 𝐿 differs from the ordinate {(𝑥, 𝑦) ∈ R2 ∶ 𝑥 = 0} only
by a rigid motion 𝑇 which leaves Lebesgue measure invariant (see Chapter 4, Theorem 4.7) and
𝜆2({𝑥 = 0}) = 0 as seen in Problem 6.7.

■■

Problem 11.3 Solution:

(i) Since {|𝑢| > 𝑐} ⊂ {|𝑢| ⩾ 𝑐} and, therefore, 𝜇({|𝑢| > 𝑐}) ⩽ 𝜇({|𝑢| ⩾ 𝑐}), this follows
immediately from Proposition 11.5. Alternatively, one could also mimic the proof of this
Proposition or use part (iii) of the present problem with 𝜙(𝑡) = 𝑡, 𝑡 ⩾ 0.

(ii) This will follow from (iii) with 𝜙(𝑡) = 𝑡𝑝, 𝑡 ⩾ 0, since 𝜇({|𝑢| > 𝑐}) ⩽ 𝜇({|𝑢| ⩾ 𝑐}) as
{|𝑢| > 𝑐} ⊂ {|𝑢| ⩾ 𝑐}.

(iii) We have, since 𝜙 is increasing,

𝜇({|𝑢| ⩾ 𝑐}) = 𝜇({𝜙(|𝑢|) ⩾ 𝜙(𝑐)})

= ∫ 1{𝑥∶𝜙(|𝑢(𝑥)|)⩾𝜙(𝑐)}(𝑥)𝜇(𝑑𝑥)

113



R.L. Schilling: Measures, Integrals & Martingales

= ∫
𝜙(|𝑢(𝑥)|)
𝜙(|𝑢(𝑥)|)

1{𝑥∶𝜙(|𝑢(𝑥)|)⩾𝜙(𝑐)}(𝑥)𝜇(𝑑𝑥)

⩽ ∫
𝜙(|𝑢(𝑥)|)
𝜙(𝑐)

1{𝑥∶𝜙(|𝑢(𝑥)|)⩾𝜙(𝑐)}(𝑥)𝜇(𝑑𝑥)

⩽ ∫
𝜙(|𝑢(𝑥)|)
𝜙(𝑐)

𝜇(𝑑𝑥)

= 1
𝜙(𝑐) ∫

𝜙(|𝑢(𝑥)|)𝜇(𝑑𝑥)

(iv) Let us set 𝑏 = 𝛼 ∫ 𝑢 𝑑𝜇. Then we follow the argument of (iii), where we use that 𝑢 and 𝑏 are
strictly positive.

𝜇({𝑢 ⩾ 𝑏}) = ∫ 1{𝑥∶𝑢(𝑥)⩾𝑏}(𝑥)𝜇(𝑑𝑥)

= ∫
𝑢(𝑥)
𝑢(𝑥)

1{𝑥∶𝑢(𝑥)⩾𝑏}(𝑥)𝜇(𝑑𝑥)

⩽ ∫
𝑢(𝑥)
𝑏
1{𝑥∶𝑢(𝑥)⩾𝑏}(𝑥)𝜇(𝑑𝑥)

⩽ ∫
𝑢
𝑏
𝑑𝜇

= 1
𝑏 ∫

𝑢 𝑑𝜇

and substituting 𝛼 ∫ 𝑢 𝑑𝜇 for 𝑏 shows the inequality.
(v) Using the fact that 𝜓 is decreasing we get {|𝑢| < 𝑐} = {𝜓(|𝑢|) > 𝜓(𝑐)}—mind the change

of the inequality sign—and going through the proof of part (iii) again we use there that 𝜙
increases only in the first step in a similar role as we used the decrease of 𝜓 here! This means
that the argument of (iii) is valid after this step and we get, altogether,

𝜇({|𝑢| < 𝑐}) = 𝜇({𝜓(|𝑢|) > 𝜓(𝑐)})

= ∫ 1{𝑥∶𝜓(|𝑢(𝑥)|)>𝜓(𝑐)}(𝑥)𝜇(𝑑𝑥)

= ∫
𝜓(|𝑢(𝑥)|)
𝜓(|𝑢(𝑥)|)

1{𝑥∶𝜓(|𝑢(𝑥)|)>𝜙(𝑐)}(𝑥)𝜇(𝑑𝑥)

⩽ ∫
𝜓(|𝑢(𝑥)|)
𝜓(𝑐)

1{𝑥∶𝜓(|𝑢(𝑥)|)>𝜓(𝑐)}(𝑥)𝜇(𝑑𝑥)

⩽ ∫
𝜓(|𝑢(𝑥)|)
𝜓(𝑐)

𝜇(𝑑𝑥)

= 1
𝜓(𝑐) ∫

𝜓(|𝑢(𝑥)|)𝜇(𝑑𝑥)

(vi) This follows immediately from (ii) by taking 𝜇 = P, 𝑐 = 𝛼
√

V𝜉, 𝑢 = 𝜉 − E𝜉 and 𝑝 = 2.
Then

P
(

|𝜉 − E𝜉| ⩾ 𝛼
√

V𝜉
)

⩽ 1
(

𝛼
√

V𝜉
)2 ∫ |𝜉 − E𝜉|2 𝑑P

= 1
𝛼2V𝜉

V𝜉 = 1
𝛼2
.
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■■

Problem 11.4 Solution: We mimic the proof of Corollary 11.6. Set 𝑁 = {|𝑢| = ∞} = {|𝑢|𝑝 = ∞}.
Then𝑁 =

⋂

𝑘∈N{|𝑢|𝑝 ⩾ 𝑘} and using Markov’s inequality (MI) and the ‘continuity’ of measures,
Proposition 4.3(vii), we find

𝜇(𝑁) = 𝜇

(

⋂

𝑘∈N
{|𝑢|𝑝 ⩾ 𝑘}

)

4.3(vii)
= lim

𝑘→∞
𝜇({|𝑢|𝑝 ⩾ 𝑘})

MI
⩽ lim

𝑘→∞
1
𝑘 ∫ |𝑢|𝑝 𝑑𝜇

⏟⏞⏞⏟⏞⏞⏟
<∞

= 0.

For arctan this is not any longer true for several reasons:
• ... arctan is odd and changes sign, so there could be cancelations under the integral.
• ... even if we had no cancelations we have the problem that the points where 𝑢(𝑥) = ∞ are

now transformed to points where arctan(𝑢(𝑥)) = 𝜋
2 and we do not know how the measure

𝜇 acts under this transformation. A simple example: Take 𝜇 to be a measure of total finite
mass (that is: 𝜇(𝑋) < ∞), e.g. a probability measure, and take the function 𝑢(𝑥) which is
constantly 𝑢 ≡ +∞. Then arctan(𝑢(𝑥)) = 𝜋

2 throughout, and we get

∫ arctan 𝑢(𝑥)𝜇(𝑑𝑥) = ∫
𝜋
2
𝑑𝜇 = 𝜋

2 ∫ 𝑑𝜇 = 𝜋
2
𝜇(𝑋) <∞,

but 𝑢 is nowhere finite!
■■

Problem 11.5 Solution:

(i) Assume that 𝑓 ∗ is 𝒜 -measurable. The problem at hand is to construct 𝒜 -measurable up-
per and lower functions 𝑔 and 𝑓 . For positive simple functions this is clear: if 𝑓 ∗(𝑥) =
∑𝑁
𝑗=0 𝜙𝑗1𝐵∗

𝑗
(𝑥) with 𝜙𝑗 ⩾ 0 and 𝐵∗

𝑗 ∈ 𝒜 , then we can use Problem 4.15(v) to find 𝐵𝑗 , 𝐶𝑗 ∈
𝒜 with 𝜇(𝐶𝑗 ⧵ 𝐵𝑗) = 0

𝐵𝑗 ⊂ 𝐵
∗
𝑗 ⊂ 𝐶𝑗 ⇐⇒ 𝜙𝑗1𝐵𝑗 ⩽ 𝜙𝑗1𝐵∗

𝑗
⩽ 𝜙𝑗1𝐶𝑗

and summing over 𝑗 = 0, 1,… , 𝑁 shows that 𝑓 ⩽ 𝑓 ∗ ⩽ 𝑔 where 𝑓, 𝑔 are the appropriate
lower and upper sums which are clearly 𝒜 measurable and satisfy

𝜇({𝑓 ≠ 𝑔}) ⩽ 𝜇(𝐶0 ⧵ 𝐵0 ∪⋯ ∪ 𝐶𝑁 ⧵ 𝐵𝑁 )

⩽ 𝜇(𝐶0 ⧵ 𝐵0) +⋯ + 𝜇(𝐶𝑁 ⧵ 𝐵𝑁 )

= 0 +⋯ + 0 = 0.

Moreover, since by Problem 4.15 𝜇(𝐵𝑗) = 𝜇(𝐶𝑗) = 𝜇̄(𝐵∗
𝑗 ), we have

∑

𝑗
𝜙𝑗𝜇(𝐵𝑗) =

∑

𝑗
𝜙𝑗 𝜇̄(𝐵∗

𝑗 ) =
∑

𝑗
𝜙𝑗𝜇(𝐶𝑗)
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which is the same as

∫ 𝑓 𝑑𝜇 = ∫ 𝑓 ∗ 𝑑𝜇̄ = ∫ 𝑔 𝑑𝜇.

(ii), (iii) Assume that 𝑢∗ is 𝒜 ∗-measurable; without loss of generality (otherwise consider pos-
itive and negative parts) we can assume that 𝑢∗ ⩾ 0. Because of Theorem 8.8 we know that
𝑓 ∗
𝑘 ↑ 𝑢∗ for 𝑓 ∗

𝑘 ∈ +(𝒜 ∗). Now choose the corresponding 𝒜 -measurable lower and upper
functions 𝑓𝑘, 𝑔𝑘 constructed in part (i). By considering, if necessary, max{𝑓1,… , 𝑓𝑘} we
can assume that the 𝑓𝑘 are increasing.
Set 𝑢 ∶= sup𝑘 𝑓𝑘 and 𝑣 ∶= lim inf𝑘 𝑔𝑘. Then 𝑢, 𝑣 ∈ (𝒜 ), 𝑢 ⩽ 𝑢∗ ⩽ 𝑣, and by Fatou’s
lemma

∫ 𝑣 𝑑𝜇 = ∫ lim inf
𝑘

𝑔𝑘 𝑑𝜇 ⩽ lim inf
𝑘 ∫ 𝑔𝑘 𝑑𝜇

= lim inf
𝑘 ∫ 𝑓 ∗

𝑘 𝑑𝜇̄

= ∫ 𝑢∗ 𝑑𝜇̄

⩽ ∫ 𝑣 𝑑𝜇.

Since 𝑓𝑘 ↑ 𝑢 we get by Beppo Levi and Fatou

∫ 𝑢 𝑑𝜇 = sup
𝑘 ∫ 𝑓𝑘 𝑑𝜇 = lim inf

𝑘 ∫ 𝑓𝑘 𝑑𝜇

= lim inf
𝑘 ∫ 𝑔𝑘 𝑑𝜇

⩾ ∫ lim inf
𝑘

𝑔𝑘 𝑑𝜇

= ∫ 𝑣 𝑑𝜇

⩾ ∫ 𝑢 𝑑𝜇

This proves that ∫ 𝑢 𝑑𝜇 = ∫ 𝑣 𝑑𝜇 = ∫ 𝑢∗ 𝑑𝜇. This answers part (iii) by considering positive
and negative parts.
It remains to show that {𝑢 ≠ 𝑣} is a 𝜇-null set. (This does not follow from the above integral
equality, cf. Problem 11.10!) Clearly, {𝑢 ≠ 𝑣} = {𝑢 < 𝑣}, i.e. if 𝑥 ∈ {𝑢 < 𝑣} is fixed, we
deduce that, for sufficiently large values of 𝑘,

𝑓𝑘(𝑥) < 𝑔𝑘(𝑥), 𝑘 large

since 𝑢 = sup𝑓𝑘 and 𝑣 = lim inf𝑘 𝑔𝑘. Thus,

{𝑢 ≠ 𝑣} ⊂
⋃

𝑘
{𝑓𝑘 ≠ 𝑔𝑘}

but the RHS is a countable union of 𝜇-null sets, hence a null set itself.
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Conversely, assume first that 𝑢 ⩽ 𝑢∗ ⩽ 𝑣 for two 𝒜 -measurable functions 𝑢, 𝑣 with 𝑢 = 𝑣
a.e. We have to show that {𝑢∗ > 𝛼} ∈ 𝒜 ∗. Using that 𝑢 ⩽ 𝑢∗ ⩽ 𝑣 we find that

{𝑢 > 𝛼} ⊂ {𝑢∗ > 𝛼} ⊂ {𝑣 > 𝛼}

but {𝑣 > 𝛼}, {𝑢 > 𝛼} ∈ 𝒜 and {𝑢 > 𝛼} ⧵ {𝑣 > 𝛼} ⊂ {𝑢 ≠ 𝑣} is a 𝜇-null set. Because of
Problem 4.15 we conclude that {𝑢∗ > 𝛼} ∈ 𝒜 ∗.

■■

Problem 11.6 Solution: Throughout the solution the letters 𝐴,𝐵 are reserved for sets from 𝒜 .
(i) a) Let 𝐴 ⊂ 𝐸 ⊂ 𝐵. Then 𝜇(𝐴) ⩽ 𝜇(𝐵) and going to the sup𝐴⊂𝐸 and inf𝐸⊂𝐵 proves

𝜇∗(𝐸) ⩽ 𝜇∗(𝐸).
b) By the definition of 𝜇∗ and 𝜇∗ we find some 𝐴 ⊂ 𝐸 such that

|𝜇∗(𝐸) − 𝜇(𝐴)| ⩽ 𝜖.

Since 𝐴𝑐 ⊃ 𝐸𝑐 we can enlarge 𝐴, if needed, and achieve

|𝜇∗(𝐸𝑐) − 𝜇(𝐴𝑐)| ⩽ 𝜖.

Thus,

|𝜇(𝑋) − 𝜇∗(𝐸) − 𝜇∗(𝐸𝑐)|

⩽ |𝜇∗(𝐸) − 𝜇(𝐴)| + |𝜇∗(𝐸𝑐) − 𝜇(𝐴𝑐)|

⩽ 2𝜖,

and the claim follows as 𝜖 → 0.
c) Let 𝐴 ⊃ 𝐸 and 𝐵 ⊃ 𝐹 be arbitrary majorizing 𝒜 -sets. Then 𝐴 ∪ 𝐵 ⊃ 𝐸 ∪ 𝐹 and

𝜇∗(𝐸 ∪ 𝐹 ) ⩽ 𝜇(𝐴 ∪ 𝐵) ⩽ 𝜇(𝐴) + 𝜇(𝐵).

Now we pass on the right-hand side, separately, to the inf𝐴⊃𝐸 and inf𝐵⊃𝐹 , and obtain

𝜇∗(𝐸 ∪ 𝐹 ) ⩽ 𝜇∗(𝐸) + 𝜇∗(𝐹 ).

d) Let 𝐴 ⊂ 𝐸 and 𝐵 ⊂ 𝐹 be arbitrary minorizing 𝒜 -sets. Then 𝐴 ⊍ 𝐵 ⊂ 𝐸 ⊍ 𝐹 and

𝜇∗(𝐸 ⊍ 𝐹 ) ⩾ 𝜇(𝐴 ⊍ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵).

Now we pass on the right-hand side, separately, to the sup𝐴⊂𝐸 and sup𝐵⊂𝐹 , where we
stipulate that 𝐴 ∩ 𝐵 = ∅, and obtain

𝜇∗(𝐸 ⊍ 𝐹 ) ⩾ 𝜇∗(𝐸) + 𝜇∗(𝐹 ).
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(ii) By the definition of the infimum/supremum we find sets 𝐴𝑛 ⊂ 𝐸 ⊂ 𝐴𝑛 such that
|𝜇∗(𝐴) − 𝜇(𝐴𝑛)| + |𝜇∗(𝐴) − 𝜇(𝐴𝑛)| ⩽ 1

𝑛
.

Without loss of generality we can assume that the𝐴𝑛 increase and that the𝐴𝑛 decrease. Now
𝐴∗ ∶=

⋃

𝑛𝐴𝑛, 𝐴∗ ∶=
⋂

𝑛𝐴
𝑛 are 𝒜 -sets with 𝐴∗ ⊂ 𝐴 ⊂ 𝐴∗. Now, 𝜇(𝐴𝑛) ↓ 𝜇(𝐴∗) as well

as 𝜇(𝐴𝑛) → 𝜇∗(𝐸) which proves 𝜇(𝐴∗) = 𝜇∗(𝐸). Analogously, 𝜇(𝐴𝑛) ↑ 𝜇(𝐴∗) as well as
𝜇(𝐴𝑛) → 𝜇∗(𝐸) which proves 𝜇(𝐴∗) = 𝜇∗(𝐸).

(iii) In view of Problem 4.15 and (i), (ii), it is clear that
{

𝐸 ⊂ 𝑋 ∶ 𝜇∗(𝐸) = 𝜇∗(𝐸)
}

=
{

𝐸 ⊂ 𝑋 ∶ ∃𝐴,𝐵 ∈ 𝒜 , 𝐴 ⊂ 𝐸 ⊂ 𝐵, 𝜇(𝐵 ⧵ 𝐴) = 0
}

but the latter is the completed 𝜎-algebra 𝒜 ∗. That 𝜇∗||
|𝒜 ∗

= 𝜇∗
|

|

|𝒜 ∗
= 𝜇̄ is now trivial since

𝜇∗ and 𝜇∗ coincide on 𝒜 ∗.
■■

Problem 11.7 Solution: Let 𝐴 ∈ 𝒜 and assume that there are non-measurable sets, i.e. 𝒫 (𝑋) ⊋ 𝒜 .
Take some 𝑁 ∉ 𝒜 which is a 𝜇-null set. Assume also that 𝑁 ∩ 𝐴 = ∅. Then 𝑢 = 1𝐴 and
𝑤 ∶= 1𝐴 + 2 ⋅ 1𝑁 are a.e. identical, but 𝑤 is not measurable.
This means that 𝑤 is only measurable if, e.g. all (subsets of) null sets are measurable, that is if
(𝑋,𝒜 , 𝜇) is complete.

■■

Problem 11.8 Solution: The function 1Q is nowhere continuous but 𝑢 = 0 Lebesgue almost every-
where. That is

{𝑥 ∶ 1Q(𝑥) is discontinuous} = R

while
{𝑥 ∶ 1Q ≠ 0} = Q is a Lebesgue null set,

that is 1Q coincides a.e. with a continuous function but is itself at no point continuous!
The same analysis for 1[0,∞) yields that

{𝑥 ∶ 1[0,∞)(𝑥) is discontinuous} = {0}

which is a Lebesgue null set, but 1[0,∞) cannot coincide a.e. with a continuous function! This,
namely, would be of the form 𝑤 = 0 on (−∞,−𝛿) and 𝑤 = 1 on (𝜖,∞) while it ‘interpolates’
somehow between 0 and 1 if −𝛿 < 𝑥 < 𝜖. But this entails that

{𝑥 ∶ 𝑤(𝑥) ≠ 1[0,∞)(𝑥)}

cannot be a Lebesgue null set!
■■
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Problem 11.9 Solution: Let (𝐴𝑗)𝑗∈N ⊂ 𝒜 be an exhausting sequence 𝐴𝑗 ↑ 𝑋 such that 𝜇(𝐴𝑗) < ∞.
Set

𝑓 (𝑥) ∶=
∞
∑

𝑗=1

1
2𝑗(𝜇(𝐴𝑗) + 1)

1𝐴𝑗 (𝑥).

Then 𝑓 is measurable, 𝑓 (𝑥) > 0 everywhere, and using Beppo Levi’s theorem

∫ 𝑓 𝑑𝜇 = ∫

( ∞
∑

𝑗=1

1
2𝑗(𝜇(𝐴𝑗) + 1)

1𝐴𝑗

)

𝑑𝜇

=
∞
∑

𝑗=1

1
2𝑗(𝜇(𝐴𝑗) + 1) ∫

1𝐴𝑗 𝑑𝜇

=
∞
∑

𝑗=1

𝜇(𝐴𝑗)
2𝑗(𝜇(𝐴𝑗) + 1)

⩽
∞
∑

𝑗=1
2−𝑗 = 1.

Thus, set 𝑃 (𝐴) ∶= ∫𝐴 𝑓 𝑑𝜇. We know from Problem 9.7 that 𝑃 is indeed a measure.
If 𝑁 ∈ 𝒩𝜇, then, by Theorem 11.2,

𝑃 (𝑁) = ∫𝑁
𝑓 𝑑𝜇

11.2
= 0

so that 𝒩𝜇 ⊂ 𝒩𝑃 .
Conversely, if 𝑀 ∈ 𝑃 , we see that

∫𝑀
𝑓 𝑑𝜇 = 0

but since 𝑓 > 0 everywhere, it follows from Theorem 11.2 that 1𝑀 ⋅ 𝑓 = 0 𝜇-a.e., i.e. 𝜇(𝑀) = 0.
Thus, 𝒩𝑃 ⊂ 𝒩𝜇.
Remark. We will see later (cf. Chapter 20 or Chapter 25, Radon–Nikodým theorem) that𝒩𝜇 = 𝒩𝑃

if and only if 𝑃 = 𝑓 ⋅ 𝜇 (i.e., if 𝑃 has a density w.r.t. 𝜇) such that 𝑓 > 0.
■■

Problem 11.10 Solution: Well, the hint given in the text should be good enough.
■■

Problem 11.11 Solution: Observe that

∫𝐶
𝑢 𝑑𝜇 = ∫𝐶

𝑤𝑑𝜇 ⇐⇒ ∫𝐶
(𝑢+ +𝑤−) 𝑑𝜇 = ∫𝐶

(𝑢− +𝑤+) 𝑑𝜇

holds for all 𝐶 ∈ 𝒞 . The right-hand side can be read as the equality of two measures 𝐴 →

∫𝐴(𝑢
+ + 𝑤−) 𝑑𝜇,𝐴 → ∫𝐴(𝑢

− + 𝑤+) 𝑑𝜇, 𝐴 ∈ 𝒜 which coincide on a generator 𝒞 which satisfies
the conditions of the uniqueness theorem of measures (Theorem 5.7). This shows that

∫𝐴
𝑢 𝑑𝜇 = ∫𝐴

𝑤𝑑𝜇 ∀𝐴 ∈ 𝒜 .
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Now the direction ‘⇒’ follows from Corollary 11.7 where ℬ = 𝒜 .
The converse implication ‘⇐’ follows directly from Corollary 11.6 applied to 𝑢1𝐶 and 𝑤1𝐶 .

■■

Problem 11.12 Solution:

(i) “⊂”: Let 𝑥 ∈ 𝐶𝑓 , i.e. 𝑓 (𝑥) = lim𝑛→∞ 𝑓𝑛(𝑥) exists; in particular, (𝑓𝑛(𝑥))𝑛∈N is Cauchy:
for all 𝑘 ∈ N there is some 𝓁 ∈ N such that

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ⩽
1
𝑘

∀𝑚, 𝑛 ⩾ 𝓁.

This shows that 𝑥 ∈
⋂

𝑘∈N
⋃

𝓁∈N
⋂∞
𝑛,𝑚=𝓁{|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ⩽

1
𝑘
}.

“⊃”: Assume that ⋂𝑘∈N
⋃

𝓁∈N
⋂∞
𝑛,𝑚=𝓁{|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ⩽ 1

𝑘
}. This means that for

every 𝑘 ∈ N there is some 𝓁 ∈ N with

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ⩽
1
𝑘

∀𝑚, 𝑛 ⩾ 𝓁.

This shows that (𝑓𝑛(𝑥))𝑛∈N is a Cauchy sequence in R. The claim follows since R is
complete.

(ii) From the definition of limits we get (as in part (i))

𝐶𝑓 =
⋂

𝑘∈N

⋃

𝓁∈N

∞
⋂

𝑚=𝓁
{|𝑓𝑚(𝑥) − 𝑓 (𝑥)| ⩽

1
𝑘
};

Observe that
𝐴𝑘𝑛 ↑

∞
⋃

𝓁=1

∞
⋂

𝑚=𝓁
{|𝑓𝑚(𝑥) − 𝑓 (𝑥)| ⩽

1
𝑘
} ⊃ 𝐶𝑓

as 𝑛→ ∞. Using the continuity of measures, we get

𝜇(𝐴𝑘𝑛) ↑ 𝜇

( ∞
⋃

𝓁=1

∞
⋂

𝑚=𝓁

{

|𝑓𝑚(𝑥) − 𝑓 (𝑥)| ⩽
1
𝑘

}

)

= 𝜇(𝑋).

(Note: if 𝐴 ⊂ 𝐵 is measurable and 𝜇(𝐴) = 𝜇(𝑋), then we have 𝜇(𝐵) = 𝜇(𝑋).) In
particular we can pick 𝑛 = 𝑛(𝑘, 𝜖) in such a way that 𝜇(𝐴𝑘𝑛) ⩾ 𝜇(𝑋) − 𝜖2−𝑘. Therefore,

𝜇(𝑋 ⧵ 𝐴𝑘𝑛(𝑘,𝜖)) = 𝜇(𝑋) − 𝜇(𝐴𝑘𝑛(𝑘,𝜖)) ⩽ 𝜖2−𝑘.

(iii) Fix 𝜖 > 0, pick 𝑛 = 𝑛(𝑘, 𝜖) as in part (ii), and define

𝐴𝜖 ∶=
⋂

𝑘∈N
𝐴𝑘𝑛(𝑘,𝜖) ∈ 𝒜 .

Using the sub-additivity of 𝜇 we get

𝜇(𝑋 ⧵ 𝐴𝜖) = 𝜇

(

⋃

𝑘∈N

(

𝑋 ⧵ 𝐴𝑘𝑛(𝑘,𝜖)
)

)

⩽
∑

𝑘∈N
𝜇(𝑋 ⧵ 𝐴𝑘𝑛(𝑘,𝜖)) ⩽

∑

𝑘∈N
𝜖2−𝑘 ⩽ 𝜖.
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It remains to show that 𝑓𝑛 converges uniformly to 𝑓 on the set 𝐴𝜖. By definition,

𝐴𝜖 =
⋂

𝑘∈N

𝑛(𝑘,𝜖)
⋃

𝓁=1

∞
⋂

𝑚=𝓁
{|𝑓 − 𝑓𝑚| ⩽

1
𝑘
},

i.e. for all 𝑥 ∈ 𝐴𝜖 and 𝑘 ∈ N there is some 𝓁(𝑥) ⩽ 𝑛(𝑘, 𝜖) such that

|𝑓 (𝑥) − 𝑓𝑚(𝑥)| ⩽
1
𝑘

∀𝑚 ⩾ 𝓁(𝑥).

Since 𝓁(𝑥) ⩽ 𝑛(𝑘, 𝜖) we get, in particular,

|𝑓 (𝑥) − 𝑓𝑚(𝑥)| ⩽
1
𝑘

∀𝑥 ∈ 𝐴𝜖, 𝑚 ⩾ 𝑛(𝑘, 𝜖).

Since 𝑘 ∈ N is arbitrary, the uniform convergence 𝐴𝜖 follows.
(iv) Consider one-dimensional Lebesgue measure, set 𝑓 (𝑥) ∶= |𝑥| and 𝑓𝑛(𝑥) ∶= |𝑥|1[−𝑛,𝑛].

Then we have 𝑓𝑛(𝑥) ↑ 𝑓 (𝑥) for every 𝑥, but the set {|𝑓𝑛 − 𝑓 | > 𝜖} = [−𝑛, 𝑛]𝑐 has
infinite measure for any 𝜖 > 0.

■■
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12 Convergence theorems and their

applications.

Solutions to Problems 12.1–12.37

Problem 12.1 Solution: We start with the simple remark that

|𝑎 − 𝑏|𝑝 ⩽ (|𝑎| + |𝑏|)𝑝

⩽ (max{|𝑎|, |𝑏|} + max{|𝑎|, |𝑏|})𝑝

= 2𝑝max{|𝑎|, |𝑏|}𝑝

= 2𝑝max{|𝑎|𝑝, |𝑏|𝑝}

⩽ 2𝑝(|𝑎|𝑝 + |𝑏|𝑝).

Because of this we find that |𝑢𝑗 − 𝑢|𝑝 ⩽ 2𝑝𝑔𝑝 and the right-hand side is an integrable dominating
function.

Proof alternative 1: Apply Theorem 12.2 on dominated convergence to the sequence 𝜙𝑗 ∶= |𝑢𝑗 −
𝑢|𝑝 of integrable functions. Note that𝜙𝑗(𝑥) → 0 and that 0 ⩽ 𝜙𝑗 ⩽ ΦwhereΦ = 2𝑝𝑔𝑝 is integrable
and independent of 𝑗. Thus,

lim
𝑗→∞∫ |𝑢𝑗 − 𝑢|𝑝 𝑑𝜇 = lim

𝑗→∞∫ 𝜙𝑗 𝑑𝜇 = ∫ lim
𝑗→∞

𝜙𝑗 𝑑𝜇

= ∫ 0 𝑑𝜇 = 0.

Proof alternative 2: Mimic the proof of Theorem 12.2 on dominated convergence. To do so we
remark that the sequence of functions

0 ⩽ 𝜓𝑗 ∶= 2𝑝𝑔𝑝 − |𝑢𝑗 − 𝑢|𝑝 ←←←←←←←←←←←←←←←←←←←←→𝑗→∞
2𝑝𝑔𝑝

Since the limit lim𝑗 𝜓𝑗 exists, it coincides with lim inf 𝑗 𝜓𝑗 , and so we can use Fatou’s Lemma to
get

∫ 2𝑝𝑔𝑝 𝑑𝜇 = ∫ lim inf
𝑗→∞

𝜓𝑗 𝑑𝜇

⩽ lim inf
𝑗→∞ ∫ 𝜓𝑗 𝑑𝜇

= lim inf
𝑗→∞ ∫

(

2𝑝𝑔𝑝 − |𝑢𝑗 − 𝑢|𝑝
)

𝑑𝜇
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= ∫ 2𝑝𝑔𝑝 𝑑𝜇 + lim inf
𝑗→∞

(

− ∫ |𝑢𝑗 − 𝑢|𝑝 𝑑𝜇
)

= ∫ 2𝑝𝑔𝑝 𝑑𝜇 − lim sup
𝑗→∞ ∫ |𝑢𝑗 − 𝑢|𝑝 𝑑𝜇

where we use that lim inf 𝑗(−𝛼𝑗) = − lim sup𝑗 𝛼𝑗 . This shows that lim sup𝑗 ∫ |𝑢𝑗 − 𝑢|𝑝 𝑑𝜇 = 0,
hence

0 ⩽ lim inf
𝑗→∞ ∫ |𝑢𝑗 − 𝑢|𝑝 𝑑𝜇 ⩽ lim sup

𝑗→∞ ∫ |𝑢𝑗 − 𝑢|𝑝 𝑑𝜇 ⩽ 0

showing that lower and upper limit coincide and equal to 0, hence lim𝑗 ∫ |𝑢𝑗 − 𝑢|𝑝 𝑑𝜇 = 0.
■■

Problem 12.2 Solution: Assume that, as in the statement of Theorem 12.2, 𝑢𝑗 → 𝑢 and that |𝑢𝑗| ⩽
𝑓 ∈ 1(𝜇). In particular,

−𝑓 ⩽ 𝑢𝑗 and 𝑢𝑗 ⩽ 𝑓

(𝑗 ∈ N) is an integrable minorant resp. majorant. Thus, using Problem 10.7 at ∗ below,

∫ 𝑢 𝑑𝜇 = ∫ lim inf
𝑗→∞

𝑢𝑗 𝑑𝜇

∗
⩽ lim inf

𝑗→∞ ∫ 𝑢𝑗 𝑑𝜇

⩽ lim sup
𝑗→∞ ∫ 𝑢𝑗 𝑑𝜇

∗
⩽ ∫ lim sup

𝑗→∞
𝑢𝑗 𝑑𝜇 = ∫ 𝑢 𝑑𝜇.

This proves ∫ 𝑢 𝑑𝜇 = lim𝑗 ∫ 𝑢𝑗 𝑑𝜇.

Addition: since 0 ⩽ |𝑢 − 𝑢𝑗| ⩽ | lim𝑗 𝑢𝑗| + |𝑢𝑗| ⩽ 2𝑓 ∈ 1(𝜇), the sequence |𝑢 − 𝑢𝑗| has an
integrable majorant and using Problem 10.7 we get

0 ⩽ lim sup
𝑗→∞ ∫ |𝑢𝑗 − 𝑢| 𝑑𝜇 ⩽ ∫ lim sup

𝑗→∞
|𝑢𝑗 − 𝑢| 𝑑𝜇 = ∫ 0 𝑑𝜇 = 0

and also (i) of Theorem 12.2 follows...
■■

Problem 12.3 Solution: By assumption we have

0 ⩽ 𝑓𝑘 − 𝑔𝑘 ←←←←←←←←←←←←←←←←←←←←→𝑘→∞
𝑓 − 𝑔,

0 ⩽ 𝐺𝑘 − 𝑓𝑘 ←←←←←←←←←←←←←←←←←←←←→𝑘→∞
𝐺 − 𝑓.

Using Fatou’s Lemma we find

∫ (𝑓 − 𝑔) 𝑑𝜇 = ∫ lim
𝑘
(𝑓𝑘 − 𝑔𝑘) 𝑑𝜇
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= ∫ lim inf
𝑘

(𝑓𝑘 − 𝑔𝑘) 𝑑𝜇

⩽ lim inf
𝑘 ∫ (𝑓𝑘 − 𝑔𝑘) 𝑑𝜇

= lim inf
𝑘 ∫ 𝑓𝑘 𝑑𝜇 − ∫ 𝑔 𝑑𝜇,

and

∫ (𝐺 − 𝑓 ) 𝑑𝜇 = ∫ lim
𝑘
(𝐺𝑘 − 𝑓𝑘) 𝑑𝜇

= ∫ lim inf
𝑘

(𝐺𝑘 − 𝑓𝑘) 𝑑𝜇

⩽ lim inf
𝑘 ∫ (𝐺𝑘 − 𝑓𝑘) 𝑑𝜇

= ∫ 𝐺𝑑𝜇 − lim sup
𝑘 ∫ 𝑓𝑘 𝑑𝜇.

Adding resp. subtracting ∫ 𝑔 𝑑𝜇 resp. ∫ 𝐺𝑑𝜇 therefore yields

lim sup
𝑘 ∫ 𝑓𝑘 𝑑𝜇 ⩽ ∫ 𝑓 𝑑𝜇 ⩽ lim inf

𝑘 ∫ 𝑓𝑘 𝑑𝜇

and the claim follows.
■■

Problem 12.4 Solution: Using Beppo Levi’s theorem in the form of Corollary 9.9 we find

∫

∞
∑

𝑗=1
|𝑢𝑗| 𝑑𝜇 =

∞
∑

𝑗=1
∫ |𝑢𝑗| 𝑑𝜇 <∞, (*)

which means that the positive function ∑∞
𝑗=1 |𝑢𝑗| is finite almost everywhere, i.e. the series ∑∞

𝑗=1 𝑢𝑗
converges (absolutely) almost everywhere.
In order to show the second part, we want to apply dominated convergence. Set 𝑣𝑘 ∶=

∑𝑘
𝑛=1 𝑢𝑛

and notte that
|𝑣𝑘| =

|

|

|

|

|

|

𝑘
∑

𝑛=1
𝑢𝑛
|

|

|

|

|

|

⩽
𝑘
∑

𝑛=1
|𝑢𝑛| ⩽

∞
∑

𝑛=1
|𝑢𝑛| ⩽ 𝑤 ∈ ℒ 1(𝜇).

Clearly, 𝑣𝑘 → 𝑢 =
∑∞
𝑛=1 𝑢𝑛 as 𝑘→ ∞. Thus, we get with dominated convergence

∫

∞
∑

𝑛=1
𝑢𝑛 𝑑𝜇 = ∫ 𝑢 𝑑𝜇 = ∫ lim

𝑘→∞
𝑣𝑘 𝑑𝜇 = lim

𝑘→∞∫ 𝑣𝑘 𝑑𝜇 = lim
𝑘→∞

𝑘
∑

𝑛=1
∫ 𝑢𝑛 𝑑𝜇

=
∞
∑

𝑛=1
∫ 𝑢𝑛 𝑑𝜇.

■■

Problem 12.5 Solution: Since 1(𝜇) ∋ 𝑢𝑗 ↓ 0 we find by monotone convergence, Theorem 12.1,
that ∫ 𝑢𝑗 𝑑𝜇 ↓ 0. Therefore,

𝜎 =
∞
∑

𝑗=1
(−1)𝑗𝑢𝑗 and 𝑆 =

∞
∑

𝑗=1
(−1)𝑗 ∫ 𝑢𝑗 𝑑𝜇 converge
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(conditionally, in general). Moreover, for every 𝑁 ∈ N,

∫

𝑁
∑

𝑗=1
(−1)𝑗𝑢𝑗 𝑑𝜇 =

𝑁
∑

𝑗=1
∫ (−1)𝑗𝑢𝑗 𝑑𝜇 ←←←←←←←←←←←←←←←←←←←←←←←←→

𝑁→∞
𝑆.

All that remains is to show that the right-hand side converges to ∫ 𝜎 𝑑𝜇. Observe that for 𝑆𝑁 ∶=
∑𝑁
𝑗=1(−1)

𝑗𝑢𝑗 we have

𝑆2𝑁 ⩽ 𝑆2𝑁+2 ⩽ … ⩽ 𝑆

and we find, as 𝑆𝑗 ∈ 1(𝜇), by monotone convergence that

lim
𝑁→∞∫ 𝑆2𝑁 𝑑𝜇 = ∫ 𝜎 𝑑𝜇.

■■

Problem 12.6 Solution: Consider 𝑢𝑗(𝑥) ∶= 𝑗 ⋅1(0,1∕𝑗)(𝑥), 𝑗 ∈ N. It is clear that 𝑢𝑗 is measurable and
Lebesgue integrable with integral

∫ 𝑢𝑗 𝑑𝜆 = 𝑗 1
𝑗
= 1 ∀ 𝑗 ∈ N.

Thus, lim𝑗 ∫ 𝑢𝑗 𝑑𝜆 = 1. On the other hand, the pointwise limit is

𝑢(𝑥) ∶= lim
𝑗
𝑢𝑗(𝑥) ≡ 0

so that 0 = ∫ 𝑢 𝑑𝜆 = ∫ lim𝑗 𝑢𝑗 𝑑𝜆 ≠ 1.
The example does not contradict dominated convergence as there is no uniform dominating integ-
rable function.
Alternative: a similar situation can be found for 𝑣𝑘(𝑥) ∶= 1

𝑘
1[0,𝑘](𝑥) and the pointwise limit 𝑣 ≡ 0.

Note that in this case the limit is even uniform and still lim𝑘 ∫ 𝑣𝑘 𝑑𝜆 = 1 ≠ 0 = ∫ 𝑣 𝑑𝜆. Again
there is no contradiction to dominated convergence as there does not exist a uniform dominating
integrable function.

■■

Problem 12.7 Solution: Using the majorant (𝑒−𝑟𝑥 ⩽ 1 ∈ 1(𝜇), 𝑟, 𝑥 ⩾ 0) we find with dominated
convergence

lim
𝑟→∞∫[0,∞)

𝑒−𝑟𝑥 𝜇(𝑑𝑥) = ∫[0,∞)
lim
𝑟→∞

𝑒−𝑟𝑥 𝜇(𝑑𝑥) = ∫[0,∞)
1{0} 𝜇(𝑑𝑥) = 𝜇{0}.

■■

Problem 12.8 Solution:
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(i) Let 𝜖 > 0. As 𝑢 ∈ 1(𝜆), monotone convergence shows that

lim
𝑅→∞∫𝐵𝑅(0)𝑐

|𝑢| 𝑑𝜆 = 0.

In particular, we can pick an 𝑅 > 0 such that

∫𝐵𝑅(0)𝑐
|𝑢| 𝑑𝜆 ⩽ 𝜖.

Since 𝐾 is compact (in fact: bounded), there is some 𝑟 = 𝑟(𝑅) > 0, such that 𝑥 + 𝐾 ⊂
𝐵𝑅(0)𝑐 for all 𝑥 satisfying |𝑥| ⩾ 𝑟. Thus, we have

∫𝑥+𝐾
|𝑢| 𝑑𝜆 ⩽ ∫𝐵𝑅(0)𝑐

|𝑢| 𝑑𝜆 ⩽ 𝜖 ∀ 𝑥 ∈ R𝑛, |𝑥| ⩾ 𝑟.

(ii) Fix 𝜖 > 0. By assumption, 𝑢 is uniformly continuous. Therefore, there is some 𝛿 > 0 such
that

|𝑢(𝑦) − 𝑢(𝑥)| ⩽ 𝜖 ∀ 𝑥 ∈ R𝑛, 𝑦 ∈ 𝑥 +𝐾 ∶= 𝑥 + 𝐵𝛿(0) = 𝐵𝛿(𝑥).

Hence,

|𝑢(𝑥)|𝑝 = 1
𝜆(𝐾 + 𝑥) ∫𝐾+𝑥

|𝑢(𝑥)|𝑝𝑑𝜆(𝑦)

⩽ 1
𝜆(𝐾) ∫𝐾+𝑥

(

|𝑢(𝑦) − 𝑢(𝑥)|
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

⩽𝜖

+|𝑢(𝑦)|
)𝑝 𝑑𝜆(𝑦).

Using the elementary inequality

(𝑎 + 𝑏)𝑝 ⩽ (2max{𝑎, 𝑏})𝑝 ⩽ 2𝑝(𝑎𝑝 + 𝑏𝑝), 𝑎, 𝑏 ⩾ 0 (⋆)

we get for 𝐶 = 2𝑝

|𝑢(𝑥)|𝑝 ⩽ 𝐶
𝜆(𝐾)

(

∫𝐾+𝑥
𝜖𝑝 𝑑𝜆(𝑦) + ∫𝐾+𝑥

|𝑢(𝑦)| 𝑑𝜆(𝑦)
)

⩽ 𝐶𝜖𝑝
𝜆(𝐾 + 𝑥)
𝜆(𝐾)

⏟⏞⏞⏟⏞⏞⏟
1

+ 𝐶
𝜆(𝐾) ∫𝐾+𝑥

|𝑢(𝑦)| 𝑑𝜆(𝑦).

Part (i) now implies

lim sup
|𝑥|→∞

|𝑢(𝑥)|𝑝 ⩽ 𝐶𝜖𝑝
𝜖→0
←←←←←←←←←←←←←←←←←→ 0

and this is the same as to say lim
|𝑥|→∞ |𝑢(𝑥)| = 0.

■■

Problem 12.9 Solution:
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(i) Fix 𝜖 > 0, 𝑅 > 0 and consider 𝐵 ∶= {|𝑢| ⩽ 𝑅}. By definition, sup𝑥∈𝐵 |𝑢(𝑥)| < ∞. On
the other hand, dominated convergence and Corollary 11.6 show that

lim
𝑅→∞∫

|𝑢|>𝑅
|𝑢(𝑥)| 𝑑𝑥 = ∫

|𝑢|=∞
|𝑢(𝑥)| 𝑑𝑥 = 0.

In particular, we can choose 𝑅 so large, that ∫𝐵 |𝑢(𝑥)| 𝑑𝑥 < 𝜖. Using Markov’s inequality
(Proposition 11.5) yields

𝜆(𝐵) = 𝜆{|𝑢| ⩾ 𝑅} ⩽ 1
𝑅 ∫ |𝑢(𝑥)| 𝑑𝑥 <∞.

(ii) Fix 𝜖 > 0 and let 𝐵 ∈ ℬ(R𝑛) be as in (i). Further, let 𝐴 ∈ ℬ(R𝑛) with 𝜆(𝐴) < 𝜖. Then
we have

∫𝐴
|𝑢| 𝑑𝜆 = ∫𝐴∩𝐵

|𝑢| 𝑑𝜆 + ∫𝐴∩𝐵𝑐
|𝑢| 𝑑𝜆

⩽ sup
𝑥∈𝐵

|𝑢(𝑥)| ⋅ 𝜆(𝐴 ∩ 𝐵)
⏟⏞⏟⏞⏟

⩽𝜆(𝐴)

+∫𝐵𝑐
|𝑢| 𝑑𝜆

⩽ sup
𝑥∈𝐵

|𝑢(𝑥)| ⋅ 𝜖 + 𝜖.

(Observe that sup𝑥∈𝐵 |𝑢(𝑥)| <∞.) This proves

lim
𝜆(𝐴)→0∫𝐴

|𝑢| 𝑑𝜆 = 0.

■■

Problem 12.10 Solution:

(i) From 𝑢𝑛 ∈ 1(𝜇) and ‖𝑢𝑛 − 𝑢‖∞ ⩽ 1 (for all sufficiently large 𝑛) we infer

∫ |𝑢| 𝑑𝜇 ⩽ ∫ |𝑢𝑛 − 𝑢| 𝑑𝜇 + ∫ |𝑢𝑛| 𝑑𝜇 ⩽ ‖𝑢𝑛 − 𝑢‖∞𝜇(𝑋) + ∫ |𝑢𝑛| 𝑑𝜇 <∞,

i.e. 𝑢 ∈ 1(𝜇). A very similar argument gives
|

|

|

|

∫ 𝑢𝑛 𝑑𝜇 − ∫ 𝑢 𝑑𝜇
|

|

|

|

=
|

|

|

|

∫ (𝑢𝑛 − 𝑢) 𝑑𝜇
|

|

|

|

⩽ ∫ |𝑢𝑛 − 𝑢| 𝑑𝜇 ⩽ ‖𝑢𝑛 − 𝑢‖∞𝜇(𝑋).

Since 𝜇(𝑋) <∞, uniform convergence ‖𝑢𝑛 − 𝑢‖∞ → 0 implies that

lim
𝑛→∞

|

|

|

|

∫ 𝑢𝑛 𝑑𝜇 − ∫ 𝑢 𝑑𝜇
|

|

|

|

= 0.

(ii) False. Counterexample: (R,ℬ(R), 𝜆1) and 𝑢𝑛(𝑥) ∶= 1
2𝑛1[−𝑛,𝑛](𝑥), 𝑥 ∈ R. Clearly, 𝑢𝑛 → 0

uniformly, 𝑢𝑛 ∈ 1(𝜆1), but

lim
𝑛→∞∫ 𝑢𝑛 𝑑𝜇 = 1 ≠ 0 = ∫ 𝑢 𝑑𝜇.

■■
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Problem 12.11 Solution: Without loss of generality we assume that 𝑢 is increasing. Because of the
monotonicity of 𝑢, we find for every sequence (𝑎𝑛)𝑛∈N ⊂ (0, 1) such that 𝑎𝑛 ↓ 0, that

𝑢(𝑎𝑛) → 𝑢(0+) ∶= inf
𝑡>0
𝑢(𝑡).

If 𝑎𝑛 ∶= 𝑡𝑛, 𝑡 ∈ (0, 1), we get 𝑢(𝑡𝑛) ↓ 0 and by monotone convergence

lim
𝑛→∞∫

1

0
𝑢(𝑡𝑛) 𝑑𝑡 = inf

𝑛∈N∫

1

0
𝑢(𝑡𝑛) 𝑑𝑡 = ∫

1

0
inf
𝑛∈N

𝑢(𝑡𝑛) 𝑑𝑡 = ∫

1

0
𝑢(0+) 𝑑𝑡 = 𝑢(0+).

■■

Problem 12.12 Solution: Set 𝑢𝑛(𝑡) ∶= 𝑡𝑛𝑢(𝑡), 𝑡 ∈ (0, 1). Since |𝑡𝑛| ⩽ 1 for 𝑡 ∈ (0, 1), we have

|𝑢𝑛(𝑡)| = |𝑡𝑛| ⋅ |𝑓 (𝑡)| ⩽ |𝑓 (𝑡)| ∈ 1(0, 1).

Since 𝑡𝑛 ←←←←←←←←←←←←←←←←←←←←→
𝑛→∞

0 for all 𝑡 ∈ (0, 1) and |𝑓 (𝑡)| < ∞ a.e. (Corollary 11.6), we have |𝑢𝑛(𝑡)| → 0 a.e.
An application of dominated convergence (Theorem 12.2 and Remark 12.3) yields

lim
𝑛→∞∫

1

0
𝑡𝑛𝑢(𝑡) 𝑑𝑡 = lim

𝑛→∞∫

1

0
𝑢𝑛(𝑡) 𝑑𝑡 = ∫

1

0
lim
𝑛→∞

𝑢𝑛(𝑡)
⏟⏞⏟⏞⏟

0

𝑑𝑡 = 0.

■■

Problem 12.13 Solution: From the geometric series we know that 1
1−𝑥 =

∑

𝑛⩾0 𝑥
𝑛 for 𝑥 ∈ [0, 1).

This implies that for all 𝑡 > 0

1
𝑒𝑡 − 1

= 1
𝑒𝑡

1
1 − 𝑒−𝑡

= 𝑒−𝑡
∑

𝑛⩾0
(𝑒−𝑡)𝑛 =

∑

𝑛⩾1
𝑒−𝑛𝑡

(observe that 𝑒−𝑡 < 1 for 𝑡 > 0!). Set 𝑢𝑘(𝑡) ∶= sin(𝑡) ⋅
∑𝑘
𝑛=1 𝑒

−𝑛𝑡, then we get the estimate

|𝑢𝑘(𝑡)| ⩽ | sin 𝑡| ⋅
|

|

|

|

|

|

𝑘
∑

𝑛=1
𝑒−𝑛𝑡

|

|

|

|

|

|

= | sin 𝑡|
𝑘
∑

𝑛=1
𝑒−𝑛𝑡 ⩽ | sin 𝑡|

∑

𝑛⩾1
𝑒−𝑛𝑡 = | sin 𝑡|

𝑒𝑡 − 1
(∗)

for all 𝑘 ∈ N und 𝑡 > 0. Using the elementary inequalities 𝑒𝑡 − 1 ⩾ 𝑡 (𝑡 ⩾ 0) and 𝑒𝑡 − 1 ⩾ 𝑒𝑡∕2

(𝑡 ⩾ 1) we see
|𝑢𝑘(𝑡)| ⩽ 1[0,1](𝑡) + 𝑒−𝑡∕21(1,∞)(𝑡) =∶ 𝑤(𝑡).

Let us now show that 𝑤 ∈ 1(0,∞). This can be done with Beppo Levi’s theorem:

∫

∞

0
𝑤(𝑡) 𝑑𝑡 = ∫

1

0
𝑤(𝑡)
⏟⏟⏟

1

𝑑𝑡 + ∫

∞

1
𝑤(𝑡)
⏟⏟⏟
𝑒−𝑡∕2

𝑑𝑡

= 1 + sup
𝑛∈N∫

𝑛

1
𝑒−𝑡∕2 𝑑𝑡 = 1 + sup

𝑛∈N

[

− 2𝑒−𝑡∕2
]𝑛
𝑡=1 <∞.
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We use here that every Riemann-integrable function 𝑓 ∶ [𝑎, 𝑏] → C, −∞ < 𝑎 < 𝑏 < ∞,
is Lebesgue integrable and that Riemann and Lebesgue intgrals coincide (in this case, see The-
orem 12.8). By dominated convergence,

∫

∞

0

sin(𝑡)
𝑒𝑡 − 1

𝑑𝑡 = lim
𝑘→∞∫

∞

0
𝑢𝑘(𝑡) 𝑑𝑡 = lim

𝑘→∞

𝑘
∑

𝑛=1
∫

∞

0
sin(𝑡)𝑒−𝑛𝑡 𝑑𝑡.

With Im 𝑒𝑖 𝑡 = sin 𝑡 we get

∫

∞

0
sin(𝑡)𝑒−𝑛𝑡 𝑑𝑡 = Im

(

∫

∞

0
𝑒𝑡(𝑖−𝑛) 𝑑𝑡

)

,

(cf. Problem 10.9). Again by dominated convergence,

∫

∞

0
sin(𝑡)𝑒−𝑛𝑡 𝑑𝑡 = Im

(

lim
𝑅→∞∫

𝑅

1∕𝑅
𝑒𝑡(𝑖−𝑛) 𝑑𝑡

)

= Im

(

lim
𝑅→∞

[

𝑒𝑡(𝑖−𝑛)

𝑖 − 𝑛

]𝑅

𝑡=1∕𝑅

)

= Im
( 1
𝑛 − 𝑖

)

= 1
𝑛2 + 1

.

■■

Problem 12.14 Solution: We know that the exponential function is given by 𝑒𝑧𝑥 = ∑

𝑛⩾0
(𝑧𝑥)𝑛
𝑛! . Thus,

𝑢𝑘(𝑥) ∶= 𝑢(𝑥)
𝑘
∑

𝑛=0

(𝑧𝑥)𝑛

𝑛!
←←←←←←←←←←←←←←←←←←←←→
𝑘→∞

𝑢(𝑥)𝑒𝑧𝑥.

By the triangle inequality,

|𝑢𝑘(𝑥)| ⩽ |𝑢(𝑥)|
𝑘
∑

𝑛=0

|

|

|

|

(𝑧𝑥)𝑛

𝑛!
|

|

|

|

⩽ |𝑢(𝑥)|
∑

𝑛⩾0

|𝑧𝑥|𝑛

𝑛!
= |𝑢(𝑥)|𝑒|𝑧||𝑥|.

As 𝑥 → 𝑒𝜆𝑥𝑢(𝑥) is integrable for fixed 𝜆 = ±|𝑧|, we get

|𝑢𝑘(𝑥)| ⩽ |𝑢(𝑥)|𝑒−|𝑧|𝑥1(−∞,0)(𝑥) + |𝑢(𝑥)|𝑒|𝑧|𝑥1[0,∞)(𝑥) ∈ 1(R).

An application of dominated convergence and the linearity of the integral give

∫ 𝑢(𝑥)𝑒𝑧𝑥 𝑑𝑥 = ∫ lim
𝑘→∞

𝑢𝑘(𝑥) 𝑑𝑥

= lim
𝑘→∞∫ 𝑢𝑘(𝑥) 𝑑𝑥

= lim
𝑘→∞

𝑘
∑

𝑛=0

1
𝑛! ∫

(𝑧𝑥)𝑛𝑢(𝑥) 𝑑𝑥

=
∞
∑

𝑛=0

𝑧𝑛

𝑛! ∫
𝑥𝑛𝑢(𝑥) 𝑑𝑥.

■■
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Problem 12.15 Solution: We get |
|

∫𝐴 𝑢 𝑑𝜇|| ⩽ ∫𝐴 |𝑢| 𝑑𝜇 straight from the triangle inequality. There-
fore, it is enough to prove the second estimate. Fix 𝜖 > 0.
Solution 1: The Sombrero lemma ensures that there is a sequence (𝑢𝑛)𝑛∈N ⊂ (𝒜 ) with |𝑢𝑛| ⩽ |𝑢|
and lim𝑛→∞ 𝑢𝑛 = 𝑢 (Corollary 8.9). From dominated convergence we get ∫ |𝑢𝑛 − 𝑢| 𝑑𝜇 ←←←←←←←←←←←←←←←←←←←←→

𝑛→∞
0;

in particular, we can choose 𝑛 ∈ N such that ∫ |𝑢𝑛 − 𝑢| 𝑑𝜇 ⩽ 𝜖. Since each 𝑢𝑛 is bounded (b/o the
definition of a simple function) we get

∫𝐴
|𝑢𝑛| 𝑑𝜇 ⩽ ‖𝑢𝑛‖∞ ⋅ 𝜇(𝐴) < 𝜖

for any 𝐴 ∈ 𝒜 with 𝜇(𝐴) < 𝛿 ∶= 𝜖∕‖𝑢𝑛‖∞. Using the triangle inequality we get

∫𝐴
|𝑢| 𝑑𝜇 ⩽ ∫𝐴

|𝑢𝑛 − 𝑢| 𝑑𝜇 + ∫𝐴
|𝑢𝑛| 𝑑𝜇 ⩽ ∫ |𝑢𝑛 − 𝑢| 𝑑𝜇 + ∫𝐴

|𝑢𝑛| 𝑑𝜇 ⩽ 2𝜖

for any 𝐴 ∈ 𝒜 with 𝜇(𝐴) < 𝛿.
Solution 2: Obviously,

∫𝐴
|𝑢| 𝑑𝜇 = ∫𝐴∩{|𝑢|⩾𝑅}

|𝑢| 𝑑𝜇 + ∫𝐴∩{|𝑢|<𝑅}
|𝑢| 𝑑𝜇 (⋆)

We estimate each term by itself. For the first expression on the RHS we use Beppo Levi:

∫𝐴∩{|𝑢|⩾𝑅}
|𝑢| 𝑑𝜇 ←←←←←←←←←←←←←←←←←←←←←←→

𝑅→∞ ∫𝐴∩{|𝑢|=∞}
|𝑢| 𝑑𝜇.

By assumption, 𝑢 ∈ 1(𝜇), we get 𝜇(|𝑢| = ∞) = 0 (see the proof of Corollaryr 11.6) and we get
with Theorem 11.2,

∫𝐴∩{|𝑢|=∞}
|𝑢| 𝑑𝜇 = 0.

Therefore, we can pick some 𝑅 > 0 with

∫𝐴∩{|𝑢|⩾𝑅}
|𝑢| 𝑑𝜇 ⩽ 𝜖.

For the second expression in (⋆) we have

∫𝐴∩{|𝑢|<𝑅}
|𝑢| 𝑑𝜇 ⩽ 𝑅∫𝐴∩{|𝑢|<𝑅}

1 𝑑𝜇 ⩽ 𝑅𝜇(𝐴).

If 𝐴 ∈ 𝒜 satisfies 𝜇(𝐴) ⩽ 𝛿 ∶= 𝜖∕𝑅, then

∫𝐴
|𝑢| 𝑑𝜇 = ∫𝐴∩{|𝑢|⩾𝑅}

|𝑢| 𝑑𝜇 + ∫𝐴∩{|𝑢|<𝑅}
|𝑢| 𝑑𝜇 ⩽ 𝜖 + 𝑅𝜇(𝐴) ⩽ 2𝜖.

■■

Problem 12.16 Solution: Let 𝜇 be an arbitrary Borel measure on the line R and define the integral
function for some 𝑢 ∈ 1(𝜇) through

𝐼(𝑥) ∶= 𝐼𝑢𝜇(𝑥) ∶= ∫(0,𝑥)
𝑢(𝑡)𝜇(𝑑𝑡) = ∫ 1(0,𝑥)(𝑡)𝑢(𝑡)𝜇(𝑑𝑡).
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For any sequence 0 < 𝑙𝑗 → 𝑥, 𝑙𝑗 < 𝑥 from the left and 𝑟𝑘 → 𝑥, 𝑟𝑘 > 𝑥 from the right we find

1(0,𝑙𝑗 )(𝑡) ←←←←←←←←←←←←←←←←←←←←→𝑗→∞
1(0,𝑥)(𝑡) and 1(0,𝑟𝑘)(𝑡) ←←←←←←←←←←←←←←←←←←←←→𝑘→∞

1(0,𝑥](𝑡).

Since |1(0,𝑥)𝑢| ⩽ |𝑢| ∈ 1 is a uniform dominating function, Lebesgue’s dominated convergence
theorem yields

𝐼(𝑥+) − 𝐼(𝑥−) = lim
𝑘
𝐼(𝑟𝑘) − lim

𝑗
𝐼(𝑙𝑗)

= ∫ 1(0,𝑥](𝑡)𝑢(𝑡)𝜇(𝑑𝑡) − ∫ 1(0,𝑥)(𝑡)𝑢(𝑡)𝜇(𝑑𝑡)

= ∫
(

1(0,𝑥](𝑡) − 1(0,𝑥)(𝑡)
)

𝑢(𝑡)𝜇(𝑑𝑡)

= ∫ 1{𝑥}(𝑡)𝑢(𝑡)𝜇(𝑑𝑡)

= 𝑢(𝑥)𝜇({𝑥}).

Thus 𝐼(𝑥) is continuous at 𝑥 if, and only if, 𝑥 is not an atom of 𝜇.
Remark: the proof shows, by the way, that 𝐼𝑢𝜇(𝑥) is always left-continuous at every 𝑥, no matter
what 𝜇 or 𝑢 look like.

■■

Problem 12.17 Solution:

(i) We have

∫
1
𝑥
1[1,∞)(𝑥) 𝑑𝑥

= lim
𝑛→∞∫

1
𝑥
1[1,𝑛)(𝑥) 𝑑𝑥 by Beppo Levi’s thm.

= lim
𝑛→∞∫[1,𝑛)

1
𝑥
𝑑𝑥 usual shorthand

= lim
𝑛→∞

(𝑅)∫

𝑛

1

1
𝑥
𝑑𝑥 Riemann-∫

𝑛

1
exists

= lim
𝑛→∞

[

log 𝑥
]𝑛
1

= lim
𝑛→∞

[log(𝑛) − log(1)] = ∞

which means that 1
𝑥

is not Lebesgue-integrable over [1,∞).
(ii) We have

∫
1
𝑥2
1[1,∞)(𝑥) 𝑑𝑥

= lim
𝑛→∞∫

1
𝑥2
1[1,𝑛)(𝑥) 𝑑𝑥 by Beppo Levi’s thm.

= lim
𝑛→∞∫[1,𝑛)

1
𝑥2
𝑑𝑥 usual shorthand

= lim
𝑛→∞

(𝑅)∫

𝑛

1

1
𝑥2
𝑑𝑥 Riemann-∫

𝑛

1
exists
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= lim
𝑛→∞

[

− 1
𝑥

]𝑛

1

= lim
𝑛→∞

[1 − 1
𝑛
] = 1 <∞

which means that 1
𝑥2

is Lebesgue-integrable over [1,∞).
(iii) We have

∫
1
√

𝑥
1(0,1](𝑥) 𝑑𝑥

= lim
𝑛→∞∫

1
√

𝑥
1(1∕𝑛,1](𝑥) 𝑑𝑥 by Beppo Levi’s thm.

= lim
𝑛→∞∫(1∕𝑛,1]

1
√

𝑥
𝑑𝑥 usual shorthand

= lim
𝑛→∞

(𝑅)∫

1

1∕𝑛

1
√

𝑥
𝑑𝑥 Riemann-∫

1

1∕𝑛
exists

= lim
𝑛→∞

[

2
√

𝑥
]1

1∕𝑛

= lim
𝑛→∞

[

2 − 2
√

1
𝑛

]

= 2 <∞

which means that 1
√

𝑥
is Lebesgue-integrable over (0, 1].

(iv) We have

∫
1
𝑥
1(0,1](𝑥) 𝑑𝑥

= lim
𝑛→∞∫

1
𝑥
1(1∕𝑛,1](𝑥) 𝑑𝑥 by Beppo Levi’s thm.

= lim
𝑛→∞∫(1∕𝑛,1]

1
𝑥
𝑑𝑥 usual shorthand

= lim
𝑛→∞

(𝑅)∫

1

1∕𝑛

1
𝑥
𝑑𝑥 Riemann-∫

1

1∕𝑛
exists

= lim
𝑛→∞

[

log 𝑥
]1
1∕𝑛

= lim
𝑛→∞

[

log(1) − log 1
𝑛

]

= ∞

which means that 1
𝑥

is not Lebesgue-integrable over (0, 1].
■■

Problem 12.18 Solution: We construct a dominating integrable function.
If 𝑥 ⩽ 1, we have clearly exp(−𝑥𝛼) ⩽ 1, and ∫(0,1] 1 𝑑𝑥 = 1 <∞ is integrable.
If 𝑥 ⩾ 1, we have exp(−𝑥𝛼) ⩽ 𝑀𝑥−2 for some suitable constant 𝑀 = 𝑀𝛼 < ∞. This function
is integrable in [1,∞), see e.g. Problem 12.17. The estimate is easily seen from the fact that
𝑥 → 𝑥2 exp(−𝑥𝛼) is continuous in [1,∞) with lim𝑥→∞ 𝑥2 exp(−𝑥𝛼) = 0.
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This shows that exp(−𝑥𝛼) ⩽ 1(0,1) +𝑀𝑥−21[1,∞) with the right-hand side being integrable.
■■

Problem 12.19 Solution: Take 𝛼 ∈ (𝑎, 𝑏) where 0 < 𝑎 < 𝑏 < ∞ are fixed (but arbitrary). We show
that the function is continuous for these 𝛼. This shows the general case since continuity is a local
property and we can ‘catch’ any given 𝛼0 by some choice of 𝑎 and 𝑏’s.
We use the Continuity lemma (Theorem 12.4) and have to find uniform (for 𝛼 ∈ (𝑎, 𝑏)) dominating
bounds on the integrand function 𝑓 (𝛼, 𝑥) ∶=

(

sin 𝑥
𝑥

)3
𝑒−𝛼𝑥. First of all, we remark that ||

|

sin 𝑥
𝑥
|

|

|

⩽𝑀

which follows from the fact that sin 𝑥
𝑥

is a continuous function such that lim𝑥→∞
sin 𝑥
𝑥

= 0 and
lim𝑥↓0

sin 𝑥
𝑥

= 1. (Actually, we could choose 𝑀 = 1...). Moreover, exp(−𝛼𝑥) ⩽ 1 for 𝑥 ∈ (0, 1)
and exp(−𝛼𝑥) ⩽ 𝐶𝑎,𝑏𝑥−2 for 𝑥 ⩾ 1—use for this the continuity of 𝑥2 exp(−𝛼𝑥) and the fact that
lim𝑥→∞ 𝑥2 exp(−𝛼𝑥) = 0. This shows that

|𝑓 (𝛼, 𝑥)| ⩽𝑀
(

1(0,1)(𝑥) + 𝐶𝑎,𝑏𝑥−21[1,∞)(𝑥)
)

and the right-hand side is an integrable dominating function which does not depend on 𝛼—as long
as 𝛼 ∈ (𝑎, 𝑏). But since 𝛼 → 𝑓 (𝛼, 𝑥) is obviously continuous, the Continuity lemma applies and
proves that ∫(0,∞) 𝑓 (𝛼, 𝑥) 𝑑𝑥 is continuous.

■■

Problem 12.20 Solution: Fix some number 𝑁 > 0 and take 𝑥 ∈ (−𝑁,𝑁). We show that 𝐺(𝑥) is
continuous on this set. Since 𝑁 was arbitrary, we find that 𝐺 is continuous for every 𝑥 ∈ R.
Set 𝑔(𝑡, 𝑥) ∶= sin(𝑡𝑥)

𝑡(1+𝑡2) = 𝑥 sin(𝑡𝑥)
(𝑡𝑥)

1
1+𝑡2 . Then, using that ||

|

sin 𝑢
𝑢
|

|

|

⩽𝑀 , we have

|𝑔(𝑡, 𝑥)| ⩽ 𝑥 ⋅𝑀 ⋅
1

1 + 𝑡2
⩽𝑀 ⋅𝑁 ⋅

(

1(0,1)(𝑡) +
1
𝑡2
1[1,∞)(𝑡)

)

and the right-hand side is a uniformly dominating function, i.e. 𝐺(𝑥) makes sense and we find
𝐺(0) = ∫𝑡≠0 𝑔(𝑡, 0) 𝑑𝑡 = 0. To see differentiability, we use the Differentiability lemma (Theorem
12.5) and need to prove that |𝜕𝑥𝑔(𝑡, 𝑥)| exists (this is clear) and is uniformly dominated for 𝑥 ∈
(−𝑁,𝑁). We have

|𝜕𝑥𝑔(𝑡, 𝑥)| =
|

|

|

|

𝜕𝑥
sin(𝑡𝑥)
𝑡(1 + 𝑡2)

|

|

|

|

=
|

|

|

|

cos(𝑡𝑥)
(1 + 𝑡2)

|

|

|

|

⩽ 1
1 + 𝑡2

⩽
(

1(0,1)(𝑡) +
1
𝑡2
1[1,∞)(𝑡)

)

and this allows us to apply the Differentiability lemma, so

𝐺′(𝑥) = 𝜕𝑥 ∫𝑡≠0
𝑔(𝑡, 𝑥) 𝑑𝑡 = ∫𝑡≠0

𝜕𝑥𝑔(𝑡, 𝑥) 𝑑𝑡

= ∫𝑡≠0
cos(𝑡𝑥)
1 + 𝑡2

𝑑𝑡

= ∫R
cos(𝑡𝑥)
1 + 𝑡2

𝑑𝑡
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(use in the last equality that {0} is a Lebesgue null set). Thus, by a Beppo Levi-argument (and
using that Riemann=Lebesgue whenever the Riemann integral over a compact interval exists...)

𝐺′(0) = ∫R
1

1 + 𝑡2
𝑑𝑡 = lim

𝑛→∞
(𝑅)∫

𝑛

−𝑛

1
1 + 𝑡2

𝑑𝑡

= lim
𝑛→∞

[tan−1(𝑡)]𝑛−𝑛

= 𝜋.

Now observe that

𝜕𝑥 sin(𝑡𝑥) = 𝑡 cos(𝑡𝑥) = 𝑡
𝑥
𝑥 cos(𝑡𝑥) = 𝑡

𝑥
𝜕𝑡 sin(𝑡𝑥).

Since the integral defining 𝐺′(𝑥) exists we can use a Beppo Levi-argument, Riemann=Lebesgue
(whenever the Riemann integral over an interval exists) and integration by parts (for the Riemann
integral) to find

𝑥𝐺′(𝑥) = ∫R
𝑥 cos(𝑡𝑥)
1 + 𝑡2

𝑑𝑡

= lim
𝑛→∞

(𝑅)∫

𝑛

−𝑛

𝑥𝜕𝑥 sin(𝑡𝑥)
𝑡(1 + 𝑡2)

𝑑𝑡

= lim
𝑛→∞

(𝑅)∫

𝑛

−𝑛

𝑡𝜕𝑡 sin(𝑡𝑥)
𝑡(1 + 𝑡2)

𝑑𝑡

= lim
𝑛→∞

(𝑅)∫

𝑛

−𝑛

𝜕𝑡 sin(𝑡𝑥)
1 + 𝑡2

𝑑𝑡

= lim
𝑛→∞

(𝑅)∫

𝑛

−𝑛
𝜕𝑡 sin(𝑡𝑥) ⋅

1
1 + 𝑡2

𝑑𝑡

= lim
𝑛→∞

[

sin(𝑡𝑥)
1 + 𝑡2

]𝑛

𝑡=−𝑛
− lim
𝑛→∞

(𝑅)∫

𝑛

−𝑛
sin(𝑡𝑥) ⋅ 𝜕𝑡

1
1 + 𝑡2

𝑑𝑡

= lim
𝑛→∞

(𝑅)∫

𝑛

−𝑛
sin(𝑡𝑥) ⋅ 2𝑡

(1 + 𝑡2)2
𝑑𝑡

= ∫R
2𝑡 sin(𝑡𝑥)
(1 + 𝑡2)2

𝑑𝑡.

■■

Problem 12.21 Solution:

(i) Note that for 0 ⩽ 𝑎, 𝑏 ⩽ 1

1 − (1 − 𝑎)𝑏 = ∫

1

1−𝑎
𝑏𝑡𝑏−1 𝑑𝑡 ⩾ ∫

1

1−𝑎
𝑏 𝑑𝑡 = 𝑏𝑎

so that we get for 0 ⩽ 𝑥 ⩽ 𝑘 and 𝑎 ∶= 𝑥∕𝑘, 𝑏 ∶= 𝑘∕(𝑘 + 1)

(

1 − 𝑥
𝑘

)
𝑘
𝑘+1 ⩽ 1 − 𝑥

𝑘 + 1
, 0 ⩽ 𝑥 ⩽ 𝑘

or,
(

1 − 𝑥
𝑘

)𝑘
1[0,𝑘](𝑥) ⩽

(

1 − 𝑥
𝑘 + 1

)𝑘+1
1[0,𝑘+1](𝑥).
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Therefore we can appeal to Beppo Levi’s theorem to get

lim
𝑘→∞∫(1,𝑘)

(

1 − 𝑥
𝑘

)𝑘
ln 𝑥 𝜆1(𝑑𝑥) = sup

𝑘∈N∫ 1(1,𝑘)(𝑥)
(

1 − 𝑥
𝑘

)𝑘
ln 𝑥 𝜆1(𝑑𝑥)

= ∫ sup
𝑘∈N

[

1(1,𝑘)(𝑥)
(

1 − 𝑥
𝑘

)𝑘]
ln 𝑥 𝜆1(𝑑𝑥)

= ∫ 1(1,∞)(𝑥)𝑒−𝑥 ln 𝑥 𝜆1(𝑑𝑥).

That 𝑒−𝑥 ln 𝑥 is integrable in (1,∞) follows easily from the estimates

𝑒−𝑥 ⩽ 𝐶𝑁𝑥
−𝑁 and ln 𝑥 ⩽ 𝑥

which hold for all 𝑥 ⩾ 1 and 𝑁 ∈ N.
(ii) Note that 𝑥 → ln 𝑥 is continuous and bounded in [𝜖, 1], thus Riemann integrable. It is easy

to see that 𝑥 ln 𝑥 − 𝑥 is a primitive for ln 𝑥. The improper Riemann integral

∫

1

0
ln 𝑥 𝑑𝑥 = lim

𝜖→0
[𝑥 ln 𝑥 − 𝑥]1𝜖 = −1

exists and, since ln 𝑥 is negative throughout (0, 1), improper Riemann and Lebesgue integrals
coincide. Thus, ln 𝑥 ∈ 𝐿1(𝑑𝑥, (0, 1)).
Therefore,

|

|

|

|

(

1 − 𝑥
𝑘

)𝑘
ln 𝑥

|

|

|

|

⩽ | ln 𝑥|, ∀ 𝑥 ∈ (0, 1)

is uniformly dominated by an integrable function and we can use dominated convergence to
get

lim
𝑘 ∫(0,1)

(

1 − 𝑥
𝑘

)𝑘
ln 𝑥 𝑑𝑥 = ∫(0,1)

lim
𝑘

(

1 − 𝑥
𝑘

)𝑘
ln 𝑥 𝑑𝑥

= ∫(0,1)
𝑒−𝑥 ln 𝑥 𝑑𝑥

■■

Problem 12.22 Solution: Since the integrand of 𝐹 (𝑡) is continuous and bounded by the integrable
function 𝑒−𝑥, 𝑥 > 0, it is clear that 𝐹 (𝑡) exists. With the usual approximation argument,

∫(0,∞)
𝑒−𝑥 𝑡

𝑡2 + 𝑥2
𝜆(𝑑𝑥) = lim

𝑛→∞∫

𝑛

1∕𝑛
𝑒−𝑥 𝑡

𝑡2 + 𝑥2
𝑑𝑥

(the right-hand side is a Riemann integral) we can use the classical (Riemann) rules to evaluate
the integral. Thus, a change of variables 𝑥 = 𝑡 ⋅ 𝑦 ⇐⇒ 𝑑𝑥 = 𝑡 𝑑𝑦 yields

𝐹 (𝑡) = ∫(0,∞)
𝑒−𝑥 𝑡

𝑡2 + 𝑥2
𝜆(𝑑𝑥)

= ∫(0,∞)
𝑒−𝑡𝑦 𝑡

𝑡2 + (𝑡𝑦)2
𝑡 𝜆(𝑑𝑦)
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= ∫(0,∞)
𝑒−𝑡𝑦 1

1 + 𝑦2
𝜆(𝑑𝑦).

Observe that
|

|

|

|

𝑒−𝑡𝑦 1
1 + 𝑦2

|

|

|

|

⩽ 1
1 + 𝑦2

uniformly for all 𝑡 > 0,

and that the right-hand side is Lebesgue integrable (the primitive is the arctan). Therfore, we can
use dominated convergence to conclude

𝐹 (0+) = lim
𝑡↓0 ∫(0,∞)

𝑒−𝑡𝑦 1
1 + 𝑦2

𝜆(𝑑𝑦)

= ∫(0,∞)
lim
𝑡↓0
𝑒−𝑡𝑦 1

1 + 𝑦2
𝜆(𝑑𝑦)

= ∫(0,∞)

1
1 + 𝑦2

𝜆(𝑑𝑦)

= lim
𝑛→∞∫

𝑛

1∕𝑛

1
1 + 𝑦2

𝑑𝑦

= lim
𝑛→∞

[

arctan 𝑦
]𝑛
1∕𝑛 =

𝜋
2
.

■■

Problem 12.23 Solution: For the existence of the integrals we need |𝑒−𝑖⋅𝜉| ∈ 1(𝜇) and |𝑒−𝑖⋅𝜉| ⋅
|𝑢(⋅)| ∈ 1(𝑑𝑥). Since |𝑒−𝑖⋅𝜉| = 1, it is reasonable to require that 𝜇 is a finite measure (such that
the constant 1 is integrable) or 𝑢 ∈ 1(𝑑𝑥). Under these assumptions, the continuity of the Fourier
transform follows directly from the continuity lemma: set

𝑓 (𝜉, 𝑥) ∶= 1
2𝜋
𝑒−𝑖 𝑥𝜉 , 𝜉 ∈ R, 𝑥 ∈ R.

By assumption, |𝑓 (𝑥, 𝜉)| ⩽ (2𝜋)−1 ∈ 1(𝜇) and 𝜉 → 𝑓 (𝜉, 𝑥) is continuous. Using Theorem 12.4,
we get the continuity of the map

𝜉 → ∫ 𝑓 (𝜉, 𝑥)𝜇(𝑑𝑥) = 𝜇(𝜉).

The argument for 𝑢̂ is similar.
Sufficient conditions for 𝑛-fold differentiability can be obtained from the differentiability lemma.
Since

𝑑
𝑑𝜉
𝑓 (𝜉, 𝑥) = (−𝑖𝑥)

2𝜋
𝑒−𝑖 𝑥𝜉

we get
|

|

|

|

𝑑
𝑑𝜉
𝑓 (𝜉, 𝑥)

|

|

|

|

⩽ |𝑥|
2𝜋
.

By the differentiabiliy lemma the derivative 𝑑
𝑑𝜉
𝜇̂(𝜉) exists, if ∫ |𝑥|𝜇(𝑑𝑥) < ∞. Iterating this

argument, we get that 𝜇̂ is 𝑛 times differentiable, if

∫ |𝑥|𝑛 𝜇(𝑑𝑥) <∞.

Similarly one shows that 𝑢̂ is 𝑛 times differentiable, if ∫ |𝑥|𝑛 |𝑢(𝑥)| 𝑑𝑥 <∞.
■■
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Problem 12.24 Solution:

(i) Let 𝑡 ∈ (−𝑅,𝑅) for some 𝑅 > 0. Since |𝜙(𝑥) − 𝑡| ⩽ |𝜙(𝑥)| + |𝑡| ⩽ |𝜙(𝑥)| + 𝑅 ∈
1([0, 1], 𝑑𝑥) and since 𝑡 → |𝜙(𝑥)−𝑡| is continuous, the continuity lemma, Theorem 12.4,
shows that the mapping

(−𝑅,𝑅) ∋ 𝑡 → 𝑓 (𝑡) = ∫[0,1]
|𝜙(𝑥) − 𝑡| 𝑑𝑥

is continuous. Since 𝑅 > 0 is arbitrary, the claim follows.
Alternative solution: Using the lower triangle inequality we get that

|𝑓 (𝑡) − 𝑓 (𝑠)| ⩽ ∫[0,1]

|

|

|

|𝜙(𝑥) − 𝑡| − |𝜙(𝑥) − 𝑠|||
|

𝑑𝑥 ⩽ ∫[0,1]
|𝑠 − 𝑡| 𝑑𝑥 = |𝑠 − 𝑡|,

i.e. 𝑓 is Lipschitz continuous.
(ii) ‘⇐’: Let 𝑡 ∈ R and assume that 𝜆{𝜙 = 𝑡} = 0. For ℎ ∈ R we define

𝑓 (𝑡 + ℎ) − 𝑓 (𝑡)
ℎ

= ∫𝜙⩽𝑡−ℎ
|𝜙(𝑥) − (𝑡 + ℎ)| − |𝜙(𝑥) − 𝑡|

ℎ
𝑑𝑥

+ ∫𝑡−ℎ<𝜙<𝑡+ℎ
|𝜙(𝑥) − (𝑡 + ℎ)| − |𝜙(𝑥) − 𝑡|

ℎ
𝑑𝑥

+ ∫𝜙⩾𝑡+ℎ
|𝜙(𝑥) − (𝑡 + ℎ)| − |𝜙(𝑥) − 𝑡|

ℎ
𝑑𝑥

=∶ 𝐼1(ℎ) + 𝐼2(ℎ) + 𝐼3(ℎ).

and we consider the three integrals separately. We have

𝐼1(ℎ) = ∫𝜙⩽𝑡−ℎ
−(𝜙(𝑥) − (𝑡 + ℎ)) + (𝜙(𝑥) − 𝑡)

ℎ
𝑑𝑥

= ∫𝜙⩽𝑡−ℎ
𝑑𝑥 = 𝜆(𝜙 ⩽ 𝑡 − ℎ) ←←←←←←←←←←←←←←←←←→

ℎ→0
𝜆{𝜙 < 𝑡}.

Similarly,

𝐼3(ℎ) = ∫𝜙⩾𝑡−ℎ
(𝜙(𝑥) − (𝑡 + ℎ) − (𝜙(𝑥) − 𝑡)

ℎ
𝑑𝑥

= 𝜆(𝜙 ⩾ 𝑡 + ℎ) ←←←←←←←←←←←←←←←←←→
ℎ→0

𝜆{𝜙 > 𝑡}.

By our assumptions, 𝜆{𝑡 − ℎ < 𝜙 < 𝑡 + ℎ} ←←←←←←←←←←←←←←←←←→
ℎ→0

𝜆{𝜙 = 𝑡} = 0, and using dominated
convergence we arrive at

𝐼2(ℎ) = ∫𝑡−ℎ<𝜙<𝑡+ℎ
|𝜙(𝑥) − (𝑡 + ℎ)| − |𝜙(𝑥) − 𝑡|

ℎ
𝑑𝑥 ←←←←←←←←←←←←←←←←←→

ℎ→0
0

(notice that ||𝜙(𝑥)−(𝑡+ℎ)|−|𝜙(𝑥)−𝑡||
ℎ

⩽ 2 b/o the lower triangle inequality!). Putting together
all calculations, we get

lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

= 𝜆{𝜙 > 𝑡} + 𝜆{𝜙 < 𝑡}.
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‘⇒’: We use the notation introduced in the direction ‘⇐’. If 𝑓 is differentiable at 𝑡 ∈ R,
we find as in the first part of the proof that

lim
ℎ→0

𝐼2(ℎ) = 𝑓 ′(𝑡) − lim
ℎ→0

𝐼1(ℎ) − lim
ℎ→0

𝐼3(ℎ)

exists. We split 𝐼2 once again:

𝐼2(ℎ) = ∫{𝑡−ℎ<𝜙<𝑡+ℎ}⧵{𝜙=𝑡}

|𝜙(𝑥) − (𝑡 + ℎ)| − |𝜙(𝑥) − 𝑡|
ℎ

𝑑𝑥

+ ∫{𝜙=𝑡}

|𝜙(𝑥) − (𝑡 + ℎ)| − |𝜙(𝑥) − 𝑡|
ℎ

𝑑𝑥

=∶ 𝐼12 (ℎ) + 𝐼
2
2 (ℎ)

Obviously, we have

𝐼22 (ℎ) =
|ℎ|
ℎ ∫{𝜙=𝑡}

1 𝑑𝑥 = |ℎ|
ℎ
𝜆{𝜙 = 𝑡}

and with dominated convergence we get

lim
ℎ→0

𝐼12 (ℎ) = 0.

Therefore, limℎ→0 𝐼2(ℎ) can only exist, if

lim
ℎ→0

𝐼22 (ℎ) = 𝜆(𝜙 = 𝑡) lim
ℎ→0

|ℎ|
ℎ

exists, and this is the case if 𝜆(𝜙 = 𝑡) = 0.
■■

Problem 12.25 Solution:

(i) The map 𝑡 → 𝑢(𝑡, 𝑥) ∶= 𝑥−2 sin2(𝑥)𝑒−𝑡𝑥 is continuous on [0,∞) and differentiable on
(0,∞). Because of the continuity and differentiability lemmas (Theorem 12.4 and 12.5)
it is enough to find suitable majorants for the function and its derivatives. Fix 𝑡 ⩾ 0.
Using the elementary inequalities sin 𝑥

𝑥
⩽ 1 and 𝑒−𝑡𝑥 ⩽ 1 we get

|𝑢(𝑡, 𝑥)| ⩽ 1[0,1](𝑥) +
1
𝑥2
1(1,∞)(𝑥) =∶ 𝑤(𝑥).

Since 𝑤 ∈ 1([0,∞)) (cf. Beispiel 12.14), continuity follows from the continuity
lemma. Assume now that 𝑡 ∈ (𝑟,∞) for some 𝑟 > 0. Then we get

|𝜕𝑡𝑢(𝑡, 𝑥)| =
|

|

|

|

|

sin2(𝑥)
𝑥2

(−𝑥)𝑒−𝑡𝑥
|

|

|

|

|

⩽ 1[0,1](𝑥) + 𝑥𝑒−𝑡𝑥1[1,∞)(𝑥) ∈ 1([0,∞))

|𝜕2𝑡 𝑢(𝑡, 𝑥)| =
|

|

|

|

|

sin2(𝑥)
𝑥2

(−𝑥)2𝑒−𝑡𝑥
|

|

|

|

|

⩽ 1[0,1](𝑥) + 𝑥2𝑒−𝑡𝑥1[1,∞)(𝑥) ∈ 1([0,∞)).
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Now the differentiability lemma shows that 𝑓 has two derivatives which are given by

𝑓 ′(𝑡) = −∫

∞

0

sin2(𝑥)
𝑥

𝑒−𝑡𝑥 𝑑𝑥,

𝑓 ′′(𝑡) = ∫

∞

0
sin2(𝑥)𝑒−𝑡𝑥 𝑑𝑥.

(ii) In order to calculate 𝑓 ′′ we use that Riemann and Lebesgue integrals auszurechnen
coincide if a function is Riemann integrable (Theorem 12.8).
Using sin2(𝑥) = 1

2 (1 − cos(2𝑥)) = 1
2 Re(1 − 𝑒

𝑖 2𝑥) we get

𝑓 ′′(𝑡) = 1
2
Re

(

∫

∞

0
(1 − 𝑒𝑖 2𝑥)𝑒−𝑡𝑥 𝑑𝑥

)

,

(cf. Problem 10.9). Using dominated convergence, we see

∫

∞

0
(1 − 𝑒𝑖 2𝑥)𝑒−𝑡𝑥 𝑑𝑥 = lim

𝑅→∞∫

𝑅

0
(1 − 𝑒𝑖 2𝑥)𝑒−𝑡𝑥 𝑑𝑥.

Since 𝑥 → (1 − 𝑒𝑖 2𝑥)𝑒−𝑡𝑥 is Riemann integrable, we can integrate ‘as usual’:

∫

∞

0
(1 − 𝑒𝑖 2𝑥)𝑒−𝑡𝑥 𝑑𝑥 = lim

𝑅→∞

[ 1
−𝑡
𝑒−𝑡𝑥

]𝑅

𝑥=0
− lim
𝑅→∞

[ 1
2𝑖 − 𝑡

𝑒𝑥(2𝑖−𝑡)
]𝑅

𝑥=0
= 1
𝑡
− 1
𝑡 − 2𝑖

.

Thus,
𝑓 ′′(𝑡) = 1

2
Re

(1
𝑡
− 1
𝑡 − 2𝑖

)

= 1
2

(

1
𝑡
− 𝑡
𝑡2 + 4

)

= 2
𝑡(𝑡2 + 4)

.

The limits lim𝑡→∞ 𝑓 (𝑡) and lim𝑡→∞ 𝑓 ′(𝑡) follow again with dominated convergence (the
necessary majorants are those from part (i)):

lim
𝑡→∞

𝑓 (𝑡) = ∫

∞

0
lim
𝑡→∞

(

sin2(𝑥)
𝑥2

𝑒−𝑡𝑥
)

𝑑𝑥 = 0,

lim
𝑡→∞

𝑓 ′(𝑡) = −∫

∞

0
lim
𝑡→∞

(

sin2(𝑥)
𝑥

𝑒−𝑡𝑥
)

𝑑𝑥 = 0.

(iii) We begin with a closed expression for 𝑓 ′: from the fundamental theorem of (Riemann)
integration we know

𝑓 ′(𝑅) − 𝑓 ′(𝑡) = ∫

𝑅

𝑡
𝑓 ′′(𝑠) 𝑑𝑠.

Letting 𝑅→ ∞ we get using (ii)

𝑓 ′(𝑡) = − lim
𝑅→∞∫

𝑅

𝑡
𝑓 ′′(𝑠) 𝑑𝑠

= −1
2

lim
𝑅→∞

[

log 𝑠 − 1
2
log(𝑠2 + 4)

]𝑅

𝑠=𝑡

= 1
2

(

log 𝑡 − 1
2
log(𝑡2 + 4)

)

= 1
2
log 𝑡

√

𝑡2 + 4
.
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Finally,

𝑓 (𝑡) = − lim
𝑅→∞∫

𝑅

𝑡
𝑓 ′(𝑠) 𝑑𝑠 = −1

2 ∫

∞

𝑡
log 𝑠

√

𝑠2 + 4
𝑑𝑠.

(In this part we have again used the fact that the Lebesgue integral extends the Riemann
integral.)

■■

Problem 12.26 Solution: We follow the hint: since 𝑒−𝑡𝑥 ⩾ 0 we can use Beppo Levi to get

∫

∞

0
𝑒−𝑥𝑡 𝑑𝑥 = sup

𝑛∈N∫

𝑛

0
𝑒−𝑥𝑡 𝑑𝑥 = lim

𝑛→∞∫

𝑛

0
𝑒−𝑥𝑡 𝑑𝑥.

Moreover, 𝑥 → 𝑒−𝑡𝑥 is continuous, hence measurable and Riemann-integrable on compact inter-
vals, and we may (Theorem 12.8) use the Riemann integral to evaluate things.

∫

𝑛

0
𝑒−𝑥𝑡 𝑑𝑥 =

[

𝑒−𝑡𝑥

−𝑡

]𝑛

𝑥=0

𝑛→∞
←←←←←←←←←←←←←←←←←←←←→

1
𝑡
.

Thus, 𝑒−𝑡𝑥 ∈ 1(0,∞) and ∫ ∞
0 𝑒−𝑥𝑡𝑑𝑥 = 1

𝑡
. Now we use the differentiability lemma, The-

orem 12.5. For 𝑢(𝑡, 𝑥) ∶= 𝑒−𝑡𝑥 we have

|𝜕𝑡𝑢(𝑡, 𝑥)| = |𝑥|𝑒−𝑡𝑥 ⩽ |𝑥|𝑒−𝑎𝑥 ∈ 1(0,∞) ∀ 𝑡 ∈ (𝑎,∞), 𝑎 > 0,

(cf. Example 12.14). Therefore (use the differentiability lemma)
𝑑
𝑑𝑡 ∫

∞

0
𝑒−𝑡𝑥 𝑑𝑥 = ∫

∞

0
(−𝑥)𝑒−𝑡𝑥 𝑑𝑥 ∀ 𝑡 ∈ (𝑎,∞).

Since 𝑎 > 0 is arbitrary, we get differentiability on (0,∞). Iterating this argument, we inver that
we can swap derivatives of any order with the integral. Morover,

𝑑𝑛

𝑑𝑡𝑛

(

∫

∞

0
𝑒−𝑥𝑡 𝑑𝑥

)

= 𝑑𝑛

𝑑𝑡𝑛
(1
𝑡

)

⇒

(

∫

∞

0
(−𝑥)𝑛𝑒−𝑥𝑡 𝑑𝑥

)

= (−1)𝑛𝑛!
𝑡𝑛+1

.

If 𝑡 = 1, the claim follows.
■■

Problem 12.27 Solution: Throughout we fix (𝑎, 𝑏) ⊂ (0,∞) and take 𝑡 ∈ (𝑎, 𝑏). As in Problem 12.17
we get

∫(0,1)
𝑥−𝛿 𝑑𝑥 <∞ ∀ 𝛿 < 1 and ∫(1,∞)

𝑥−𝛿 𝑑𝑥 <∞ ∀ 𝛿 > 1.

(i) Note that differentiability implies continuity, so it suffices to show that Γ is 𝑚 times
differentiable for every 𝑚.
Induction Hypothesis: Γ(𝑚) exists and is of the form as claimed in the statement of the
problem.
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Induction Start 𝑚 = 1: We have to show that Γ(𝑡) is differentiable. We want to use
the differentiability lemma. For this we remark first of all, that the integrand function
𝑡 → 𝛾(𝑡, 𝑥) is differentiable on (𝑎, 𝑏) and that

𝜕𝑡𝛾(𝑡, 𝑥) = 𝜕𝑡𝑒
−𝑥 𝑥𝑡−1 = 𝑒−𝑥 𝑥𝑡−1 log 𝑥.

We have now to find a uniform (for 𝑡 ∈ (𝑎, 𝑏)) integrable dominating function for
|𝜕𝑡𝛾(𝑡, 𝑥)|. Since log 𝑥 ⩽ 𝑥 for all 𝑥 > 0 (the logarithm is a concave function!),

|

|

|

𝑒−𝑥 𝑥𝑡−1 log 𝑥||
|

= 𝑒−𝑥 𝑥𝑡−1 log 𝑥

⩽ 𝑒−𝑥𝑥𝑡 ⩽ 𝑒−𝑥𝑥𝑏 ⩽ 𝐶𝑏 𝑥
−2 ∀ 𝑥 ⩾ 1, 𝑡 ∈ (𝑎, 𝑏)

(for the last step multiply with 𝑥2 and use that 𝑥𝜌𝑒−𝑥 is continuous for every 𝜌 > 0 and
lim𝑥→∞ 𝑥𝜌𝑒−𝑥 = 0 to find 𝐶𝑏). Moreover,

|

|

|

𝑒−𝑥 𝑥𝑡−1 log 𝑥||
|

⩽ 𝑥𝑎−1 | log 𝑥|

= 𝑥𝑎−1 log 1
𝑥

⩽ 𝐶𝑎 𝑥
−1∕2 ∀ 𝑥 ∈ (0, 1), 𝑡 ∈ (𝑎, 𝑏)

where we use the fact that lim𝑥→0 𝑥𝜌 log
1
𝑥
= 0 which is easily seen by the substitution

𝑥 = 𝑒−𝑢 and 𝑢→ ∞ and the continuity of the function 𝑥𝜌 log 1
𝑥

.
Both estimates together furnish an integrable dominating function, so the differentiab-
ility lemma applies and shows that

Γ′(𝑡) = ∫(0,∞)
𝜕𝑡𝛾(𝑡, 𝑥) 𝑑𝑥 = ∫(0,∞)

𝑒−𝑥 𝑥𝑡−1 log 𝑥 𝑑𝑥 = Γ(1)(𝑥).

Induction Step 𝑚⇝ 𝑚+1: Set 𝛾 (𝑚)(𝑡, 𝑥) = 𝑒−𝑥 𝑥𝑡−1 (log 𝑥)𝑚. We want to apply the dif-
ferentiability lemma to Γ(𝑚)(𝑥). With very much the same arguments as in the induction
start we find that 𝛾 (𝑚+1)(𝑡, 𝑥) = 𝜕𝑡𝛾 (𝑚)(𝑡, 𝑥) exists (obvious) and satisfies the following
bounds

|

|

|

𝑒−𝑥 𝑥𝑡−1 (log 𝑥)𝑚+1||
|

= 𝑒−𝑥 𝑥𝑡−1 (log 𝑥)𝑚+1

⩽ 𝑒−𝑥𝑥𝑡+𝑚

⩽ 𝑒−𝑥𝑥𝑏+𝑚

⩽ 𝐶𝑏,𝑚 𝑥
−2 ∀ 𝑥 ⩾ 1, 𝑡 ∈ (𝑎, 𝑏)

|

|

|

𝑒−𝑥 𝑥𝑡−1 (log 𝑥)𝑚+1||
|

⩽ 𝑥𝑎−1 | log 𝑥|𝑚+1

= 𝑥𝑎−1
(

log 1
𝑥

)𝑚+1

⩽ 𝐶𝑎,𝑚 𝑥
−1∕2 ∀ 𝑥 ∈ (0, 1), 𝑡 ∈ (𝑎, 𝑏)

and the differentiability lemma applies completing the induction step.
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(ii) Using a combination of Beppo Levi (indicated by ‘BL’), Riemann=Lebesgue (if the
Riemann integral over an interval exists) and integration by parts (for the Riemann in-
tegral, indicated by ‘parts’) techniques we get

𝑡Γ(𝑡) = lim
𝑛→∞∫(1∕𝑛,𝑛)

𝑒−𝑥 𝑡𝑥𝑡−1 𝑑𝑥 (BL)

= lim
𝑛→∞

(𝑅)∫

𝑛

1∕𝑛
𝑒−𝑥 𝜕𝑥𝑥

𝑡 𝑑𝑥

= lim
𝑛→∞

[

𝑒−𝑥 𝑥𝑡
]𝑛
𝑥=1∕𝑛 − lim

𝑛→∞
(𝑅)∫

𝑛

1∕𝑛
𝜕𝑥𝑒

−𝑥 𝑥𝑡 𝑑𝑥 (parts)

= lim
𝑛→∞

(𝑅)∫

𝑛

1∕𝑛
𝑒−𝑥 𝑥(𝑡+1)−1 𝑑𝑥

= lim
𝑛→∞∫(1∕𝑛,𝑛)

𝑒−𝑥 𝑥(𝑡+1)−1 𝑑𝑥

= ∫(0,∞)
𝑒−𝑥 𝑥(𝑡+1)−1 𝑑𝑥 (BL)

= Γ(𝑡 + 1).

(iii) We have to show that
log Γ(𝜆𝑡 + (1 − 𝜆)𝑠) ⩽ 𝜆 log Γ(𝑡) + (1 − 𝜆) log Γ(𝑠) ∀𝑠, 𝑡 > 0, 𝜆 ∈ (0, 1).

This is clearly equivalent to
Γ(𝜆𝑡 + (1 − 𝜆)𝑠) ⩽ [Γ(𝑡)]𝜆 [Γ(𝑠)]1−𝜆 ∀𝑠, 𝑡 > 0, 𝜆 ∈ (0, 1).

Fix 𝑠, 𝑡 > 0 and write 𝜆 = 1
𝑝

and 1 − 𝜆 = 1
𝑞
= 1 − 1

𝑝
where 𝑝, 𝑞 ∈ (1,∞) are conjugate

exponents. We get using Hölder’s inequality

Γ(𝜆𝑡 + (1 − 𝜆)𝑠) = ∫

∞

0
𝑒−𝑥𝑥𝜆𝑡+(1−𝜆)𝑠−1 𝑑𝑥

= ∫

∞

0
𝑒−

1
𝑝𝑥𝑥

1
𝑝 (𝑡−1)𝑒−

1
𝑞 𝑥𝑥

1
𝑞 (𝑠−1) 𝑑𝑥

⩽
[

∫

∞

0
𝑒−𝑥𝑥𝑡−1 𝑑𝑥

]
1
𝑝
[

∫

∞

0
𝑒−𝑥𝑥𝑠−) 𝑑𝑥

]
1
𝑞

⩽ [Γ(𝑡)]𝜆 [Γ(𝑠)]1−𝜆 .

(iii) Alternative – direct calculuation Since log and Γ are in𝐶2 we can apply the convexity
criterion: log Γ is convex if, and only if, 𝑑2

𝑑𝑡2
log Γ(𝑡) ⩾ 0 holds. We have

𝑑
𝑑𝑡

log Γ(𝑡) = Γ′(𝑡)
Γ(𝑡)

𝑑2

𝑑𝑡2
log Γ(𝑡) = Γ(𝑡)Γ′′(𝑡) − (Γ′(𝑡))2

(Γ(𝑡))2

which is non-negative iff

0
!
⩽ Γ(𝑡)Γ′′(𝑡) − (Γ′(𝑡))2
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So with the notation from part (ii), along with the dominated convergence theorem
(indicated by ‘DC’ – this is needed for Γ′, since its integrand will take negative values,
so Beppo Levi does not apply), we get
Γ(𝑡)Γ′′(𝑡) − (Γ′(𝑡))2 = lim

𝑛→∞∫(1∕𝑛,𝑛) ∫(1∕𝑛,𝑛)
𝑒−𝑥−𝑦 (𝑥𝑦)𝑡−1(log 𝑦)2 𝑑𝑥 𝑑𝑦 (BL)

− lim
𝑛→∞∫(1∕𝑛,𝑛) ∫(1∕𝑛,𝑛)

𝑒−𝑥−𝑦 (𝑥𝑦)𝑡−1 log 𝑥 log 𝑦 𝑑𝑥 𝑑𝑦 (DC)

= lim
𝑛→∞

(𝑅)∫

𝑛

1∕𝑛 ∫

𝑛

1∕𝑛
𝑒−𝑥−𝑦(𝑥𝑦)𝑡−1 log 𝑦 (log 𝑦 − log 𝑥) 𝑑𝑥 𝑑𝑦

= lim
𝑛→∞

(𝑅)∫

𝑛

1∕𝑛 ∫

𝑛

1∕𝑛
𝑒−𝑥−𝑦(𝑥𝑦)𝑡−1 log 𝑦 log 𝑦

𝑥
𝑑𝑥 𝑑𝑦

In the last expression we can change the roles of 𝑥 and 𝑦 without changing the value of
the integrals (Fubini), so we get

= lim
𝑛→∞

1
2
(𝑅)∫

𝑛

1∕𝑛 ∫

𝑛

1∕𝑛
𝑒−𝑥−𝑦(𝑥𝑦)𝑡−1 log 𝑦 log 𝑦

𝑥
𝑑𝑥 𝑑𝑦

+ lim
𝑛→∞

1
2
(𝑅)∫

𝑛

1∕𝑛 ∫

𝑛

1∕𝑛
𝑒−𝑥−𝑦(𝑥𝑦)𝑡−1 log 𝑥 log 𝑥

𝑦
𝑑𝑥 𝑑𝑦

= lim
𝑛→∞

1
2
(𝑅)∫

𝑛

1∕𝑛 ∫

𝑛

1∕𝑛
𝑒−𝑥−𝑦(𝑥𝑦)𝑡−1(log 𝑦 log 𝑦

𝑥
+ log 𝑥 log 𝑥

𝑦
) 𝑑𝑥 𝑑𝑦.

At last, using well-known logarithmic identities, we get
log 𝑦 log 𝑦

𝑥
+ log 𝑥 log 𝑥

𝑦
= log 𝑦 log 𝑦

𝑥
− log 𝑥 log 𝑦

𝑥

= log 𝑦
𝑥
(log 𝑦 − log 𝑥)

=
(

log 𝑦
𝑥

)2

and inserting this into the above integral gives

= lim
𝑛→∞

1
2
(𝑅)∫

𝑛

1∕𝑛 ∫

𝑛

1∕𝑛
𝑒−𝑥−𝑦(𝑥𝑦)𝑡−1

(

log 𝑦
𝑥

)2
𝑑𝑥 𝑑𝑦

= 1
2 ∫(0,∞) ∫(0,∞)

𝑒−𝑥−𝑦(𝑥𝑦)𝑡−1(log 𝑦
𝑥
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
⩾0

𝑑𝑥 𝑑𝑦 ⩾ 0. (BL)

This finishes the proof.
■■

Problem 12.28 Solution:

(i) The function 𝑥 → 𝑥 ln 𝑥 is bounded and continuous in [0, 1], hence Riemann integrable.
Since in this case Riemann and Lebesgue integrals coincide, we may use Riemann’s integral
and the usual rules for integration. Thus, changing variables according to 𝑥 = 𝑒−𝑡, 𝑑𝑥 =
−𝑒−𝑡 𝑑𝑡 and then 𝑠 = (𝑘 + 1)𝑡, 𝑑𝑠 = (𝑘 + 1) 𝑑𝑠 we find,

∫

1

0
(𝑥 ln 𝑥)𝑘 𝑑𝑥 = ∫

∞

0

[

𝑒−𝑡(−𝑡)
]𝑘 𝑒−𝑡 𝑑𝑡
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= (−1)𝑘 ∫

∞

0
𝑡𝑘𝑒−𝑡(𝑘+1) 𝑑𝑡

= (−1)𝑘 ∫

∞

0

( 𝑠
𝑘 + 1

)𝑘
𝑒−𝑠 𝑑𝑠

𝑘 + 1

= (−1)𝑘
( 1
𝑘 + 1

)𝑘+1

∫

∞

0
𝑠(𝑘+1)−1𝑒−𝑠 𝑑𝑠

= (−1)𝑘
( 1
𝑘 + 1

)𝑘+1
Γ(𝑘 + 1).

(ii) Following the hint we write

𝑥−𝑥 = 𝑒−𝑥 ln 𝑥 =
∞
∑

𝑘=0
(−1)𝑘 (𝑥 ln 𝑥)

𝑘

𝑘!
.

Since for 𝑥 ∈ (0, 1) the terms under the sum are all positive, we can use Beppo Levi’s theorem
and the formula Γ(𝑘 + 1) = 𝑘! to get

∫(0,1)
𝑥−𝑥 𝑑𝑥 =

∞
∑

𝑘=0
(−1)𝑘 1

𝑘! ∫(0,1)
(𝑥 ln 𝑥)𝑘 𝑑𝑥

=
∞
∑

𝑘=0
(−1)𝑘 1

𝑘!
(−1)𝑘

( 1
𝑘 + 1

)𝑘+1
Γ(𝑘 + 1)

=
∞
∑

𝑘=0

( 1
𝑘 + 1

)𝑘+1

=
∞
∑

𝑛=1

(1
𝑛

)𝑛
.

■■

Problem 12.29 Solution: Fix (𝑎, 𝑏) ⊂ (0, 1) and let always 𝑢 ∈ (𝑎, 𝑏). We have for 𝑥 ⩾ 0 and𝐿 ∈ N0

|𝑥𝐿𝑓 (𝑢, 𝑥)| = |𝑥|𝐿
|

|

|

|

𝑒𝑢𝑥

𝑒𝑥 + 1
|

|

|

|

= 𝑥𝐿 𝑒𝑢𝑥

𝑒𝑥 + 1
⩽ 𝑥𝐿 𝑒

𝑢𝑥

𝑒𝑥

= 𝑥𝐿 𝑒(𝑢−1)𝑥

⩽ 1[0,1](𝑥) +𝑀𝑎,𝑏1(1,∞)(𝑥) 𝑥−2

where we use that 𝑢 − 1 < 0, the continuity and boundedness of 𝑥𝜌𝑒−𝑎𝑥 for 𝑥 ∈ [1,∞) and 𝜌 ⩾ 0.
If 𝑥 ⩽ 0 we get

|𝑥𝐿𝑓 (𝑢, 𝑥)| = |𝑥|𝐿
|

|

|

|

𝑒𝑢𝑥

𝑒𝑥 + 1
|

|

|

|

= |𝑥|𝐿 𝑒−𝑢|𝑥|

⩽ 1[−1,0](𝑥) +𝑁𝑎,𝑏1(−∞,1)(𝑥) |𝑥|−2.

Both inequalities give dominating functions which are integrable; therefore, the integral ∫
R
𝑥𝐿𝑓 (𝑢, 𝑥) 𝑑𝑥

exists.
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To see𝑚-fold differentiability, we use the Differentiability lemma (Theorem 12.5)𝑚-times. Form-
ally, we have to use induction. Let us only make the induction step (the start is very similar!). For
this, observe that

𝜕𝑚𝑢 (𝑥
𝑛𝑓 (𝑢, 𝑥)) = 𝜕𝑚𝑢

𝑥𝑛𝑒𝑢𝑥

𝑒𝑥 + 1
= 𝑥𝑛+𝑚𝑒𝑢𝑥

𝑒𝑥 + 1
but, as we have seen in the first step with 𝐿 = 𝑛 + 𝑚, this is uniformly bounded by an integrable
function. Therefore, the Differentiability lemma applies and shows that

𝜕𝑚𝑢 ∫R
𝑥𝑛 𝑓 (𝑢, 𝑥) 𝑑𝑥 = ∫R

𝑥𝑛 𝜕𝑚𝑢 𝑓 (𝑢, 𝑥) 𝑑𝑥 = ∫R
𝑥𝑛+𝑚 𝑓 (𝑢, 𝑥) 𝑑𝑥.

■■

Problem 12.30 Solution: Because of the binomial formual we have (1 + 𝑥2)𝑛 ⩾ 1 + 𝑛𝑥2; this yields,
in particular,

|

|

|

|

1 + 𝑛𝑥2
(1 + 𝑥2)𝑛

|

|

|

|

⩽ 1.

Since
lim
𝑛→∞

1 + 𝑛𝑥2
(1 + 𝑥2)𝑛

= 0 ∀ 𝑥 ∈ (0, 1)

(exponential growth is always stronger than polynomial growth!) we can use dominated conver-
gence and find

lim
𝑛→∞∫

1

0

1 + 𝑛𝑥2
(1 + 𝑥2)𝑛

𝑑𝑥 = 0.

■■

Problem 12.31 Solution:

(i) We begin by showing that 𝑓 is well defined, i.e. the integral expression makes sense. Recall
the following estimates

| arctan(𝑦)| ⩽ |𝑦|, | arctan(𝑦)| ⩽ 𝜋
2
, 𝑦 ∈ R,

(the first inequality follows from the mean value theorem, the second from the definition of
arctan.) Moreover,

sinh 𝑥 = 1
2
(𝑒𝑥 − 𝑒−𝑥) ⩾ 1

2
(𝑒𝑥 − 1) ⩾ 1

2
1
2
𝑥2 ∀𝑥 ⩾ 1.

For 𝑢(𝑡, 𝑥) ∶= arctan
(

𝑡
sinh 𝑥

)

we see

|𝑢(𝑡, 𝑥)| ⩽ 𝜋
2
1(0,1)(𝑥) +

|

|

|

|

𝑡
sinh 𝑥

|

|

|

|

1[1,∞)(𝑥)

⩽ 𝜋
2
1[0,1](𝑥) +

1
4
1
𝑥2
1[1,∞)(𝑥) ∈ 1((0,∞)).

This proves that the integral 𝑓 (𝑡) = ∫(0,∞) 𝑢(𝑡, 𝑥) 𝑑𝑥 exists. In order to check differentiability
of 𝑓 , we have to find (Theorem 12.5) a majorizing function for the derivative of the integrand.
Fix 𝑅 > 0 and let 𝑡 ∈ (𝑅−1, 𝑅). By the chain rule

𝜕
𝜕𝑡
𝑢(𝑡, 𝑥) = 1

1 +
(

𝑡
sinh 𝑥

)2
1

sinh 𝑥
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= 1
𝑡2

sinh 𝑥 + sinh 𝑥
.

Since 𝑥 → 1
𝑅−2+sinh 𝑥 is continuous, there is a constant 𝐶1 > 0 such that

sup
𝑥∈[0,1]

1
𝑅−2 + sinh 𝑥

⩽ 𝐶1.

Using 0 ⩽ sinh 𝑥 ⩽ 1 for 𝑥 ∈ [0, 1], we get
|𝜕𝑡𝑢(𝑡, 𝑥)| ⩽

1
𝑅−2

sinh 𝑥 + sinh 𝑥
⩽ 1
𝑅−2 + sinh 𝑥

⩽ 𝐶1 ∀ 𝑥 ∈ [0, 1].

Similarly we get for 𝑥 > 1

|𝜕𝑡𝑢(𝑡, 𝑥)| ⩾
1

sinh 𝑥
= 2 1

𝑒𝑥 − 𝑒−𝑥
= 2
𝑒𝑥

1
1 − 𝑒−2𝑥
⏟⏞⏟⏞⏟
⩽𝐶2<∞

∈ 1((1,∞)).

Therefore,
|𝜕𝑡𝑢(𝑡, 𝑥)| ⩽ 𝐶11(0,1](𝑥) + 2𝐶2

1
𝑒𝑥
1(1,∞)(𝑥) ∈ 1((0,∞)).

Using the differentiability lemma, Theorem 12.5, we find that 𝑓 is differentiable on (𝑅−1, 𝑅)
and that

𝑓 ′(𝑡) = ∫(0,∞)

1
𝑡2

sinh 𝑥 + sinh 𝑥
𝑑𝑥 ∀ 𝑡 ∈ (𝑅−1, 𝑅).

Since𝑅 > 0 is arbitrary, 𝑓 is differentiable on (0,∞). That lim𝑡↓0 𝑓 ′(𝑡) does not exist, follows
directly from the closed expresson for 𝑓 ′ in part (ii).

(ii) Note that 𝑓 (0) = 0. In order to find an expression for 𝑓 ′, we perform the following substitu-
tion: 𝑢 = cosh 𝑥 and we get, observing that cosh2 𝑥 − sinh2 𝑥 = 1:

𝑓 ′(𝑡) = ∫(1,∞)

1
𝑡2

√

𝑢2−1
+
√

𝑢2 − 1
1

√

𝑢2 − 1
𝑑𝑢

= ∫(1,∞)

1
𝑡2 − 1 + 𝑢2

𝑑𝑢.

(Observe: 𝑥 → 1
𝑡2

sinh 𝑥+sinh 𝑥
is continuous, hence Riemann-integrable. Since we have estab-

lished in part (i) the existence of the Lebesgue integral, we can use Riemann integrals (b/o
Theorem 12.8).) There are two cases:

• 𝑡 > 1: We have 𝑡2 − 1 > 0 and so
𝑓 ′(𝑡) = 1

𝑡2 − 1 ∫(1,∞)

1

1 +
(

𝑢
√

𝑡2−1

)2 𝑑𝑢

= 1
𝑡2 − 1

[

√

𝑡2 − 1 arctan

(

𝑢
√

𝑡2 − 1

)]∞

𝑢=1

= 1
√

𝑡2 − 1

(

𝜋
2
− arctan

(

1
√

𝑡2 − 1

))

= 1
√

𝑡2 − 1
arctan

(√

𝑡2 − 1
)

.
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• 𝑡 < 1: Then 𝐶 ∶=
√

1 − 𝑡2 makes sense and we get
𝑢2 + 𝑡2 − 1 = 𝑢2 − 𝐶2 = (𝑢 + 𝐶)(𝑢 − 𝑐).

Moreover, by partial fractions,
1

𝑢2 − 𝐶2 = 1
2𝐶

1
𝑢 + 𝐶

− 1
2𝐶

1
𝑢 − 𝐶

and so

∫(1,∞)

1
𝑢2 + 𝑡2 − 1

𝑑𝑢 = ∫(1,∞)

𝑢2 − 𝐶2
𝑑𝑢

= 1
2𝐶

lim
𝑅→∞

(

∫

𝑅

1

1
𝑢 + 𝐶

𝑑𝑢 − ∫

𝑅

1

1
𝑢 − 𝐶

𝑑𝑢
)

= 1
2𝐶

lim
𝑅→∞

(

ln
(1 + 𝐶
1 − 𝐶

)

+ ln
(𝑅 + 𝐶
𝑅 − 𝐶

))

= 1
2𝐶

ln
(1 + 𝐶
1 − 𝐶

)

= 1
2
√

1 − 𝑡2
ln

(

1 +
√

1 − 𝑡2

1 −
√

1 − 𝑡2

)

.

The first part of our argument shows, in particular,

∫

∞

1
𝑓 ′(𝑡) 𝑑𝑡 = ∞.

Since 𝑓 (𝑡) = 𝑓 (1) + ∫ 𝑡
1 𝑓

′(𝑠) 𝑑𝑠, 𝑡 ⩾ 1, we get lim𝑡→∞ 𝑓 (𝑡) = ∞.
■■

Problem 12.32 Solution:

(i) Since
|

|

|

|

𝑑𝑚

𝑑𝑡𝑚
𝑒−𝑡𝑋

|

|

|

|

= |

|

|

𝑋𝑚𝑒−𝑡𝑋||
|

⩽ 𝑋𝑚

𝑚 applications of the differentiability lemma, Theorem 12.5, show that 𝜙(𝑚)
𝑋 (0+) exists and

that
𝜙(𝑚)
𝑋 (0+) = (−1)𝑚 ∫ 𝑋𝑚 𝑑P.

(ii) Using the exponential series we find that

𝑒−𝑡𝑋 −
𝑚
∑

𝑘=0
𝑋𝑘 (−1)𝑘𝑡𝑘

𝑘!
=

∞
∑

𝑘=𝑚+1
𝑋𝑘 (−1)𝑘𝑡𝑘

𝑘!

= 𝑡𝑚+1
∞
∑

𝑗=0
𝑋𝑚+1+𝑗 (−1)𝑚+1+𝑗𝑡𝑗

(𝑚 + 1 + 𝑗)!
.

Since the left-hand side has a finite P-integral, so has the right, i.e.

∫

(

∞
∑

𝑗=0
𝑋𝑚+1+𝑗 (−1)𝑚+1+𝑗𝑡𝑗

(𝑚 + 1 + 𝑗)!

)

𝑑P converges
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and we see that

∫

(

𝑒−𝑡𝑋 −
𝑚
∑

𝑘=0
𝑋𝑘 (−1)𝑘𝑡𝑘

𝑘!

)

𝑑P = 𝑜(𝑡𝑚)

as 𝑡→ 0.
(iii) We show, by induction in 𝑚, that

|

|

|

|

𝑒−𝑢 −
𝑚−1
∑

𝑘=0

(−𝑢)𝑘

𝑘!
|

|

|

|

⩽ 𝑢𝑚

𝑚!
∀ 𝑢 ⩾ 0. (*)

Because of the elementary inequality

|𝑒−𝑢 − 1| ⩽ 𝑢 ∀ 𝑢 ⩾ 0

the start of the induction 𝑚 = 1 is clear. For the induction step 𝑚→ 𝑚 + 1 we note that
|

|

|

|

𝑒−𝑢 −
𝑚
∑

𝑘=0

(−𝑢)𝑘

𝑘!
|

|

|

|

=
|

|

|

|

∫

𝑢

0

(

𝑒−𝑦 −
𝑚−1
∑

𝑘=0

(−𝑦)𝑘

𝑘!

)

𝑑𝑦
|

|

|

|

⩽ ∫

𝑢

0

|

|

|

|

𝑒−𝑦 −
𝑚−1
∑

𝑘=0

(−𝑦)𝑘

𝑘!
|

|

|

|

𝑑𝑦

(*)
⩽ ∫

𝑢

0

𝑦𝑚

𝑚!
𝑑𝑦

= 𝑢𝑚+1

(𝑚 + 1)!
,

and the claim follows.
Setting 𝑥 = 𝑡𝑋 in (*), we find by integration that

±
(

∫ 𝑒−𝑡𝑋 −
𝑚−1
∑

𝑘=0
(−1)𝑘𝑡𝑘

∫ 𝑋𝑘 𝑑P
𝑘!

)

⩽
𝑡𝑚 ∫ 𝑋𝑚 𝑑P

𝑚!
.

(iv) If 𝑡 is in the radius of convergence of the power series, we know that

lim
𝑚→∞

|𝑡|𝑚 ∫ 𝑋𝑚 𝑑P
𝑚!

= 0

which, when combined with (iii), proves that

𝜙𝑋(𝑡) = lim
𝑚→∞

𝑚−1
∑

𝑘=0
(−1)𝑘𝑡𝑘

∫ 𝑋𝑘 𝑑P
𝑘!

.

■■

Problem 12.33 Solution:

(i) Wrong, 𝑢 is NOT continuous on the irrational numbers. To see this, just take a sequence of
rationals 𝑞𝑗 ∈ Q ∩ [0, 1] approximating 𝑝 ∈ [0, 1] ⧵Q. Then

lim
𝑗
𝑢(𝑞𝑗) = 1 ≠ 0 = 𝑢(𝑝) = 𝑢(lim

𝑗
𝑞𝑗).
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(ii) True. Mind that 𝑣 is not continuous at 0, but {𝑛−1, 𝑛 ∈ N} ∪ {0} is still countable.
(iii) True. The points where 𝑢 and 𝑣 are not 0 (that is: where they are 1) are countable sets, hence

measurable and also Lebesgue null sets. This shows that 𝑢, 𝑣 are measurable and almost
everywhere 0, hence ∫ 𝑢 𝑑𝜆 = 0 = ∫ 𝑣 𝑑𝜆.

(iv) True. SinceQ∩ [0, 1] as well as [0, 1] ⧵Q are dense subsets of [0, 1], ALL lower resp. upper
Darboux sums are always

𝑆𝜋[𝑢] ≡ 0 resp. 𝑆𝜋[𝑢] ≡ 1

(for any finite partition 𝜋 of [0, 1]). Thus upper and lower integrals of 𝑢 have the value 0 resp.
1 and it follows that 𝑢 cannot be Riemann integrable.

■■

Problem 12.34 Solution: Note that every function which has finitely many discontinuities is Riemann
integrable. Thus, if {𝑞𝑗}𝑗∈N is an enumeration of Q, the functions 𝑢𝑗(𝑥) ∶= 1{𝑞1,𝑞2,…,𝑞𝑗}(𝑥) are
Riemann integrable (with Riemann integral 0) while their increasing limit 𝑢∞ = 1Q is not Riemann
integrable.

■■

Problem 12.35 Solution: Of course we have to assume that 𝑢 is Borel measurable! By assumption
we know that 𝑢𝑗 ∶= 𝑢1[0,𝑗] is (properly) Riemann integrable, hence Lebesgue integrable and

∫[0,𝑗]
𝑢 𝑑𝜆 = ∫[0,𝑗]

𝑢𝑗 𝑑𝜆 = (R)∫
𝑗

0
𝑢(𝑥) 𝑑𝑥 ←←←←←←←←←←←←←←←←←←←←→

𝑗→∞ ∫

∞

0
𝑢(𝑥) 𝑑𝑥.

The last limit exists because of improper Riemann integrability. Moreover, this limit is an increas-
ing limit, i.e. a ‘sup’. Since 0 ⩽ 𝑢𝑗 ↑ 𝑢 we can invoke Beppo Levi’s theorem and get

∫ 𝑢 𝑑𝜆 = sup
𝑗 ∫ 𝑢𝑗 𝑑𝜆 = ∫

∞

0
𝑢(𝑥) 𝑑𝑥 <∞

proving Lebesgue integrability.
■■

Problem 12.36 Solution: Observe that 𝑥2 = 𝑘𝜋 ⇐⇒ 𝑥 =
√

𝑘𝜋, 𝑥 ⩾ 0, 𝑘 ∈ N0. Thus, Since
sin 𝑥2 is continuous, it is on every bounded interval Riemann integrable. By a change of variables,
𝑦 = 𝑥2, we get

∫

√

𝑏

√

𝑎
| sin(𝑥2)| 𝑑𝑥 = ∫

𝑏

𝑎
| sin 𝑦| 𝑑𝑦

2
√

𝑦
= ∫

𝑏

𝑎

| sin 𝑦|
2
√

𝑦
𝑑𝑦

which means that for 𝑎 = 𝑎𝑘 = 𝑘𝜋 and 𝑏 = 𝑏𝑘 = (𝑘 + 1)𝜋 = 𝑎𝑘+1 the values ∫
√

𝑎𝑘+1
√

𝑎𝑘
| sin(𝑥2)| 𝑑𝑥

are a decreasing sequence with limit 0. Since on [
√

𝑎𝑘,
√

𝑎𝑘+1
] the function sin 𝑥2 has only one
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sign (and alternates its sign from interval to interval), we can use Leibniz’ convergence criterion
to see that the series

∑

𝑘
∫

√

𝑎𝑘+1

√

𝑎𝑘
sin(𝑥2) 𝑑𝑥 (*)

converges, hence the improper integral exists.
The function cos 𝑥2 can be treated similarly. Alternatively, we remark that sin 𝑥2 = cos(𝑥2−𝜋∕2).
The functions are not Lebesgue integrable. Either we show that the series (*) does not converge
absolutely, or we argue as follows:
sin 𝑥2 = cos(𝑥2−𝜋∕2) shows that ∫ | sin 𝑥2| 𝑑𝑥 and ∫ | cos 𝑥2| 𝑑𝑥 either both converge or diverge.
If they would converge (this is equivalent to Lebesgue integrability...) we would find because of
sin2 +cos2 ≡ 1 and | sin |, | cos | ⩽ 1,

∞ = ∫

∞

0
1 𝑑𝑥 = ∫

∞

0

[

(sin 𝑥2)2 + (cos 𝑥2)2
]

𝑑𝑥

= ∫

∞

0
(sin 𝑥2)2 𝑑𝑥 + ∫

∞

0
(cos 𝑥2)2 𝑑𝑥

⩽ ∫

∞

0
| sin 𝑥2| 𝑑𝑥 + ∫

∞

0
| cos 𝑥2| 𝑑𝑥 < ∞,

which is a contradiction.
■■

Problem 12.37 Solution: Let 𝑟 < 𝑠 and, without loss of generality, 𝑎 ⩽ 𝑏. A change of variables
yields

∫

𝑠

𝑟

𝑓 (𝑏𝑥) − 𝑓 (𝑎𝑥)
𝑥

𝑑𝑥 = ∫

𝑠

𝑟

𝑓 (𝑏𝑥)
𝑥

𝑑𝑥 − ∫

𝑠

𝑟

𝑓 (𝑎𝑥)
𝑥

𝑑𝑥

= ∫

𝑏𝑠

𝑏𝑟

𝑓 (𝑦)
𝑦

𝑑𝑦 − ∫

𝑎𝑠

𝑎𝑟

𝑓 (𝑦)
𝑦

𝑑𝑦

= ∫

𝑏𝑠

𝑎𝑠

𝑓 (𝑦)
𝑦

𝑑𝑦 − ∫

𝑏𝑟

𝑎𝑟

𝑓 (𝑦)
𝑦

𝑑𝑦

Using the mean value theorem for integrals, I.12, we get

∫

𝑠

𝑟

𝑓 (𝑏𝑥) − 𝑓 (𝑎𝑥)
𝑥

𝑑𝑥 = 𝑓 (𝜉𝑠)∫

𝑏𝑠

𝑎𝑠

1
𝑦
𝑑𝑦 − 𝑓 (𝜉𝑟)∫

𝑏𝑟

𝑎𝑟

1
𝑦
𝑑𝑦

= 𝑓 (𝜉𝑠) ln
𝑏
𝑎
− 𝑓 (𝜉𝑟) ln

𝑏
𝑎
.

Since 𝜉𝑠 ∈ (𝑎𝑠, 𝑏𝑠) and 𝜉𝑟 ∈ (𝑎𝑟, 𝑏𝑟), we find that 𝜉𝑠 ←←←←←←←←←←←←←←←←←←←←→𝑠→∞
∞ and 𝜉𝑟 ←←←←←←←←←←←←←←←←→𝑟→0

0 which means that

∫

𝑠

𝑟

𝑓 (𝑏𝑥) − 𝑓 (𝑎𝑥)
𝑥

𝑑𝑥 =
[

𝑓 (𝜉𝑠) − 𝑓 (𝜉𝑟)
]

ln 𝑏
𝑎

𝑠→∞
←←←←←←←←←←←←←←←←←←←←←←←←→
𝑟→0

(𝑀 − 𝑚) ln 𝑏
𝑎
.

■■
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13 The function spaces 𝑝.
Solutions to Problems 13.1–13.26

Problem 13.1 Solution:

(i) We use Hölder’s inequality for 𝑟, 𝑠 ∈ (1,∞) and 1
𝑟
+ 1

𝑠
= 1 to get

‖𝑢‖𝑞𝑞 = ∫ |𝑢|𝑞 𝑑𝜇 = ∫ |𝑢|𝑞 ⋅ 1 𝑑𝜇

⩽
(

∫ |𝑢|𝑞𝑟 𝑑𝜇
)1∕𝑟

⋅
(

∫ 1𝑠 𝑑𝜇
)1∕𝑠

=
(

∫ |𝑢|𝑞𝑟 𝑑𝜇
)1∕𝑟

⋅ (𝜇(𝑋))1∕𝑠 .

Now let us choose 𝑟 and 𝑠. We take
𝑟 = 𝑝

𝑞
> 1 ⇐⇒

1
𝑟
= 𝑞
𝑝

and 1
𝑠
= 1 − 1

𝑟
= 1 − 𝑞

𝑝
,

hence
‖𝑢‖𝑞 =

(

∫ |𝑢|𝑝 𝑑𝜇
)𝑞∕𝑝⋅1∕𝑞

⋅ (𝜇(𝑋))(1−𝑞∕𝑝)(1∕𝑞)

=
(

∫ |𝑢|𝑝 𝑑𝜇
)𝑞∕𝑝⋅1∕𝑞

⋅ (𝜇(𝑋))1∕𝑞−1∕𝑝

= ‖𝑢‖𝑝 ⋅ (𝜇(𝑋))1∕𝑞−1∕𝑝 .

(ii) If 𝑢 ∈ 𝑝 we know that 𝑢 is measurable and ‖𝑢‖𝑝 <∞. The inequality in (i) then shows that
‖𝑢‖𝑞 ⩽ const ⋅ ‖𝑢‖𝑝 <∞,

hence 𝑢 ∈ 𝑞. This gives 𝑝 ⊂ 𝑞. The inclusion 𝑞 ⊂ 1 follows by taking 𝑝⇝ 𝑞, 𝑞 ⇝ 1.
Let (𝑢𝑛)𝑛∈N ⊂ 𝑝 be a Cauchy sequence, i.e. lim𝑚,𝑛→∞ ‖𝑢𝑛−𝑢𝑚‖𝑝 = 0. Since by the inequal-
ity in (i) also

lim
𝑚,𝑛→∞

‖𝑢𝑛 − 𝑢𝑚‖𝑞 ⩽ 𝜇(𝑋)1∕𝑞−1∕𝑝 lim
𝑚,𝑛→∞

‖𝑢𝑛 − 𝑢𝑚‖𝑝 = 0

we get that (𝑢𝑛)𝑛∈N ⊂ 𝑞 is also a Cauchy sequence in 𝑞.
(iii) No, the assertion breaks down completely if the measure 𝜇 has infinite mass. Here is an

example: 𝜇 = Lebesgue measure on (1,∞). Then the function 𝑓 (𝑥) = 1
𝑥

is not integrable
over [1,∞), but 𝑓 2(𝑥) = 1

𝑥2
is. In other words: 𝑓 ∉ 1(1,∞) but 𝑓 ∈ 2(1,∞), hence

2(1,∞) ⊄ 1(1,∞). (Playing around with different exponents shows that the assertion also
fails for other 𝑝, 𝑞 ⩾ 1....).
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■■

Problem 13.2 Solution: This is going to be a bit messy and rather than showing the ‘streamlined’
solution we indicate how one could find out the numbers oneself. Now let 𝜆 be some number in
(0, 1) and let 𝛼, 𝛽 be conjugate indices: 1

𝛼
+ 1

𝛽
= 1 where 𝛼, 𝛽 ∈ (1,∞). Then by the Hölder

inequality

∫ |𝑢|𝑟 𝑑𝜇 = ∫ |𝑢|𝑟𝜆|𝑢|𝑟(1−𝜆) 𝑑𝜇

⩽
(

∫ |𝑢|𝑟𝜆𝛼 𝑑𝜇
)

1
𝛼
(

∫ |𝑢|𝑟(1−𝜆)𝛽 𝑑𝜇
)

1
𝛽

=
(

∫ |𝑢|𝑟𝜆𝛼 𝑑𝜇
)

𝑟𝜆
𝑟𝜆𝛼
(

∫ |𝑢|𝑟(1−𝜆)𝛽 𝑑𝜇
)

𝑟(1−𝜆)
𝑟(1−𝜆)𝛽

.

Taking 𝑟th roots on both sides yields

‖𝑢‖𝑟 ⩽
(

∫ |𝑢|𝑟𝜆𝛼 𝑑𝜇
)

𝜆
𝑟𝜆𝛼
(

∫ |𝑢|𝑟(1−𝜆)𝛽 𝑑𝜇
)

(1−𝜆)
𝑟(1−𝜆)𝛽

= ‖𝑢‖𝜆𝑟𝜆𝛼‖𝑢‖
1−𝜆
𝑟(1−𝜆)𝛽 .

This leads to the following system of equations:
𝑝 = 𝑟𝜆𝛼, 𝑞 = 𝑟(1 − 𝜆)𝛽, 1 = 1

𝛼
+ 1
𝛽

with unknown quantities 𝛼, 𝛽, 𝜆. Solving it yields

𝜆 =
1
𝑟
− 1

𝑞
1
𝑝
− 1

𝑞

, 𝛼 = 𝑞 − 𝑝
𝑞 − 𝑟

𝛽 = 𝑞 − 𝑝
𝑟 − 𝑝

.

■■

Problem 13.3 Solution:

(i) If 𝑢, 𝑣 ∈ 𝑝(𝜇), then 𝑢+𝑣 and 𝛼𝑢 are again in 𝑝(𝜇); this follows from the homogeneity
of the integral and Minkowski’s inequality (Corollary 13.4. Using the Cauchy–Schwarz
inequality, the product 𝑢𝑣 is in 𝑝(𝜇), if 𝑢, 𝑣 ∈ 2𝑝(𝜇). More generally: if there are
conjugate numbers 𝛼, 𝛽 ∈ [1,∞] (i.e. 𝛼−1 + 𝛽−1 = 1), such that 𝑢 ∈ 𝛼𝑝 and 𝑣 ∈ 𝛽𝑝,
then 𝑢𝑣 ∈ 𝑝(𝜇).

(ii) Consider the measure space ((0, 1),ℬ(0, 1), 𝜆) and set 𝑢(𝑥) ∶= 𝑣(𝑥) ∶= 𝑥−1∕3. This
gives

∫

1

0
|𝑢(𝑥)|2 𝑑𝑥 = ∫

1

0
𝑥−2∕3 𝑑𝑥 = 3

[

𝑥1∕3
]1
𝑥=0 = 3 <∞,

i.e. 𝑢, 𝑣 ∈ 2(𝜇). On the other hand, 𝑢 ⋅ 𝑣 ∉ 2(𝜇) as

∫

1

0
|𝑢(𝑥)𝑣(𝑥)|2 𝑑𝑥 = ∫

1

0
𝑥−4∕3 𝑑𝑥 = lim

𝑟→0

[

−3𝑥−1∕3
]1
𝑥=𝑟 = ∞.

This proves that 2(𝜇) is not an algebra. Define 𝑢̃ ∶= 𝑢2 and 𝑣 ∶= 𝑣2, we get a similar
counterexample which works in 1(𝜇).
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(iii) From Minkowski’s inequality we get

‖𝑢‖𝑝 = ‖(𝑢 − 𝑣) + 𝑣‖𝑝 ⩽ ‖𝑢 − 𝑣‖𝑝 + ‖𝑣‖𝑝

⇐⇒ ‖𝑢‖𝑝 − ‖𝑣‖𝑝 ⩽ ‖𝑢 − 𝑣‖𝑝.

If we change the rôles of 𝑢 and 𝑣, we obtain

‖𝑣‖𝑝 − ‖𝑢‖𝑝 ⩽ ‖𝑣 − 𝑢‖𝑝 = ‖𝑢 − 𝑣‖𝑝

and, therefore,
|

|

|

‖𝑢‖𝑝 − ‖𝑣‖𝑝
|

|

|

= max{‖𝑢‖𝑝 − ‖𝑣‖𝑝, ‖𝑣‖𝑝 − ‖𝑢‖𝑝} ⩽ ‖𝑢 − 𝑣‖𝑝.

■■

Problem 13.4 Solution:

(i) We consider the three cases separately.
(a) Every map 𝑢 ∶ (Ω, {∅,Ω}) → (R, {∅,R}) is measurable. Indeed: 𝑢 is measurable if,

and only if, 𝑢−1(𝐴) ∈ {∅,Ω} for all 𝐴 ∈ 𝒜 = {∅,R}. Since

𝑢−1(∅) = ∅ 𝑢−1(R) = Ω

this is indeed true for any map 𝑢.
(b) Every measurable map 𝑢 ∶ (Ω, {∅,Ω}) → (R,ℬ(R)) is constant. Indeed: Suppose,

𝑢 is not constant, i.e. there are 𝜔1, 𝜔2 ∈ Ω and 𝑥, 𝑦 ∈ R, 𝑥 ≠ 𝑦, such that 𝑢(𝜔1) = 𝑥,
𝑢(𝜔2) = 𝑦. Then 𝑢−1({𝑥}) ∉ {∅,Ω} as 𝜔1 ∈ 𝑢−1({𝑥}) (and so 𝑢−1({𝑥}) ≠ ∅) and
𝜔2 ∉ 𝑢−1({𝑥}) (and so 𝑢−1({𝑥}) ≠ Ω).

(c) Every measurable map 𝑢 ∶ (Ω, {∅,Ω}) → (R,𝒫 (R)) is clearly {∅,Ω}∕ℬ(R)-measurable.
From (b) we know that such functions are constant. On the other hand, constant maps
are measurable for any 𝜎-algebra. Therefore, every {∅,Ω}∕𝒫 (R)-measurable map is
constant.

(ii) We determine first the 𝜎(𝐵)-measurable maps. We claim: every 𝜎(𝐵)∕ℬ(R)-measurable
map is of the form

𝑢(𝜔) = 𝑐11𝐵(𝜔) + 𝑐21𝐵𝑐 (𝜔), 𝜔 ∈ Ω, (⋆)
for 𝑐1, 𝑐2 ∈ R. Indeed: If 𝑢 is given by (⋆), then

𝑢−1(𝐴) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ω, 𝑐1, 𝑐2 ∈ 𝐴,

𝐵, 𝑐1 ∈ 𝐴, 𝑐2 ∉ 𝐴,

𝐵𝑐 , 𝑐1 ∉ 𝐴, 𝑐2 ∈ 𝐴,

∅, 𝑐1, 𝑐2 ∉ 𝐴
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for any 𝐴 ∈ ℬ(R). Therefore, 𝑢 is 𝜎(𝐵)∕ℬ(R)-measurable. Conversely, assume that
the function 𝑢 is 𝜎(𝐵)∕ℬ(R)-measurable. Choose any 𝜔1 ∈ 𝐵, 𝜔2 ∈ 𝐵𝑐 and define
𝑐1 = 𝑢(𝜔1), 𝑐2 = 𝑢(𝜔2). If 𝑢 were not of the form (⋆), then there would be some 𝜔 ∈ Ω
such that 𝑢(𝜔) ∉ {𝑐1, 𝑐2}. In this case 𝐴 ∶= {𝑢(𝜔)} satisfies 𝑢−1(𝐴) ∉ {∅,Ω, 𝐵, 𝐵𝑐},
contradicting the measurability of 𝑢.
By definition,

𝑝(Ω, 𝜎(𝐵), 𝜇) =
{

𝑢 ∶ (Ω, 𝜎(𝐵)) → (R,ℬ(R))measurable ∶ ∫ |𝑢|𝑝 𝑑𝜇 <∞
}

.

We have already shown that the 𝜎(𝐵)-measurable maps are given by (⋆). Because of the
linearity of the integral we see that

∫ |𝑢|𝑝 𝑑𝜇 = |𝑐1|
𝑝𝜇(𝐵) + |𝑐2|

𝑝𝜇(𝐵𝑐).

Consequently, 𝑢 ∈ 𝑝(Ω, 𝜎(𝐵), 𝜇) if, and only if,
• 𝑐1 = 0 or 𝜇(𝐵) <∞

• 𝑐2 = 0 or 𝜇(𝐵𝑐) <∞.
In particular, every map of the form (⋆) is in 𝑝(Ω, 𝜎(𝐵), 𝜇) if 𝜇 is a finite measure.

■■

Problem 13.5 Solution: Proof by induction in 𝑁 .
Start 𝑁 = 2: this is just Hölder’s inequality.
Hypothesis: the generalized Hölder inequality holds for some 𝑁 ⩾ 2.
Step 𝑁 ⇝ 𝑁 + 1:. Let 𝑢1,… , 𝑢𝑁 , 𝑤 be 𝑁 + 1 functions and let 𝑝1,… , 𝑝𝑁 , 𝑞 > 1 be such that
𝑝−11 + 𝑝−12 +…+ 𝑝−1𝑁 + 𝑞−1 = 1. Set 𝑝−1 ∶= 𝑝−11 + 𝑝−12 +…+ 𝑝−1𝑁 . Then, by the ordinary Hölder
inequality,

∫ |𝑢1 ⋅ 𝑢2 ⋅… ⋅ 𝑢𝑁 ⋅𝑤| 𝑑𝜇 ⩽
(

∫ |𝑢1 ⋅ 𝑢2 ⋅… ⋅ 𝑢𝑁 |
𝑝 𝑑𝜇

)1∕𝑝
‖𝑢‖𝑞

=
(

∫ |𝑢1|
𝑝 ⋅ |𝑢2|

𝑝 ⋅… ⋅ |𝑢𝑁 |
𝑝 𝑑𝜇

)1∕𝑝
‖𝑢‖𝑞

Now use the induction hypothesis which allows us to apply the generalized Hölder inequality for
𝑁 (!) factors 𝜆𝑗 ∶= 𝑝𝑗∕𝑝, and thus ∑𝑁

𝑗=1 𝜆
−1
𝑗 = 𝑝∕𝑝 = 1, to the first factor to get

∫ |𝑢1 ⋅ 𝑢2 ⋅… ⋅ 𝑢𝑁 ⋅𝑤| 𝑑𝜇 =
(

∫ |𝑢1|
𝑝 ⋅ |𝑢2|

𝑝 ⋅… ⋅ |𝑢𝑁 |
𝑝 𝑑𝜇

)1∕𝑝
‖𝑢‖𝑞

⩽ ‖𝑢‖𝑝1 ⋅ ‖𝑢‖𝑝2 ⋅… ⋅ ‖𝑢‖𝑝𝑁‖𝑢‖𝑞.

■■
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Problem 13.6 Solution: Draw a picture similar to the one used in the proof of Lemma 13.1 (note
that the increasing function need not be convex or concave....). Without loss of generality we can
assume that 𝐴,𝐵 > 0 are such that 𝜙(𝐴) ⩾ 𝐵 which is equivalent to 𝐴 ⩾ 𝜓(𝐵) since 𝜙 and 𝜓 are
inverses. Thus,

𝐴𝐵 = ∫

𝐵

0
𝜓(𝜂) 𝑑𝜂 + ∫

𝜓(𝐵)

0
𝜙(𝜉) 𝑑𝜉 + ∫

𝐴

𝜓(𝐵)
𝐵 𝑑𝜉.

Using the fact that 𝜙 increases, we get that

𝜙(𝜓(𝐵)) = 𝐵 ⇐⇒ 𝜙(𝐶) ⩾ 𝐵 ∀𝐶 ⩾ 𝜓(𝐵)

and we conclude that

𝐴𝐵 = ∫

𝐵

0
𝜓(𝜂) 𝑑𝜂 + ∫

𝜓(𝐵)

0
𝜙(𝜉) 𝑑𝜉 + ∫

𝐴

𝜓(𝐵)
𝐵 𝑑𝜉

⩽ ∫

𝐵

0
𝜓(𝜂) 𝑑𝜂 + ∫

𝜓(𝐵)

0
𝜙(𝜉) 𝑑𝜉 + ∫

𝐴

𝜓(𝐵)
𝜙(𝜉) 𝑑𝜉

= ∫

𝐵

0
𝜓(𝜂) 𝑑𝜂 + ∫

𝐴

0
𝜙(𝜉) 𝑑𝜉

= Ψ(𝐵) + Φ(𝐴).

■■

Problem 13.7 Solution: Let us show first of all that 𝑝-lim𝑘→∞ 𝑢𝑘 = 𝑢. This follows immediately
from lim𝑘→∞ ‖𝑢 − 𝑢𝑘‖𝑝 = 0 since the series ∑∞

𝑘=1 ‖𝑢 − 𝑢𝑘‖𝑝 converges.
Therefore, we can find a subsequence (𝑢𝑘(𝑗))𝑗∈N such that

lim
𝑗→∞

𝑢𝑘(𝑗)(𝑥) = 𝑢(𝑥) almost everywhere.

Now we want to show that 𝑢 is the a.e. limit of the original sequence. For this we mimic the trick
from the Riesz–Fischer theorem 13.7 and show that the series

∞
∑

𝑗=0
(𝑢𝑗+1 − 𝑢𝑗) = lim

𝐾→∞

𝐾
∑

𝑗=0
(𝑢𝑗+1 − 𝑢𝑗) = lim

𝐾→∞
𝑢𝐾

(again we agree on 𝑢0 ∶= 0 for notational convenience) makes sense. So let us employ Lemma
13.6 used in the proof of the Riesz–Fischer theorem to get

‖

‖

‖

‖

‖

‖

∞
∑

𝑗=0
(𝑢𝑗+1 − 𝑢𝑗)

‖

‖

‖

‖

‖

‖𝑝

⩽
‖

‖

‖

‖

‖

‖

∞
∑

𝑗=0
|𝑢𝑗+1 − 𝑢𝑗|

‖

‖

‖

‖

‖

‖𝑝

⩽
∞
∑

𝑗=0
‖𝑢𝑗+1 − 𝑢𝑗‖𝑝

⩽
∞
∑

𝑗=0

(

‖𝑢𝑗+1 − 𝑢‖𝑝 + ‖𝑢 − 𝑢𝑗‖𝑝
)

<∞
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where we use Minkowski’s inequality, the function 𝑢 from above and the fact that ∑∞
𝑗=1 ‖𝑢𝑗−𝑢‖𝑝 <

∞ along with ‖𝑢1‖𝑝 < ∞. This shows that lim𝐾→∞ 𝑢𝐾 (𝑥) =
∑∞
𝑗=0(𝑢𝑗+1(𝑥) − 𝑢𝑗(𝑥)) exists almost

everywhere.
We still have to show that lim𝐾→∞ 𝑢𝐾 (𝑥) = 𝑢(𝑥). For this we remark that a subsequence has
necessarily the same limit as the original sequence—whenever both have limits, of course. But
then,

𝑢(𝑥) = lim
𝑗→∞

𝑢𝑘(𝑗)(𝑥) = lim
𝑘→∞

𝑢𝑘(𝑥) =
∞
∑

𝑗=0
(𝑢𝑗+1(𝑥) − 𝑢𝑗(𝑥))

and the claim follows.
■■

Problem 13.8 Solution: That for every fixed 𝑥 the sequence

𝑢𝑛(𝑥) ∶= 𝑛1(0,1∕𝑛)(𝑥) ←←←←←←←←←←←←←←←←←←←←→𝑛→∞
0

is obvious. On the other hand, for any subsequence (𝑢𝑛(𝑗))𝑗 we have

∫ |𝑢𝑛(𝑗)|
𝑝 𝑑𝜆 = 𝑛(𝑗)𝑝 1

𝑛(𝑗)
= 𝑛(𝑗)𝑝−1 ←←←←←←←←←←←←←←←←←←←←→

𝑗→∞
𝑐

with 𝑐 = 1 in case 𝑝 = 1 and 𝑐 = ∞ if 𝑝 > 1. This shows that the 𝑝-limit of this subsequence—let
us call it 𝑤 if it exists at all—cannot be (not even a.e.) 𝑢 = 0.
On the other hand, we know that a sub-subsequence (𝑢̃𝑘(𝑗))𝑗 of (𝑢𝑘(𝑗))𝑗 converges pointwise almost
everywhere to the 𝑝-limit:

lim
𝑗
𝑢̃𝑘(𝑗)(𝑥) = 𝑤(𝑥).

Since the full sequence lim𝑛 𝑢𝑛(𝑥) = 𝑢(𝑥) = 0 has a limit, this shows that the sub-sub-sequence
limit 𝑤(𝑥) = 0 almost everywhere—a contradiction. Thus, 𝑤 does not exist in the first place.

■■

Problem 13.9 Solution: Using Minkowski’s and Hölder’s inequalities we find for all 𝜖 > 0

‖𝑢𝑘𝑣𝑘 − 𝑢𝑣‖1 = ‖𝑢𝑘𝑣𝑘 − 𝑢𝑘𝑣 + 𝑢𝑘𝑣 − 𝑢𝑣‖

⩽ ‖𝑢𝑘 ⋅ (𝑣𝑘 − 𝑣)‖ + ‖(𝑢𝑘 − 𝑢)𝑣‖

⩽ ‖𝑢𝑘‖𝑝‖𝑣𝑘 − 𝑣‖𝑞 + ‖𝑢𝑘 − 𝑢‖𝑝‖𝑣‖𝑞
⩽ (𝑀 + ‖𝑣‖𝑞)𝜖

for all 𝑛 ⩾ 𝑁𝜖. We use here that the sequence (‖𝑢𝑘‖𝑝)𝑘∈N is bounded. Indeed, by Minkowski’s
inequality

‖𝑢𝑘‖𝑝 = ‖𝑢𝑘 − 𝑢‖𝑝 + ‖𝑢‖𝑝 ⩽ 𝜖 + ‖𝑢‖𝑝 =∶𝑀.

■■
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Problem 13.10 Solution: We use the simple identity
‖𝑢𝑛 − 𝑢𝑚‖22 = ∫ (𝑢𝑛 − 𝑢𝑚)2 𝑑𝜇

= ∫ (𝑢2𝑛 − 2𝑢𝑛𝑢𝑚 + 𝑢𝑚) 𝑑𝜇

= ‖𝑢𝑛‖
2
2 + ‖𝑢𝑚‖

2
2 − 2∫ 𝑢𝑛𝑢𝑚 𝑑𝜇.

(*)

Case 1: 𝑢𝑛 → 𝑢 in 2. This means that (𝑢𝑛)𝑛∈N is an 2 Cauchy sequence, i.e. that lim𝑚,𝑛→∞ ‖𝑢𝑛−
𝑢𝑚‖22 = 0. On the other hand, we get from the lower triangle inequality for norms

lim
𝑛→∞

|

|

‖𝑢𝑛‖2 − ‖𝑢‖2|| ⩽ lim
𝑛→∞

‖𝑢𝑛 − 𝑢‖2 = 0

so that also lim𝑛→∞ ‖𝑢𝑛‖22 = lim𝑚→∞ ‖𝑢𝑚‖22 = ‖𝑢‖22. Using (*) we find

2∫ 𝑢𝑛𝑢𝑚 𝑑𝜇 = ‖𝑢𝑛‖
2
2 + ‖𝑢𝑚‖

2
2 − ‖𝑢𝑛 − 𝑢𝑚‖22

←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑛,𝑚→∞

‖𝑢‖22 + ‖𝑢‖22 − 0

= 2‖𝑢‖22.

Case 2: Assume that lim𝑛,𝑚→∞ ∫ 𝑢𝑛𝑢𝑚 𝑑𝜇 = 𝑐 for some number 𝑐 ∈ R. By the very definition of
this double limit, i.e.

∀ 𝜖 > 0 ∃𝑁𝜖 ∈ N ∶
|

|

|

|

∫ 𝑢𝑛𝑢𝑚 𝑑𝜇 − 𝑐
|

|

|

|

< 𝜖 ∀𝑛, 𝑚 ⩾ 𝑁𝜖,

we see that lim𝑛→∞ ∫ 𝑢𝑛𝑢𝑛 𝑑𝜇 = 𝑐 = lim𝑚→∞ ∫ 𝑢𝑚𝑢𝑚 𝑑𝜇 hold (with the same 𝑐!). Therefore, again
by (*), we get

‖𝑢𝑛 − 𝑢𝑚‖22 = ‖𝑢𝑛‖
2
2 + ‖𝑢𝑚‖

2
2 − 2∫ 𝑢𝑛𝑢𝑚 𝑑𝜇

←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑛,𝑚→∞

𝑐 + 𝑐 − 2𝑐 = 0,

i.e. (𝑢𝑛)𝑛∈N is a Cauchy sequence in 2 and has, by the completeness of this space, a limit.
■■

Problem 13.11 Solution: Use the exponential series to conclude from the positivity of ℎ and 𝑢(𝑥)
that

exp(ℎ𝑢) =
∞
∑

𝑗=0

ℎ𝑗𝑢𝑗

𝑗!
⩾ ℎ𝑁

𝑁!
𝑢𝑁 .

Integrating this gives
ℎ𝑁

𝑁! ∫
𝑢𝑁 𝑑𝜇 ⩽ ∫ exp(ℎ𝑢) 𝑑𝜇 <∞

and we find that 𝑢 ∈ 𝑁 . Since 𝜇 is a finite measure we know from Problem 13.1 that for 𝑁 > 𝑝
we have 𝑁 ⊂ 𝑝.

■■
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Problem 13.12 Solution:

(i) We have to show that |𝑢𝑛(𝑥)|𝑝 ∶= 𝑛𝑝𝛼(𝑥 + 𝑛)−𝑝𝛽 has finite integral—measurability is clear
since 𝑢𝑛 is continuous. Since 𝑛𝑝𝛼 is a constant, we have only to show that (𝑥+ 𝑛)−𝑝𝛽 is in 1.
Set 𝛾 ∶= 𝑝𝛽 > 1. Then we get from a Beppo Levi and a domination argument

∫(0,∞)
(𝑥 + 𝑛)−𝛾 𝜆(𝑑𝑥) ⩽ ∫(0,∞)

(𝑥 + 1)−𝛾 𝜆(𝑑𝑥)

⩽ ∫(0,1)
1 𝜆(𝑑𝑥) + ∫(1,∞)

(𝑥 + 1)−𝛾 𝜆(𝑑𝑥)

⩽ 1 + lim
𝑘→∞∫(1,𝑘)

𝑥−𝛾 𝜆(𝑑𝑥).

Now using that Riemann=Lebesgue on intervals where the Riemann integral exists, we get

lim
𝑘→∞∫(1,𝑘)

𝑥−𝛾 𝜆(𝑑𝑥) = lim
𝑘→∞∫

𝑘

1
𝑥−𝛾 𝑑𝑥

= lim
𝑘→∞

[

(1 − 𝛾)−1𝑥1−𝛾
]𝑘
1

= (1 − 𝛾)−1 lim
𝑘→∞

(

𝑘1−𝛾 − 1
)

= (𝛾 − 1)−1 < ∞

which shows that the integral is finite.
(ii) We have to show that |𝑣𝑛(𝑥)|𝑞 ∶= 𝑛𝑞𝛾𝑒−𝑞𝑛𝑥 is in 1—again measurability is inferred from

continuity. Since 𝑛𝑞𝛾 is a constant, it is enough to show that 𝑒−𝑞𝑛𝑥 is integrable. Set 𝛿 = 𝑞𝑛.
Since

lim
𝑥→∞

(𝛿𝑥)2𝑒−𝛿𝑥 = 0 and 𝑒−𝛿𝑥 ⩽ 1 ∀ 𝑥 ⩾ 0,

and since 𝑒−𝛿𝑥 is continuous on [0,∞), we conclude that there are constants 𝐶,𝐶(𝛿) such
that

𝑒−𝛿𝑥 ⩽ min
{

1, 𝐶
(𝛿𝑥)2

}

⩽ 𝐶(𝛿) min
{

1, 1
𝑥2

}

= 𝐶(𝛿)
(

1(0,1)(𝑥) + 1[1,∞)
1
𝑥2

)

but the latter is an integrable function on (0,∞).
■■

Problem 13.13 Solution: Without loss of generality we may assume that 𝛼 ⩽ 𝛽. We distinguish
between the case 𝑥 ∈ (0, 1) and 𝑥 ∈ [1,∞). If 𝑥 ⩽ 1, then

1
𝑥𝛼

⩾ 1
𝑥𝛼 + 𝑥𝛽

⩾ 1
𝑥𝛼 + 𝑥𝛼

=
1∕2

𝑥𝛼 + 𝑥𝛼
∀ 𝑥 ⩽ 1;

this shows that (𝑥𝛼 + 𝑥𝛽)−1 is in 1((0, 1), 𝑑𝑥) if, and only if, 𝛼 < 1.
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Similarly, if 𝑥 ⩾ 1, then
1
𝑥𝛽

⩾ 1
𝑥𝛼 + 𝑥𝛽

⩾ 1
𝑥𝛽 + 𝑥𝛽

=
1∕2

𝑥𝛽 + 𝑥𝛽
∀ 𝑥 ⩾ 1

this shows that (𝑥𝛼 + 𝑥𝛽)−1 is in 1((1,∞), 𝑑𝑥) if, and only if, 𝛽 > 1.
Thus, (𝑥𝛼 + 𝑥𝛽)−1 is in 1(R, 𝑑𝑥) if, and only if, both 𝛼 < 1 and 𝛽 > 1.

■■

Problem 13.14 Solution: If we use 𝑋 = {1, 2,… , 𝑛}, 𝑥(𝑗) = 𝑥𝑗 , 𝜇 = 𝜖1 +⋯ + 𝜖𝑛 we have
( 𝑛
∑

𝑗=1
|𝑥𝑗|

𝑝
)1∕𝑝

= ‖𝑥‖𝑝(𝜇)

and it is clear that this is a norm for 𝑝 ⩾ 1 and, in view of Problem 13.19 it is not a norm for
𝑝 < 1 since the triangle (Minkowski) inequality fails. (This could also be shown by a direct
counterexample.

■■

Problem 13.15 Solution: Without loss of generality we can restrict ourselves to positive functions—
else we would consider positive and negative parts. Separability can obviously considered separ-
ately!
Assume that 1

+ is separable and choose 𝑢 ∈ 𝑝+. Then 𝑢𝑝 ∈ 1 and, because of separability, there
is a sequence (𝑓𝑛)𝑛 ⊂ 𝒟1 ⊂ 1 such that

𝑓𝑛
in 1

←←←←←←←←←←←←←←←←←←←←→
𝑛→∞

𝑢𝑝 ⇐⇒ 𝑢𝑝𝑛
in 1

←←←←←←←←←←←←←←←←←←←←→
𝑛→∞

𝑢𝑝

if we set 𝑢𝑛 ∶= 𝑓 1∕𝑝
𝑛 ∈ 𝑝. In particular, 𝑢𝑛(𝑘)(𝑥) → 𝑢(𝑥) almost everywhere for some subsequence

and ‖𝑢𝑛(𝑘)‖𝑝 ←←←←←←←←←←←←←←←←←←←←→𝑘→∞
‖𝑢‖𝑝. Thus, Riesz’s theorem 13.10 applies and proves that

𝑝 ∋ 𝑢𝑛(𝑘)
in 𝑝
←←←←←←←←←←←←←←←←←←←←←→
𝑘→∞

𝑢.

Obviously the separating set 𝒟𝑝 is essentially the same as 𝒟1, and we are done.
The converse is similar (note that we did not make any assumptions on 𝑝 ⩾ 1 or 𝑝 < 1—this is
immaterial in the above argument).

■■

Problem 13.16 Solution: We have seen in the lecture that, whenever lim𝑛→∞ ‖𝑢 − 𝑢𝑛‖𝑝 = 0, there
is a subsequence 𝑢𝑛(𝑘) such that lim𝑘→∞ 𝑢𝑛(𝑘)(𝑥) = 𝑢(𝑥) almost everywhere. Since, by assumption,
lim𝑗→∞ 𝑢𝑗(𝑥) = 𝑤(𝑥) a.e., we have also that lim𝑗→∞ 𝑢𝑛(𝑗)(𝑥) = 𝑤(𝑥) a.e., hence 𝑢(𝑥) = 𝑤(𝑥)
almost everywhere.

■■
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Problem 13.17 Solution: We remark that 𝑦 → log 𝑦 is concave. Therefore, we can use Jensen’s
inequality for concave functions to get for the probability measure 𝜇∕𝜇(𝑋) = 𝜇(𝑋)−11𝑋 𝜇

∫ (log 𝑢) 𝑑𝜇
𝜇(𝑋)

⩽ log
(

∫ 𝑢
𝑑𝜇
𝜇(𝑋)

)

= log

(

∫ 𝑢 𝑑𝜇
𝜇(𝑋)

)

= log
(

1
𝜇(𝑋)

)

,

and the claim follows.
■■

Problem 13.18 Solution: As a matter of fact,

∫(0,1)
𝑢(𝑠) 𝑑𝑠 ⋅ ∫(0,1)

log 𝑢(𝑡) 𝑑𝑡 ⩽ ∫(0,1)
𝑢(𝑥) log 𝑢(𝑥) 𝑑𝑥.

We begin by proving the hint. log 𝑥 ⩾ 0 ⇐⇒ 𝑥 ⩾ 1. So,

∀𝑦 ⩾ 1 ∶
(

log 𝑦 ⩽ 𝑦 log 𝑦 ⇐⇒ 1 ⩽ 𝑦
)

and ∀𝑦 ⩽ 1 ∶
(

log 𝑦 ⩽ 𝑦 log 𝑦 ⇐⇒ 1 ⩾ 𝑦
)

.

Assume now that ∫(0,1) 𝑢(𝑥) 𝑑𝑥 = 1. Substituting in the above inequality 𝑦 = 𝑢(𝑥) and integrating
over (0, 1) yields

∫(0,1)
log 𝑢(𝑥) 𝑑𝑥 ⩽ ∫(0,1)

𝑢(𝑥) log 𝑢(𝑥) 𝑑𝑥.

Now assume that 𝛼 = ∫(0,1) 𝑢(𝑥) 𝑑𝑥. Then ∫(0,1) 𝑢(𝑥)∕𝛼 𝑑𝑥 = 1 and the above inequality gives

∫(0,1)
log 𝑢(𝑥)

𝛼
𝑑𝑥 ⩽ ∫(0,1)

𝑢(𝑥)
𝛼

log 𝑢(𝑥)
𝛼

𝑑𝑥

which is equivalent to

∫(0,1)
log 𝑢(𝑥) 𝑑𝑥 − log 𝛼

= ∫(0,1)
log 𝑢(𝑥) 𝑑𝑥 − ∫(0,1)

log 𝛼 𝑑𝑥

= ∫(0,1)
log 𝑢(𝑥)

𝛼
𝑑𝑥

⩽ ∫(0,1)

𝑢(𝑥)
𝛼

log 𝑢(𝑥)
𝛼

𝑑𝑥

= 1
𝛼 ∫(0,1)

𝑢(𝑥) log 𝑢(𝑥)
𝛼

𝑑𝑥

= 1
𝛼 ∫(0,1)

𝑢(𝑥) log 𝑢(𝑥) 𝑑𝑥 − 1
𝛼 ∫(0,1)

𝑢(𝑥) log 𝛼 𝑑𝑥

= 1
𝛼 ∫(0,1)

𝑢(𝑥) log 𝑢(𝑥) 𝑑𝑥 − 1
𝛼 ∫(0,1)

𝑢(𝑥) 𝑑𝑥 log 𝛼
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= 1
𝛼 ∫(0,1)

𝑢(𝑥) log 𝑢(𝑥) 𝑑𝑥 − log 𝛼.

The claim now follows by adding log 𝛼 on both sides and then multiplying by 𝛼 = ∫(0,1) 𝑢(𝑥) 𝑑𝑥.
■■

Problem 13.19 Solution:

(i) Let 𝑝 ∈ (0, 1) and pick the conjugate index 𝑞 ∶= 𝑝∕(𝑝−1) < 0. Moreover, 𝑠 ∶= 1∕𝑝 ∈ (1,∞)
and the conjugate index 𝑡, 1

𝑠
+ 1

𝑡
= 1, is given by

𝑡 = 𝑠
𝑠 − 1

=
1
𝑝

1
𝑝
− 1

= 1
1 − 𝑝

∈ (1,∞).

Thus, using the normal Hölder inequality for 𝑠, 𝑡 we get

∫ 𝑢𝑝 𝑑𝜇 = ∫ 𝑢𝑝 𝑤
𝑝

𝑤𝑝 𝑑𝜇

⩽
(

∫
(

𝑢𝑝𝑤𝑝)𝑠 𝑑𝜇
)1∕𝑠(

∫ 𝑤−𝑝𝑡 𝑑𝜇
)1∕𝑡

=
(

∫ 𝑢𝑤 𝑑𝜇
)𝑝(

∫ 𝑤𝑝∕(𝑝−1) 𝑑𝜇
)1−𝑝

.

Taking 𝑝th roots on either side yields
(

∫ 𝑢𝑝 𝑑𝜇
)1∕𝑝

⩽
(

∫ 𝑢𝑤 𝑑𝜇
)(

∫ 𝑤𝑝∕(𝑝−1) 𝑑𝜇
)(1−𝑝)∕𝑝

=
(

∫ 𝑢𝑤 𝑑𝜇
)(

∫ 𝑤𝑞 𝑑𝜇
)−1∕𝑞

and the claim follows.
(ii) This ‘reversed’ Minkowski inequality follows from the ‘reversed’ Hölder inequality in exactly

the same way as Minkowski’s inequality follows from Hölder’s inequality, cf. Corollary 13.4.
To wit:

∫ (𝑢 + 𝑣)𝑝 𝑑𝜇 = ∫ (𝑢 + 𝑣) ⋅ (𝑢 + 𝑣)𝑝−1 𝑑𝜇

= ∫ 𝑢 ⋅ (𝑢 + 𝑣)𝑝−1 𝑑𝜇 + ∫ 𝑣 ⋅ (𝑢 + 𝑣)𝑝−1 𝑑𝜇

(i)
⩾ ‖𝑢‖𝑝 ⋅

‖

‖

‖

(𝑢 + 𝑣)𝑝−1‖‖
‖𝑞

+ ‖𝑣‖𝑝 ⋅
‖

‖

‖

(𝑢 + 𝑣)𝑝−1‖‖
‖𝑞
.

Dividing both sides by ‖|𝑢 + 𝑣|𝑝−1‖𝑞 proves our claim since

‖

‖

‖

(𝑢 + 𝑣)𝑝−1‖‖
‖𝑞

=
(

∫ (𝑢 + 𝑣)(𝑝−1)𝑞 𝑑𝜇
)1∕𝑞

=
(

∫ (𝑢 + 𝑣)𝑝 𝑑𝜇
)1−1∕𝑝

.

■■

Problem 13.20 Solution: By assumption, |𝑢| ⩽ ‖𝑢‖∞ ⩽ 𝐶 <∞ and 𝑢 ≢ 0.
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(i) We have
𝑀𝑛 = ∫ |𝑢|𝑛 𝑑𝜇 ⩽ 𝐶𝑛 ∫ 𝑑𝜇 = 𝐶𝑛𝜇(𝑋) ∈ (0,∞).

Note that 𝑀𝑛 > 0.
(ii) By the Cauchy–Schwarz-Inequality,

𝑀𝑛 = ∫ |𝑢|𝑛 𝑑𝜇

= ∫ |𝑢|
𝑛+1
2
|𝑢|

𝑛−1
2 𝑑𝜇

⩽
(

∫ |𝑢|𝑛+1 𝑑𝜇
)1∕2(

∫ |𝑢|𝑛−1 𝑑𝜇
)1∕2

=
√

𝑀𝑛+1𝑀𝑛−1.

(iii) The upper estimate follows from
𝑀𝑛+1 = ∫ |𝑢|𝑛+1 𝑑𝜇 ⩽ ∫ |𝑢|𝑛 ⋅ ‖𝑢‖∞ 𝑑𝜇 = ‖𝑢‖∞𝑀𝑛.

Set 𝑃 ∶= 𝜇∕𝜇(𝑋); the lower estimate is equivalent to
(

∫ |𝑢|𝑛
𝑑𝜇
𝜇(𝑋)

)1∕𝑛
⩽

∫ |𝑢|𝑛+1 𝑑𝜇
𝜇(𝑋)

∫ |𝑢|𝑛 𝑑𝜇
𝜇(𝑋)

⇐⇒

(

∫ |𝑢|𝑛 𝑑𝑃
)1+1∕𝑛

⩽ ∫ |𝑢|𝑛+1 𝑑𝑃

⇐⇒

(

∫ |𝑢|𝑛 𝑑𝑃
)(𝑛+1)∕𝑛

⩽ ∫ |𝑢|𝑛+1 𝑑𝑃

and the last inequality follows easily from Jensen’s inequality since 𝑃 is a probability meas-
ure:

(

∫ |𝑢|𝑛 𝑑𝑃
)(𝑛+1)∕𝑛

∫ |𝑢|𝑛⋅
𝑛+1
𝑛 𝑑𝑃 = ∫ |𝑢|𝑛+1 𝑑𝑃 .

(iv) Following the hint we get
‖𝑢‖𝑛 ⩾

(

𝜇
{

𝑢 > ‖𝑢‖∞ − 𝜖
}

)1∕𝑛
(

‖𝑢‖∞ − 𝜖
) 𝑛→∞
←←←←←←←←←←←←←←←←←←←←→
𝜖→0

‖𝑢‖∞,

i.e.
lim inf
𝑛→∞

‖𝑢‖𝑛 ⩾ ‖𝑢‖∞.

Combining this with the estimate from (iii), we get
‖𝑢‖∞ ⩽ lim inf

𝑛→∞
𝜇(𝑋)−1∕𝑛‖𝑢‖𝑛

(iii)
⩽ lim inf

𝑛→∞

𝑀𝑛+1
𝑀𝑛

⩽ lim sup
𝑛→∞

𝑀𝑛+1
𝑀𝑛

⩽ ‖𝑢‖∞.
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■■

Problem 13.21 Solution: The hint says it all.... Maybe, you have a look at the specimen solution of
Problem 13.20, too.
Case 1: ‖𝑢‖𝐿∞ <∞. For 𝐴𝛿 ∶= {𝑢 ⩾ ‖𝑢‖∞ − 𝛿}, 𝛿 > 0, we gave 𝜇(𝐴𝛿) > 0 and

‖𝑢‖𝑝 ⩾
(

∫𝐴𝛿
(‖𝑢‖∞ − 𝛿)𝑝 𝑑𝜇

)
1
𝑝
= (‖𝑢‖∞ − 𝛿)𝜇(𝐴𝛿)

1
𝑝 .

Therefore,

lim inf
𝑝→∞

‖𝑢‖𝑝 ⩾ lim inf
𝑛→∞

(

(‖𝑢‖∞ − 𝛿)𝜇(𝐴𝛿)
1
𝑝

)

= ‖𝑢‖∞ − 𝛿.

Since 𝛿 > 0 is arbitrary, this shows that lim inf𝑝→∞ ‖𝑢‖𝑝 ⩾ ‖𝑢‖∞.
On the other hand, we have for 𝑝 > 𝑞

∫ |𝑢(𝑥)|𝑝 𝑑𝜇 = ∫ |𝑢(𝑥)|𝑝−𝑞|𝑢(𝑥)|𝑞 𝑑𝜇 ⩽ ‖𝑢‖𝑝−𝑞∞ ‖𝑢‖𝑞𝑞.

Taking 𝑝th roots on both sides of the inequality, we get

lim sup
𝑝→∞

‖𝑢‖𝑝 ⩽ lim sup
𝑝→∞

(

‖𝑢‖
𝑝−𝑞
𝑝

∞ ‖𝑢‖
𝑞
𝑝
𝑞

)

= ‖𝑢‖∞.

This finishes the proof for all ‖𝑢‖𝐿∞ <∞.
Case 2: ‖𝑢‖𝐿∞ = ∞. The estimate

lim sup
𝑝→∞

‖𝑢‖𝑝 ⩽ ‖𝑢‖∞

is trivially true. The converse inequality follows like this: Define 𝐴𝑅 ∶= {𝑢 ⩾ 𝑅}, 𝑅 > 0. We
have 𝜇(𝐴𝑟) > 0 (otherwise ‖𝑢‖𝐿∞ <∞!) and, as in the first part of the proof, we find

‖𝑢‖𝑝 ⩾
(

∫𝐴𝑅
𝑅𝑝 𝑑𝜇

)
1
𝑝
= 𝑅𝜇(𝐴𝑅)

1
𝑝 .

Thus, lim inf𝑝→∞ ‖𝑢‖𝑝 ⩾ 𝑅 and since 𝑅 > 0 is arbitrary, the claim follows:

lim inf
𝑝→∞

‖𝑢‖𝑝 ⩾ ∞ = ‖𝑢‖∞.

■■

Problem 13.22 Solution: We begin with two observations
• If 𝑟 ⩽ 𝑠 ⩽ 𝑞, then ‖𝑢‖𝑟 ⩽ ‖𝑢‖𝑠. This follows from Jensen’s inequality (Theorem 13.13) and

the fact that 𝑉 (𝑥) ∶= 𝑥𝑠∕𝑟, 𝑥 ∈ R, is convex (cf. also Problem 13.1). In particular, ‖𝑢‖𝑟 <∞
for all 𝑟 ∈ (0, 𝑞).
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• We have
∫ log |𝑢| 𝑑𝜇 ⩽ log ‖𝑢‖𝑝 ∀ 𝑝 ∈ (0, 𝑞). (⋆)

This follows again from Jensen’s inequality applied to the convex function 𝑉 (𝑥) ∶= − log 𝑥:

− log
(

∫ |𝑢|𝑝 𝑑𝜇
)

⩽ ∫ − log(|𝑢|𝑝) 𝑑𝜇 − 𝑝∫ log |𝑢| 𝑑𝜇;

therefore,

log ‖𝑢‖𝑝 =
1
𝑝
log

(

∫ |𝑢|𝑝 𝑑𝜇
)

⩾ ∫ log |𝑢| 𝑑𝜇.

Because of (⋆) it is enough to show that lim𝑝→0 ‖𝑢‖𝑝 ⩽ exp(∫ ln |𝑢| 𝑑𝜇). (Note: by the monoton-
icity of ‖𝑢‖𝑝 as 𝑝 ↓ 0 we know that the limit lim𝑝→0 ‖𝑢‖𝑝 exists.) Note that

log 𝑎 = inf
𝑝>0

𝑎𝑝 − 1
𝑝

, 𝑎 > 0. (⋆⋆)

(Hint: show by differentiation that 𝑝 → 𝑎𝑝−1
𝑝

is increasing.
Use l’Hospital’s rule to show that lim𝑝→0

𝑎𝑝−1
𝑝

= log 𝑎.) From monotone convergence (mc) we get

∫ log |𝑢| 𝑑𝜇
mc
= inf

𝑝>0∫
|𝑢|𝑝 − 1

𝑝
𝑑𝜇

= inf
𝑝>0

∫ |𝑢|𝑝 𝑑𝜇 − 1
𝑝

= inf
𝑝>0

‖𝑢‖𝑝𝑝 − 1
𝑝

(⋆⋆)
= log ‖𝑢‖𝑝

for all 𝑝 > 0. Letting 𝑝→ 0 finishes the proof.
■■

Problem 13.23 Solution: Without loss of generality we may assume that 𝑓 ⩾ 0. We use the following
standard representation of 𝑓 , see (8.7):

𝑓 =
𝑁
∑

𝑗=0
𝜙𝑗1𝐴𝑗

with 0 = 𝜙0 < 𝜙1 < … < 𝜙𝑁 < ∞ and mutually disjoint sets 𝐴𝑗 . Clearly, {𝑓 ≠ 0} =
𝐴1 ⊍⋯ ⊍ 𝐴𝑁 .
Assume first that 𝑓 ∈  ∩ 𝑝(𝜇). Then

∞ > ∫ 𝑓 𝑝 𝑑𝜇 =
𝑁
∑

𝑗=1
𝜙𝑝𝑗 𝜇(𝐴𝑗) ⩾

𝑁
∑

𝑗=1
𝜙𝑝1 𝜇(𝐴𝑗) = 𝜙𝑝1 𝜇({𝑓 ≠ 0});

thus 𝜇({𝑓 ≠ 0}) <∞.
Conversely, if 𝜇({𝑓 ≠ 0}) <∞, we get

∫ 𝑓 𝑝 𝑑𝜇 =
𝑁
∑

𝑗=1
𝜙𝑝𝑗 𝜇(𝐴𝑗) ⩽

𝑁
∑

𝑗=1
𝜙𝑝𝑁 𝜇(𝐴𝑗) = 𝜙𝑝𝑁 𝜇({𝑓 ≠ 0}) <∞.
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Since this integrability criterion does not depend on 𝑝 ⩾ 1, it is clear that +∩𝑝(𝜇) = +∩1(𝜇),
and the rest follows since  = + − +.

■■

Problem 13.24 Solution: (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv), since Λ is concave if, and only if, 𝑉 = −Λ
is convex. Moreover, (iii) generalizes (i) and (iv) gives (ii). It is, therefore, enough to verify (iii).
Since 𝑢 is integrable and takes values in (𝑎, 𝑏), we get

𝑎 = ∫ 𝑎 𝜇(𝑑𝑥) < ∫ 𝑢(𝑥)𝜇(𝑑𝑥) < ∫ 𝑏 𝜇(𝑑𝑥) = 𝑏.

This shows that the l.h.S. of the Jensen inequality is well-defined. The rest of the proof is similar to
the one of Theorem 13.13: take some affine-linear 𝓁(𝑥) = 𝛼𝑥+ 𝛽 ⩽ 𝑉 (𝑥) – here we only consider
𝑥 ∈ (𝑎, 𝑏) – and notice that

𝓁
(

∫ 𝑢 𝑑𝜇
)

= 𝛼 ∫ 𝑢 𝑑𝜇 + 𝛽 = ∫ (𝛼𝑢 + 𝛽) 𝑑𝜇 ⩽ ∫ 𝑉 (𝑢) 𝑑𝜇.

Now go to the sup over all affine-linear 𝓁 below 𝑉 and the claim follows.
■■

Problem 13.25 Solution:

(i) Note that Λ(𝑥) = 𝑥1∕𝑞 is concave—e.g. differentiate twice and show that it is negative—and
using Jensen’s inequality for positive 𝑓, 𝑔 ⩾ 0 yields

∫ 𝑓𝑔 𝑑𝜇 = ∫ 𝑔𝑓−𝑝∕𝑞1{𝑓≠0}𝑓
𝑝 𝑑𝜇

⩽ ∫ 𝑓 𝑝 𝑑𝜇

(

∫ 𝑔𝑞𝑓−𝑝1{𝑓≠0}𝑓 𝑝 𝑑𝜇

∫ 𝑓 𝑝 𝑑𝜇

)1∕𝑞

⩽
(

∫ 𝑓 𝑝 𝑑𝜇
)1−1∕𝑞(

∫ 𝑔𝑞 𝑑𝜇
)1∕𝑞

where we use 1{𝑓≠0} ⩽ 1 in the last step.
Note that 𝑓𝑔 ∈ 1 follows from the fact that (𝑔𝑞𝑓−𝑝1{𝑓≠0}

)

𝑓 𝑝 = 𝑔𝑞 ∈ 1.
(ii) The function Λ(𝑥) = (𝑥1∕𝑝 + 1)𝑝 has second derivative

Λ′′(𝑥) = 1 − 𝑝
𝑝

(

1 + 𝑥−1∕𝑝
)

𝑥−1−1∕𝑝 ⩽ 0

showing that Λ is concave. Using Jensen’s inequality gives for 𝑓, 𝑔 ⩾ 0

∫ (𝑓 + 𝑔)𝑝1{𝑓≠0} 𝑑𝜇 = ∫

( 𝑔
𝑓
1{𝑓≠0} + 1

)𝑝
𝑓 𝑝1{𝑓≠0} 𝑑𝜇

⩽ ∫{𝑓≠0}
𝑓 𝑝 𝑑𝜇

[

(∫ 𝑔𝑝1{𝑓≠0} 𝑑𝜇
∫{𝑓≠0} 𝑓 𝑝 𝑑𝜇

)1∕𝑝
+ 1

]𝑝

=
[(

∫{𝑓≠0}
𝑔𝑝 𝑑𝜇

)1∕𝑝
+
(

∫{𝑓≠0}
𝑓 𝑝 𝑑𝜇

)1∕𝑝]𝑝
.
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Adding on both sides ∫{𝑓=0}(𝑓 + 𝑔)𝑝 𝑑𝜇 = ∫{𝑓=0} 𝑔
𝑝 𝑑𝜇 yields, because of the elementary

inequality 𝐴𝑝 + 𝐵𝑝 ⩽ (𝐴 + 𝐵)𝑝, 𝐴,𝐵 ⩾ 0, 𝑝 ⩾ 1,

∫ (𝑓 + 𝑔)𝑝 𝑑𝜇

⩽
[(

∫{𝑓≠0}
𝑔𝑝 𝑑𝜇

)1∕𝑝
+
(

∫{𝑓≠0}
𝑓 𝑝 𝑑𝜇

)1∕𝑝]𝑝
+
[

∫{𝑓=0}
𝑔𝑝 𝑑𝜇

]𝑝∕𝑝

⩽
[(

∫ 𝑔𝑝 𝑑𝜇
)1∕𝑝

+
(

∫ 𝑓 𝑝 𝑑𝜇
)1∕𝑝]𝑝

.

■■

Problem 13.26 Solution: Using Hölder’s inequality we get

|𝑓 − 𝑎|𝑝 ⩽ (|𝑓 | + |𝑎|)𝑝 = (1 ⋅ |𝑓 | + 1 ⋅ |𝑎|)𝑝 ⩽ 2𝑝−1(|𝑓 |𝑝 + |𝑎|𝑝).

Since 𝜇(𝑋) <∞, this shows that both sides of the asserted integral inequality are finite.
Without loss of generality we may assume that 𝑎 > 0, otherwise we would consider −𝑓 instead of
𝑓 .
Without loss of generality we may assume that 𝑚 = ∫ 𝑓 𝑑𝜇 = 0, otherwise we would consider
𝑓 − ∫ 𝑓 𝑑𝜇 instead of 𝑓 .
Observe that

∫{0<𝑓<2𝑎}
|𝑓 |𝑝 𝑑𝜇 ⩽ (2𝑎)𝑝−1 ∫{0<𝑓<2𝑎}

|𝑓 | 𝑑𝜇

⩽ (2𝑎)𝑝−1 ∫{𝑓>0}
|𝑓 | 𝑑𝜇

= (2𝑎)𝑝−1 ∫{𝑓<0}
|𝑓 | 𝑑𝜇.

In the last line we use the fact that

∫{𝑓>0}
|𝑓 | 𝑑𝜇 = ∫ 𝑓+ 𝑑𝜇

∫ 𝑓 𝑑𝜇=0
= ∫ 𝑓− 𝑑𝜇 = ∫{𝑓<0}

|𝑓 | 𝑑𝜇.

Thus,
∫{0<𝑓<2𝑎}

|𝑓 |𝑝 𝑑𝜇 ⩽ (2𝑎)𝑝−1 ∫{𝑓<0}
|𝑓 | 𝑑𝜇

⩽ 2𝑝−1 ∫{𝑓<0}
(𝑎𝑝 ∨ |𝑓 |𝑝) 𝑑𝜇

⩽ 2𝑝−1 ∫{𝑓<0}
|𝑓 − 𝑎|𝑝 𝑑𝜇.

(*)

Moreover,
∫{𝑓>2𝑎}

|𝑓 |𝑝 𝑑𝜇 ⩽ 2𝑝 ∫{𝑓>2𝑎}
|𝑓 − 𝑎|𝑝 𝑑𝜇, (**)

which follows from

𝑓 > 2𝑎 ⇐⇒ |𝑓 − 𝑎| = 𝑓 − 𝑎 > 𝑎.
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Finally,
∫{𝑓⩽0}

|𝑓 |𝑝 𝑑𝜇 ⩽ 2𝑝 ∫{𝑓⩽0}
|𝑓 − 𝑎|𝑝 𝑑𝜇. (***)

If we combine (*)–(***) we get

∫ |𝑓 |𝑝 𝑑𝜇 =
{

∫{𝑓>2𝑎}
+∫{0<𝑓<2𝑎}

+∫{𝑓⩽0}

}

|𝑓 |𝑝 𝑑𝜇

⩽ 2𝑝 ∫{𝑓>2𝑎}
|𝑓 − 𝑎|𝑝 𝑑𝜇 + (2𝑝−1 + 1)∫{𝑓⩽0}

|𝑓 − 𝑎|𝑝 𝑑𝜇

⩽ 2𝑝 ∫ |𝑓 − 𝑎|𝑝 𝑑𝜇.

Solution 2 to 13.26: We need the following inequality for 𝑎, 𝑏 ∈ R which follows from Hölder’s
inequality:

|𝑎 − 𝑏|𝑝 ⩽ (|𝑎| + |𝑏|)𝑝 = (1 ⋅ |𝑎| + 1 ⋅ |𝑏|)𝑝 ⩽ 2𝑝−1(|𝑎|𝑝 + |𝑏|𝑝).

Set 𝑏 = 𝑓 (𝑥). Since 𝜇(𝑋) < ∞, this shows that both sides of the claimed integral inequality are
finite.
Assume first that 𝜇(𝑋) = 1. Then we find

|𝑓 (𝑥) − 𝑚|𝑝 ⩽ (|𝑓 (𝑥) − 𝑎| + |𝑚 − 𝑎|)𝑝

⩽ 2𝑝−1|𝑓 (𝑥) − 𝑎|𝑝 + 2𝑝−1|𝑚 − 𝑎|𝑝

= 2𝑝−1|𝑓 (𝑥) − 𝑎|𝑝 + 2𝑝−1
|

|

|

|

∫ 𝑓 (𝑦)𝜇(𝑑𝑦) − 𝑎
|

|

|

|

𝑝

= 2𝑝−1|𝑓 (𝑥) − 𝑎|𝑝 + 2𝑝−1
|

|

|

|

∫ (𝑓 (𝑦) − 𝑎)𝜇(𝑑𝑦)
|

|

|

|

𝑝

⩽ 2𝑝−1|𝑓 (𝑥) − 𝑎|𝑝 + 2𝑝−1 ∫ |𝑓 (𝑦) − 𝑎|𝑝 𝜇(𝑑𝑦)

by Jensen’s inequality. Now we divide by 2𝑝 and integrate both sides with respect to 𝜇(𝑑𝑥) to get
2−𝑝 ∫ |𝑓 (𝑥) − 𝑚|𝑝 𝜇(𝑑𝑥) ⩽ 1

2 ∫ |𝑓 (𝑥) − 𝑎|𝑝 𝜇(𝑑𝑥) + 1
2 ∫ |𝑓 (𝑦) − 𝑎|𝑝 𝜇(𝑑𝑦)

which proves our claim for probability measures.
If 𝜇 is a general finite measure we set 𝑔 ∶= 𝑓 − ∫ 𝑓 𝑑𝜇 and use the previous estimate

∫ |𝑔|𝑝
𝑑𝜇
𝜇(𝑋)

⩽ 2𝑝−1 ∫ |𝑔 − 𝑎| 𝑑𝜇
𝜇(𝑋)

∀𝑎 ∈ R.

Since 𝑎 is arbitrary, we see from this

∫ |𝑓 − 𝑚|𝑝 𝑑𝜇
𝜇(𝑋)

⩽ 2𝑝−1 ∫ |𝑓 − 𝑏| 𝑑𝜇
𝜇(𝑋)

∀𝑏 ∈ R.

Remark: the same argument shows that we get for any convex function 𝜙 with the ‘doubling
property’ 𝜙(2𝑥) ⩽ 𝑐𝜙𝜙(𝑥) for all 𝑥:

∫ 𝜙(𝑓 − 𝑚) 𝑑𝜇 ⩽ 𝑐𝜙 ∫ 𝜙(𝑓 − 𝑎) 𝑑𝜇 ∀𝑎 ∈ R.

■■
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14 Product measures and Fubini’s theorem.

Solutions to Problems 14.1–14.20

Problem 14.1 Solution:

• We have

(𝑥, 𝑦) ∈
(

⋃

𝑖
𝐴𝑖

)

× 𝐵 ⇐⇒ 𝑥 ∈
⋃

𝑖
𝐴𝑖 and 𝑦 ∈ 𝐵

⇐⇒ ∃ 𝑖0 ∶ 𝑥 ∈ 𝐴𝑖0 and 𝑦 ∈ 𝐵

⇐⇒ ∃ 𝑖0 ∶ (𝑥, 𝑦) ∈ 𝐴𝑖0 × 𝐵

⇐⇒ (𝑥, 𝑦) ∈
⋃

𝑖
(𝐴𝑖 × 𝐵).

• We have

(𝑥, 𝑦) ∈
(

⋂

𝑖
𝐴𝑖

)

× 𝐵 ⇐⇒ 𝑥 ∈
⋂

𝑖
𝐴𝑖 and 𝑦 ∈ 𝐵

⇐⇒ ∀ 𝑖 ∶ 𝑥 ∈ 𝐴𝑖 and 𝑦 ∈ 𝐵

⇐⇒ ∀ 𝑖 ∶ (𝑥, 𝑦) ∈ 𝐴𝑖 × 𝐵

⇐⇒ (𝑥, 𝑦) ∈
⋂

𝑖
(𝐴𝑖 × 𝐵).

• Using the formula 𝐴 × 𝐵 = 𝜋−11 (𝐴) ∩ 𝜋−12 (𝐵) (see page 135 and the fact that inverse maps
interchange with all set operations, we get

(𝐴 × 𝐵) ∩ (𝐴′ × 𝐵′) =
[

𝜋−11 (𝐴) ∩ 𝜋−12 (𝐵)
]

∩
[

𝜋−11 (𝐴′) ∩ 𝜋−12 (𝐵′)
]

=
[

𝜋−11 (𝐴) ∩ 𝜋−11 (𝐴′)
]

∩
[

𝜋−12 (𝐵) ∩ 𝜋−12 (𝐵′)
]

= 𝜋−11 (𝐴 ∩ 𝐴′) ∩ 𝜋−12 (𝐵 ∩ 𝐵′)

= (𝐴 ∩ 𝐴′) × (𝐵 ∩ 𝐵′).

• Using the formula 𝐴 × 𝐵 = 𝜋−11 (𝐴) ∩ 𝜋−12 (𝐵) (see page 135 and the fact that inverse maps
interchange with all set operations, we get

𝐴𝑐 × 𝐵 = 𝜋−11 (𝐴𝑐) ∩ 𝜋−12 (𝐵)

=
[

𝜋−11 (𝐴)
]𝑐 ∩ 𝜋−12 (𝐵)

= 𝜋−11 (𝑋) ∩ 𝜋−12 (𝐵) ∩
[

𝜋−11 (𝐴)
]𝑐
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= 𝜋−11 (𝑋) ∩ 𝜋−12 (𝐵) ∩
{

[

𝜋−11 (𝐴)
]𝑐 ∪

[

𝜋−12 (𝐵)
]𝑐
}

= (𝑋 × 𝐵) ∩
[

𝜋−11 (𝐴) ∩ 𝜋−12 (𝐵)
]𝑐

= (𝑋 × 𝐵) ∩
[

𝐴 × 𝐵
]𝑐

= (𝑋 × 𝐵) ⧵ (𝐴 × 𝐵).

• We have

𝐴 × 𝐵 ⊂ 𝐴′ × 𝐵′ ⇐⇒
[

(𝑥, 𝑦) ∈ 𝐴 × 𝐵 ⇐⇒ (𝑥, 𝑦) ∈ 𝐴′ × 𝐵′]

⇐⇒
[

𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ⇐⇒ 𝑥 ∈ 𝐴′, 𝑦 ∈ 𝐵′]

⇐⇒ 𝐴 ⊂ 𝐴′, 𝐵 ⊂ 𝐵′.

■■

Problem 14.2 Solution: Pick two exhausting sequences (𝐴𝑘)𝑘 ⊂ 𝒜 and (𝐵𝑘)𝑘 ⊂ ℬ such that
𝜇(𝐴𝑘), 𝜈(𝐵𝑘) <∞ and 𝐴𝑘 ↑ 𝑋, 𝐵𝑘 ↑ 𝑌 . Then, because of the continuity of measures,

𝜇 × 𝜈(𝐴 ×𝑁) = lim
𝑘
𝜇 × 𝜈

(

(𝐴 ×𝑁) ∩ (𝐴𝑘 × 𝐵𝑘)
)

= lim
𝑘
𝜇 × 𝜈

(

(𝐴 ∩ 𝐴𝑘) × (𝑁 ∩ 𝐵𝑘)
)

= lim
𝑘

[

𝜇(𝐴 ∩ 𝐴𝑘)
⏟⏞⏞⏟⏞⏞⏟

<∞

⋅ 𝜈(𝑁 ∩ 𝐵𝑘)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
⩽ 𝜈(𝑁)=0

]

= 0.

Since 𝐴 ×𝑁 ∈ 𝒜 ×ℬ ⊂ 𝒜 ⊗ℬ, measurability is clear.
■■

Problem 14.3 Solution:

• (a) ⇒ (b): If 𝑓 is 𝜇1 × 𝜇2-negligible, we can use Tonelli’s theorem to infer that

0 = ∫𝐸1

(

∫𝐸2

|𝑓 (𝑥1, 𝑥2)| 𝑑𝜇2(𝑥2)
)

𝑑𝜇1(𝑥1).

Using Theorem 11.2 we find

𝜇1

(

∫𝐸2

|𝑓 (⋅, 𝑥2)| 𝑑𝜇2(𝑥2) ≠ 0
)

0.

This means that 𝑓 (𝑥1, ⋅) is for 𝜇1-almost all 𝑥1 𝜇2-negligible.
• (b) ⇒ (a): Set

𝑁 ∶=
{

𝑥1 ∈ 𝐸1;∫𝐸2

|𝑓 (𝑥1, 𝑥2)| 𝑑𝜇2(𝑥2) ≠ 0
}

.

By assumption, 𝜇1(𝑁) = 0. Therefore,

∫𝐸1

(

∫𝐸2

|𝑓 (𝑥1, 𝑥2)| 𝑑𝜇2(𝑥2)
)

𝑑𝜇1(𝑥1) = ∫𝑁

(

∫𝐸2

|𝑓 (𝑥1, 𝑥2)| 𝑑𝜇2(𝑥2)
)

𝑑𝜇1(𝑥1)
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+ ∫𝐸1⧵𝑁

(

∫𝐸2

|𝑓 (𝑥1, 𝑥2)| 𝑑𝜇2(𝑥2)
)

𝑑𝜇1(𝑥1).

The first integral on the right-hand side is, by Theorem 11.2 equal to 0. The second integral
is also 0, due to the definition of the set 𝑁 . Using Tonelli’s theorem we see

∫𝐸1×𝐸2

|𝑓 (𝑥1, 𝑥2)| 𝑑𝜇1 × 𝜇2(𝑥1, 𝑥2) = 0.

• (a) ⇔ (c): Use the symmetry in the variables or argue as in “(a) ⇔ (b)”.
■■

Problem 14.4 Solution: Since the two expressions are symmetric in 𝑥 and 𝑦, they must coincide if
they converge. Let us, therefore only look at the left hand side.
The inner integral,

∫(0,∞)
𝑒−𝑥𝑦 sin 𝑥 𝜆(𝑑𝑥)

clearly satisfies

∫(0,∞)

|

|

|

𝑒−𝑥𝑦 sin 𝑥||
|

𝜆(𝑑𝑥) ⩽ ∫(0,∞)
𝑒−𝑥𝑦 𝜆(𝑑𝑥)

= ∫

∞

0
𝑒−𝑥𝑦 𝑑𝑥

=
[

− 𝑒−𝑥𝑦

𝑦

]∞

𝑥=0

= 1
𝑥
.

Since the integrand is continuous and has only one sign, we can use Riemann’s integral. Thus, the
integral exists. To calculate its value we observe that two integrations by parts yield

∫

∞

0
𝑒−𝑥𝑦 𝑠𝑖𝑛𝑥 𝑑𝑥 = −𝑒−𝑥𝑦 cos 𝑥||

|

∞

𝑥=0
− ∫

∞

0
𝑦𝑒−𝑥𝑦 cos 𝑥 𝑑𝑥

= 1 − 𝑦∫

∞

0
𝑒−𝑥𝑦 cos 𝑥 𝑑𝑥

= 1 − 𝑦
(

𝑒−𝑥𝑦 sin 𝑥||
|

∞

𝑥=0
+ ∫

∞

0
𝑦𝑒−𝑥𝑦 sin 𝑥 𝑑𝑥

)

= 1 − 𝑦2 ∫

∞

0
𝑒−𝑥𝑦 sin 𝑥 𝑑𝑥.

And if we solve this equality for the integral expression, we get

(1 + 𝑦2)∫

∞

0
𝑒−𝑥𝑦 sin 𝑥 𝑑𝑥 = 1 ⇐⇒ ∫

∞

0
𝑒−𝑥𝑦 sin 𝑥 𝑑𝑥 = 1

1 + 𝑦2
.

Alternative: Since sin 𝑥 = Im 𝑒𝑖𝑥 we get

∫

∞

0
𝑒−𝑥𝑦 𝑠𝑖𝑛𝑥 𝑑𝑥 = Im∫

∞

0
𝑒−(𝑦−𝑖)𝑥 𝑑𝑥 = Im 1

𝑦 − 𝑖
= Im 𝑦 + 𝑖

𝑦2 + 1
= 1
𝑦2 + 1

.
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Thus the iterated integral exists, since

∫(0,∞)

|

|

|

|

sin 𝑥
1 + 𝑥2

|

|

|

|

𝑑𝑥 ⩽ ∫(0,∞)

1
1 + 𝑥2

𝑑𝑥 = arctan 𝑥||
|

∞

0
= 𝜋

2
.

(Here we use again that improper Riemann integrals with positive integrands coincide with Le-
besgue integrals.)
In principle, the existence and equality of iterated integrals is not good enough to guarantee the
existence of the double integral. For this one needs the existence of the absolute iterated integrals—
cf. Tonelli’s theorem 14.8. In the present case one can see that the absolute iterated integrals exist,
though:
On the one hand we find

∫(0,∞)
𝑒−𝑥𝑦| sin(𝑥)| 𝜆(𝑑𝑥) ⩽ 𝑒−𝑥𝑦

−𝑦
|

|

|

|

∞

0
= 1
𝑦

and sin 𝑦
𝑦

is, as a bounded continuous function, Lebesgue integrable over (0, 1).
On the other hand we can use integration by parts to get

∫

(𝑘+1)𝜋

𝑘𝜋
𝑒−𝑥𝑦 sin 𝑥 𝑑𝑥 = 𝑒−𝑥𝑦

−𝑦
sin 𝑥||

|

(𝑘+1)𝜋

𝑘𝜋
− ∫

(𝑘+1)𝜋

𝑘𝜋

𝑒−𝑥𝑦

−𝑦
cos 𝑥 𝑑𝑥

= 𝑒−𝑥𝑦

−𝑦2
cos 𝑥||

|

(𝑘+1)𝜋

𝑘𝜋
− ∫

(𝑘+1)𝜋

𝑘𝜋

𝑒−𝑥𝑦

−𝑦2
(−1) sin 𝑥 𝑑𝑥

which is equivalent to
𝑦2 + 1
𝑦2 ∫

(𝑘+1)𝜋

𝑘𝜋
𝑒−𝑥𝑦 sin 𝑥 𝑑𝑥 = 𝑒−(𝑘+1)𝜋𝑦

−𝑦2
(−1)𝑘+1 − 𝑒−𝑘𝜋𝑦

−𝑦2
(−1)𝑘

= (−1)𝑘

𝑦2
(𝑒−(𝑘+1)𝜋𝑦 + 𝑒−𝑘𝜋𝑦),

i.e. ∫ (𝑘+1)𝜋
𝑘𝜋 𝑒−𝑥𝑦 sin 𝑥 𝑑𝑥 = (−1)𝑘 1

𝑦2+1 (𝑒
−(𝑘+1)𝜋𝑦 + 𝑒−𝑘𝜋𝑦).

Now we find a bound for 𝑦 ∈ (1,∞).

∫(0,∞)
𝑒−𝑥𝑦| sin(𝑥)|𝑑𝑥 =

∞
∑

𝑘=0
∫

(𝑘+1)𝜋

𝑘𝜋
𝑒−𝑥𝑦 sin 𝑥(−1)𝑘 𝑑𝑥

=
∞
∑

𝑘=0
(−1)𝑘(−1)𝑘 1

𝑦2 + 1
(𝑒−(𝑘+1)𝜋𝑦 + 𝑒−𝑘𝜋𝑦)

⩽ 2
𝑦2 + 1

∞
∑

𝑘=0
(𝑒−𝜋𝑦)𝑘

𝑦>1
⩽ 2

𝑦2 + 1

∞
∑

𝑘=0
(𝑒−𝜋)𝑘

which means that the left hand side is integrable over (1,∞).
Thus we have

∫(0,∞) ∫(0,∞)
|𝑒−𝑥𝑦 sin 𝑥 sin 𝑦| 𝜆(𝑑𝑥) 𝜆(𝑑𝑦)
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⩽ ∫(0,1]

sin 𝑦
𝑦

𝜆(𝑑𝑦) + ∫(1,∞)

2
𝑦2 + 1

𝜆(𝑑𝑦)
∞
∑

𝑘=0
(𝑒−𝜋)𝑘

<∞.

By Fubini’s theorem we know that the iterated integrals as well as the double integral exist and
their values are identical.

Alternative proof for the absolute convergence of the integral:1 Let

𝑓 (𝑥, 𝑦) = 𝑒−𝑥𝑦 |sin 𝑥 sin 𝑦| ⩾ 0 ∀𝑥, 𝑦 ⩾ 0.

By monotone convergence and Tonelli’s theorem

∬ 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = lim
𝐴,𝐵→∞∬(0,𝐴]×(0,𝐵]

𝑓 (𝑥, 𝑦)𝑑𝑥 𝑑𝑦

= sup
𝐴,𝐵⩾0∫(0,𝐴] ∫(0,𝐵]

𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥.

Since the integrands are bounded and continuous, we can use Riemann integrals. Fix 𝐴 > 1 and
𝐵 > 1. Then

∫

𝐴

0 ∫

𝐵

0
= ∫

1

0 ∫

1

0
+∫

1

0 ∫

𝐵

1
+∫

1

0 ∫

𝐴

1
+∫

𝐴

1 ∫

𝐵

1

Now we can estimate these expressions separately: since | sin 𝑡| ⩽ |𝑡| we have

∫

1

0 ∫

1

0
𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 ⩽ ∫

1

0 ∫

1

0
1 𝑑𝑥 𝑑𝑦 = 1.

∫

1

0 ∫

𝐵

1
𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 ⩽ ∫

𝐵

1

[

∫

1

0
𝑥𝑒−𝑥𝑦 𝑑𝑥

]

𝑑𝑦

= 1 − 1
𝑒
+ 𝑒−𝐵 − 1

𝐵
< 1 − 1

𝑒
.

∫

1

0 ∫

𝐴

1
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 ⩽ ∫

𝐴

1

[

∫

1

0
𝑦𝑒−𝑥𝑦 𝑑𝑦

]

𝑑𝑥

= 1 − 1
𝑒
+ 𝑒−𝐴 − 1

𝐴
< 1 − 1

𝑒
.

∫

𝐴

1 ∫

𝐵

1
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 ⩽ ∫

𝐵

1

[

∫

𝐴

1
𝑥𝑒−𝑥𝑦 𝑑𝑥

]

𝑑𝑦

= 1
𝑒
− 𝑒−𝐴 + 𝑒−𝐴𝐵 − 𝑒−𝐵

𝐵
< 1
𝑒
.

These estimates now show

∫

∞

0 ∫

∞

0
𝑒−𝑥𝑦 |sin 𝑥 sin 𝑦| 𝑑𝑥 𝑑𝑦 ⩽ 3 − 1

𝑒
.

■■

1This much more elegant proof was communicated to me in July 2012 by Alvaro H. Salas from the Universidad Nacional de
Colombia, Department of Mathematics
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Problem 14.5 Solution: Note that
𝑑
𝑑𝑦

𝑦
𝑥2 + 𝑦2

= 𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
.

Thus we can compute

∫(0,1) ∫(0,1)

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
𝑑𝑦 𝑑𝑥 = ∫(0,1)

1
𝑥2 + 1

𝑑𝑥 = arctan 𝑥||
|

1

0
= 𝜋

4
.

By symmetry of 𝑥 and 𝑦 in the integrals it follows that

∫(0,1) ∫(0,1)

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
𝑑𝑦 𝑑𝑥 = −𝜋

4

and therefore the double integral can not exist. Since the existence would imply the equality of the
two above integrals. We can see this directly by

∫(0,1) ∫(0,1)

|

|

|

|

|

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
|

|

|

|

|

𝑑𝑦 𝑑𝑥 ⩾ ∫

1

0 ∫

𝑥

0

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
𝑑𝑦 𝑑𝑥

= ∫

1

0

𝑥
𝑥2 + 𝑥2

𝑑𝑥

= 1
2 ∫

1

0

1
𝑥
𝑑𝑥 = ∞.

■■

Problem 14.6 Solution: Since the integrand is odd, we have for 𝑦 ≠ 0:

∫(−1,1)

𝑥𝑦
(𝑥2 + 𝑦2)2

𝑑𝑥 = 0

and {0} is a null set. Thus the iterated integrals have common value 0. But the double integral
does not exist, since for the iterated absolute integrals we get

∫(−1,1)

|

|

|

|

𝑥𝑦
(𝑥2 + 𝑦2)2

|

|

|

|

𝑑𝑥 = 1
|𝑦| ∫

1∕|𝑦|

0

𝜉
(𝜉2 + 1)2

𝑑𝜉 ⩾ 2
|𝑦| ∫

1

0

𝜉
(𝜉2 + 1)2

𝑑𝜉

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
<∞

.

Here we use the substitution 𝑥 = 𝜉|𝑦| and the fact that |𝑦| ⩽ 1, thus 1∕|𝑦| ⩾ 1. But the outer
integral is bounded below by

∫(−1,1)

2
|𝑦|

𝑑𝑦 which is divergent.

■■

Problem 14.7 Solution: We use the generic notation 𝑓 (𝑥, 𝑦) for any of the integrands.
a) We have

∫

1

0
𝑓 (𝑥, 𝑦) 𝑑𝑦 =

|

|

|

𝑥 − 1
2
|

|

|

(

𝑥 − 1
2

)3
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and this function is not integrable (in 𝑥) in the interval (0, 1). For 0 < 𝑦 ⩽ 1
2 we have

∫

1

0
𝑓 (𝑥, 𝑦) 𝑑𝑥 = ∫

1
2−𝑦

0

(

𝑥 − 1
2

)−3
𝑑𝑥 + ∫

1

1
2+𝑦

(

𝑥 − 1
2

)−3
𝑑𝑥 = 0.

For 1
2 ⩽ 𝑦 ⩽ 1 this integral is again 0. Therefore,

∫

1

0

(

∫

1

0
𝑓 (𝑥, 𝑦) 𝑑𝑥

)

𝑑𝑦 = 0.

Finally,

∫

1

0
|𝑓 (𝑥, 𝑦)| 𝑑𝑦 = |

|

|

𝑥 − 1
2
|

|

|

−2
⇐⇒ ∫

1

0 ∫

1

0
|𝑓 (𝑥, 𝑦)| 𝑑𝑥 𝑑𝑦 = ∞.

b) We have

∫

1

0 ∫

1

0

𝑥 − 𝑦
(𝑥2 + 𝑦2)3∕2

𝑑𝑦 𝑑𝑥 = ∫

1

0

[

1
𝑥

𝑥 + 𝑦
(𝑥2 + 𝑦2)1∕2

]𝑦=1

𝑦=0
𝑑𝑥

= ∫

1

0

[

𝑥 + 1
√

𝑥2 + 1 − 1

]

𝑑𝑥

=

[

ln 𝑥 +
√

𝑥2 + 1

1 +
√

𝑥2 + 1 − 1

]𝑥=1

𝑥=0

= ln 2.

Bcause of (anti-)symmetry we find

∫

1

0 ∫

1

0

𝑥 − 𝑦
(𝑥2 + 𝑦2)3∕2

𝑑𝑥 𝑑𝑦 = − ln 2.

Morevoer,
1
2 ∫

1

0 ∫

1

0

|

|

|

|

𝑥 − 𝑦
(𝑥2 + 𝑦2)3∕2

|

|

|

|

𝑑𝑦 𝑑𝑥 = ∫

1

0 ∫

𝑥

0

𝑥 − 𝑦
(𝑥2 + 𝑦2)3∕2

𝑑𝑦 𝑑𝑥

= ∫

1

0

[

1
𝑥

𝑥 − 𝑦
(𝑥2 + 𝑦2)1∕2

]𝑦=𝑥

𝑦=0
𝑑𝑥

= (
√

2 − 1)∫

1

0

𝑑𝑥
𝑥

= ∞.

c) Since 𝑓 is positive, Tonelli’s theorem ensures that all three integrals coincide. Let 𝑝 ≠ 1. We
get

∫

1

0 ∫

1

0
(1 − 𝑥𝑦)−𝑝 𝑑𝑦 𝑑𝑦 = 1

𝑝 − 1 ∫

1

0

(

(1 − 𝑥)1−𝑝 − 1
) 𝑑𝑥
𝑥
.

This integral is finite if, and only if, 𝑝 < 2. For 𝑝 = 1 we have

∫

1

0 ∫

1

0
(1 − 𝑥𝑦)−𝑝 𝑑𝑦 𝑑𝑦 = −∫

1

0
ln(1 − 𝑥) 𝑑𝑥

𝑥
<∞.
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■■

Problem 14.8 Solution:

(i) We have [−𝑛, 𝑛] ↑ R as 𝑛 → ∞ and 𝜆([−𝑛, 𝑛]) = 2𝑛 < ∞. This shows 𝜎-finiteness of
𝜆. Let (𝑞𝑗)𝑗∈N be an enumeration ofQ; set 𝐴𝑛 ∶= {𝑞1,… , 𝑞𝑛} ∪ (R ⧵Q), then we have
𝐴𝑛 ↑ R and 𝜁Q(𝐴𝑛) = 𝑛 <∞. This shows 𝜎-finiteness of 𝜁Q.
We will show that 𝜁R is not 𝜎-finite. Assume 𝜁R were 𝜎-finite. Thus, there would be
a sequence 𝐴𝑛 ↑ R, 𝑛 ∈ N, such that 𝜁R(𝐴𝑛) < ∞. Since 𝜁R is a counting measure,
every 𝐴𝑛 is countable. Thus,R is a countable union of countable sets, hence countable
– a contradiciton.

(ii) The rationals Q are a 𝜆 null set, hence 1
𝑦
Q is for each 𝑦 a 𝜆 null set. We have

∫(0,1)
1Q(𝑥 ⋅ 𝑦) 𝜆(𝑑𝑥) = 0 ∀ 𝑦 ∈ R.

This implies
∫(0,1) ∫(0,1)

1Q(𝑥 ⋅ 𝑦) 𝑑𝜆(𝑥) 𝑑𝜁R(𝑦) = 0.

(iii) Let 𝑥 ∈ (0, 1). The set ( 1
𝑥
Q) ∩ (0, 1) contains infinitely many values, so

∫(0,1)
1Q(𝑥 ⋅ 𝑦) 𝜁R(𝑑𝑦) = ∞ ∀ 𝑥.

Therefore, the iterated integral is ∞.
(iv) Let 𝑥 ∈ (0, 1) ⧵Q. Since 𝑦 ⋅ 𝑥 ∉ Q for any 𝑦 ∈ Q, we have

∫(0,1)
1Q(𝑥 ⋅ 𝑦) 𝜁Q(𝑑𝑦) = 0 ∀ 𝑥 ∈ (0, 1) ⧵Q.

On the other hand, if 𝑥 ∈ Q ∩ (0, 1), then 𝑦 ⋅ 𝑥 ∈ Q for any 𝑦 ∈ Q and so

∫(0,1)
1Q(𝑥 ⋅ 𝑦) 𝜁Q(𝑑𝑦) = ∞ ∀ 𝑥 ∈ (0, 1) ∩Q.

Since Q is a 𝜆 null set, we get

∫(0,1) ∫(0,1)
1Q(𝑥 ⋅ 𝑦) 𝜁Q(𝑑𝑦)𝜆(𝑑𝑥) = ∫(0,1)

1Q(𝑥) ⋅∞ 𝑑𝜆(𝑥) = 0.

(v) The results of (iii),(iv) do not contradict Fubini’s or Tonelli’s theorem, since these the-
orems require 𝜎-finiteness of all measures.

■■

Problem 14.9 Solution:

(i) Since the integrand is positive, we can use Tonelli’s theorem and work out the integral
as an iterated integral

𝐼 ∶= ∫[0,∞)2

𝑑𝑥 𝑑𝑦
(1 + 𝑦)(1 + 𝑥2𝑦)
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= ∫[0,∞)

1
1 + 𝑦

(

∫[0,∞)

1
1 + 𝑥2𝑦

𝑑𝑥
)

𝑑𝑦

= ∫[0,∞)

1
1 + 𝑦

arctan(𝑥
√

𝑦)
√

𝑦

|

|

|

|

∞

𝑥=0
𝑑𝑦

= 𝜋
2 ∫ [0,∞) 1

1 + 𝑦
1
√

𝑦
𝑑𝑦.

(Observe that the integrand is continuous, which enables us to use Riemann integrals
on bounded intervals. Note that ∫[0,∞)⋯ = sup𝑛∈N ∫[0,𝑛)… because of monotone con-
vergence.) Using the substitution 𝑢 = √

𝑦, we get

𝐼 = 𝜋
2 ∫[0,∞)

1
1 + 𝑢2

𝑑𝑢 = 𝜋 arctan(𝑢)
|

|

|

|

∞

𝑢=0
= 𝜋2

2
.

(ii) We use partial fractions in (i):
1

1 + 𝑦
1

1 + 𝑥2𝑦
= 1

1 − 𝑥2
1

1 + 𝑦
− 𝑥2

1 − 𝑥2
1

1 + 𝑥2𝑦
.

Thus,

𝐼 = ∫[0,∞)

(

∫[0,∞)

1
1 − 𝑥2

1
1 + 𝑦

− 𝑥2

1 − 𝑥2
1

1 + 𝑥2𝑦
𝑑𝑦

)

𝑑𝑥

= ∫[0,∞)

(

lim
𝑅→∞

[

1
1 − 𝑥2

ln(1 + 𝑅) − 𝑥2

1 − 𝑥2
ln(1 + 𝑥2𝑅)

𝑥2

])

𝑑𝑥

= ∫(0,∞)

1
1 − 𝑥2

(

lim
𝑅→∞

ln
(

1 + 𝑅
1 + 𝑥2𝑅

))

𝑑𝑥

= ∫[0,∞)

1
1 − 𝑥2

ln(𝑥−2) 𝑑𝑥

= 2∫[0,∞)

ln(𝑥)
𝑥2 − 1

𝑑𝑥.

From (i) we infer that ∫[0,∞)
ln 𝑥
𝑥2−1 𝑑𝑥 = 𝐼

2 = 𝜋2

4 .
(iii) Using the geometric series we find

1
𝑥2 − 1

= −
∑

𝑛⩾0
(𝑥2)𝑛 = −

∑

𝑛⩾0
𝑥2𝑛, |𝑥| < 1,

as well as
1

𝑥2 − 1
= 1
𝑥2

1
1 − 𝑥−2

= 1
𝑥2

∑

𝑛⩾0
(𝑥−2)𝑛 =

∑

𝑛⩾0
𝑥−2(𝑛+1), |𝑥| > 1.

Thus,

∫(0,∞)

ln 𝑥
𝑥2 − 1

𝑑𝑥 = −
∑

𝑛⩾0
∫(0,1)

𝑥2𝑛 ln 𝑥 𝑑𝑥 +
∑

𝑛⩾0
∫(1,∞)

𝑥−2(𝑛+1) ln 𝑥 𝑑𝑥. (⋆)

(In order to swap summation and integration, we use dominated convergence!) Using
integration by parts, we find

∫(0,1)
𝑥2𝑛 ln 𝑥 𝑑𝑥 = 𝑥2𝑛+1

2𝑛 + 1
ln 𝑥

|

|

|

|

1

𝑥=0
− 1

2𝑛 + 1 ∫(0,1)
𝑥2𝑛 𝑑𝑥
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= − 1
(2𝑛 + 1)2

and, in a similar fashion,

∫(1,∞)
𝑥−2(𝑛+1) ln 𝑥 𝑑𝑥 = 𝑥−2(𝑛+1)+1

−2(𝑛 + 1) + 1
ln 𝑥

|

|

|

|

∞

𝑥=1
− 1

−2(𝑛 + 1) + 1 ∫(1,∞)
𝑥−2(𝑛+1) 𝑑𝑥

= 1
(−2(𝑛 + 1) + 1)2

= 1
(2𝑛 + 1)2

.

Inserting these results into (⋆), the claim follows from part (ii).
■■

Problem 14.10 Solution:

(i) Since 𝜇 is 𝜎-finite, there is an exhausting sequence (𝐺𝑛)𝑛∈N ⊂ℬ(R) such that 𝜇(𝐺𝑛) <∞
and 𝐺𝑛 ↑ R. For each 𝑛 ∈ N the set

𝐵𝑛𝑘 ∶=
{

𝑥 ∈ 𝐺𝑛;𝜇({𝑥}) >
1
𝑘

}

is finite. Indeed: Assume there were countably infinitely many (𝑥𝑗)𝑗∈N ⊂ 𝐵𝑛𝑘, 𝑥𝑗 ≠ 𝑥𝑖 for
𝑖 ≠ 𝑗. Since the sets {𝑥𝑗}, 𝑗 ∈ N, are disjoint, we conclude that

𝜇(𝐺𝑛) ⩾ 𝜇

(

∑

𝑗∈N
{𝑥𝑗}

)

=
∑

𝑗∈N
𝜇({𝑥𝑗}) = ∞.

This is a contradiction to 𝜇(𝐺𝑛) <∞.
Thus, the set

𝐵𝑛 ∶= {𝑥 ∈ 𝐺𝑛;𝜇({𝑥}) > 0} =
⋃

𝑘∈N

{

𝑥 ∈ 𝐺𝑛;𝜇({𝑥}) >
1
𝑘

}

is countable and so is
𝐷 =

⋃

𝑛∈N
𝐵𝑛

as it is a countable union of countable sets.
(ii) For the diagonal 1Δ(𝑥, 𝑦) = 1{𝑦}(𝑥)1R(𝑦) we find from Theorem 14.5:

𝜇 × 𝜈(Δ) = ∫R

(

∫ 1{𝑦}(𝑥)𝜇(𝑑𝑥)
)

𝜈(𝑑𝑦)

= ∫R
𝜇({𝑦})1𝐷(𝑦) 𝜈(𝑑𝑦)

=
∑

𝑦∈𝐷
𝜇({𝑦})𝜈({𝑦}).

(In the last step we use that 𝐷 is countable.)
■■
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Problem 14.11 Solution: Note that the diagonal Δ ⊂ R2 is measurable, i.e. the (double) integrals
are well-defined. The inner integral on the l.h.S. satisfies

∫[0,1]
1Δ(𝑥, 𝑦) 𝜆(𝑑𝑥) = 𝜆({𝑦}) = 0 ∀ 𝑦 ∈ [0, 1]

so that the left-hand side

∫[0,1]∫[0,1]
1Δ(𝑥, 𝑦) 𝜆(𝑑𝑥)𝜇(𝑑𝑦) = ∫[0,1]

0𝜇(𝑑𝑦) = 0.

On the other hand, the inner integral on the right-hand side equals

∫[0,1]
1Δ(𝑥, 𝑦)𝜇(𝑑𝑦) = 𝜇({𝑥}) = 1 ∀ 𝑥 ∈ [0, 1]

so that the right-hand side

∫[0,1]∫[0,1]
1Δ(𝑥, 𝑦)𝜇(𝑑𝑦) 𝜆(𝑑𝑥) = ∫[0,1]

1 𝜆(𝑑𝑥) = 1.

This shows that the double integrals are not equal. This does not contradict Tonelli’s theorem since
𝜇 is not 𝜎-finite.

■■

Problem 14.12 Solution:

(i) Note that, due to the countability ofN andN ×N there are no problems with measurability
and 𝜎-finiteness (of the counting measure).
Tonelli’s Theorem. Let (𝑎𝑗𝑘)𝑗,𝑘∈N be a double sequence of positive numbers 𝑎𝑗𝑘 ⩾ 0. Then

∑

𝑗∈N

∑

𝑘∈N
𝑎𝑗𝑘 =

∑

𝑘∈N

∑

𝑗∈N
𝑎𝑗𝑘

with the understanding that both sides are either finite or infinite.

Fubini’s Theorem. Let (𝑎𝑗𝑘)𝑗,𝑘∈N ⊂ R be a double sequence of real numbers 𝑎𝑗𝑘. If
∑

𝑗∈N

∑

𝑘∈N
|𝑎𝑗𝑘| or ∑

𝑘∈N

∑

𝑗∈N
|𝑎𝑗𝑘|

is finite, then all of the following expressions converge absolutely and sum to the same value:
∑

𝑗∈N

(

∑

𝑘∈N
|𝑎𝑗𝑘|

)

,
∑

𝑘∈N

(

∑

𝑗∈N
|𝑎𝑗𝑘|

)

,
∑

(𝑗,𝑘)∈N×N
|𝑎𝑗𝑘|.

(ii) Consider the (obviously 𝜎-finite) measures 𝜇𝑗 ∶=
∑

𝑘∈𝐴𝑗 𝛿𝑘 and 𝜈 =
∑

𝑗∈N 𝜇𝑗 . Tonelli’s
theorem tells us that

∑

𝑗∈N

∑

𝑘∈𝐴𝑗

|𝑥𝑘| = ∫N∫N
|𝑥𝑘|𝜇𝑗(𝑑𝑘)𝜇(𝑑𝑗)

= ∫N∫N
|𝑥𝑘|1𝐴𝑗 (𝑘)𝜇(𝑑𝑘)𝜇(𝑑𝑗)
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= ∫N∫N
|𝑥𝑘|1𝐴𝑗 (𝑘)𝜇(𝑑𝑗)𝜇(𝑑𝑘)

= ∫N
|𝑥𝑘|

(

∫N
1𝐴𝑗 (𝑘)𝜇(𝑑𝑗)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1, as the 𝐴𝑗 are disjoint

𝜇(𝑑𝑘)

= ∫N
|𝑥𝑘|𝜇(𝑑𝑘)

=
∑

𝑘∈N
|𝑥𝑘|.

■■

Problem 14.13 Solution:

(i) Set 𝑈 (𝑎, 𝑏) ∶= 𝑎 − 𝑏. Then
𝑈 (𝑢(𝑥), 𝑦)1[0,∞)(𝑦) ⩾ 0 ⇐⇒ 𝑢(𝑥) ⩾ 𝑦 ⩾ 0

and𝑈 (𝑢(𝑥), 𝑦)1[0,∞)(𝑦) is a combination/sum/product ofℬ(R2) resp.ℬ(R)-measurable func-
tions. Thus 𝑆[𝑢] is ℬ(R2)-measurable.

(ii) Yes, true, since by Tonelli’s theorem
𝜆2(𝑆[𝑢]) = ∫R2

1𝑆[𝑢](𝑥, 𝑦) 𝜆2(𝑑(𝑥, 𝑦))

= ∫R∫R
1{(𝑥,𝑦)∶𝑢(𝑥)⩾𝑦⩾0}(𝑥, 𝑦) 𝜆1(𝑑𝑦) 𝜆1(𝑑𝑥)

= ∫R∫[0,𝑢(𝑥)]
1 𝜆1(𝑑𝑦) 𝜆1(𝑑𝑥)

= ∫R
𝑢(𝑥) 𝜆1(𝑑𝑥)

(iii) Measurability follows from (i) and with the hint. Moreover,
𝜆2(Γ[𝑢]) = ∫R2

1Γ[𝑢](𝑥, 𝑦) 𝜆2(𝑑(𝑥, 𝑦))

= ∫R∫R
1{(𝑥,𝑦)∶𝑦=𝑢(𝑥)}(𝑥, 𝑦) 𝜆1(𝑑𝑦) 𝜆1(𝑑𝑥)

= ∫R∫[𝑢(𝑥),𝑢(𝑥)]
1 𝜆1(𝑑𝑦) 𝜆1(𝑑𝑥)

= ∫R
𝜆1({𝑢(𝑥)}) 𝜆1(𝑑𝑥)

= ∫R
0 𝜆1(𝑑𝑥)

= 0.

■■

Problem 14.14 Solution: The hint given in the text should be good enough to solve this problem....
■■
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Problem 14.15 Solution: Since (i) implies (ii), we will only prove (i) under the assumption that both
(𝑋,𝒜 , 𝜇) and (𝑌 ,ℬ, 𝜈) are complete measure spaces. Note that we have to assume 𝜎-finiteness of
𝜇 and 𝜈, otherwise the product construction would not work. Pick some set𝑍 ∈ 𝒫 (𝑋)⧵𝒜 (which
is, because of completeness, not a null-set!), and some 𝜈-null set 𝑁 ∈ ℬ and consider 𝑍 ×𝑁 .
We get for some exhausting sequence (𝐴𝑘)𝑘 ⊂ 𝒜 , 𝐴𝑘 ↑ 𝑋 and 𝜇(𝐴𝑘) <∞:

𝜇 × 𝜈(𝑋 ×𝑁) = sup
𝑘∈N

𝜇 × 𝜈(𝐴𝑘 ×𝑁)

= sup
𝑘∈N

(

𝜇(𝐴𝑘)
⏟⏟⏟
<∞

⋅ 𝜈(𝑁)
⏟⏟⏟

=0

)

= 0;

thus𝑍×𝑁 ⊂ 𝑋×𝑁 is a subset of a measurable𝜇×𝜈 null set, hence it should be𝒜⊗ℬ-measurable,
if the product space were complete. On the other hand, because of Theorem 14.17(iii), if 𝑍 ×𝑁
is 𝒜 ⊗ℬ-measurable, then the section

𝑥 → 1𝑍×𝑁 (𝑥, 𝑦) = 1𝑍(𝑥)1𝑁 (𝑦)
𝑦∈𝑁
= 1𝑍(𝑥)

is 𝒜 -measurable which is only possible if 𝑍 ∈ 𝒜 .
■■

Problem 14.16 Solution:

(i) Let 𝐴 ∈ ℬ[0,∞)⊗ 𝒫 (N), fix 𝑘 ∈ N and consider

1𝐴(𝑥, 𝑘) and 𝐵𝑘 ∶= {𝑥 ∶ 1𝐴(𝑥, 𝑘) = 1};

because of Theorem 14.17(iii), 𝐵𝑘 ∈ ℬ[0,∞). Since

(𝑥, 𝑘) ∈ 𝐴 ⇐⇒ 1𝐴(𝑥, 𝑘) = 1

⇐⇒ ∃ 𝑘 ∈ N ∶ 1𝐴(𝑥, 𝑘) = 1

⇐⇒ ∃ 𝑘 ∈ N ∶ 𝑥 ∈ 𝐵𝑘

it is clear that 𝐴 =
⋃

𝑘∈N 𝐵𝑘 × {𝑘}.
(ii) Let 𝑀 ∈ 𝒫 (N) and set 𝜁 ∶=

∑

𝑗∈N 𝛿𝑗 ; we know that 𝜁 is a (𝜎-finite) measure on 𝒫 (N).
Using Tonelli’s theorem 14.8 we get

𝜋(𝐵 ×𝑀) ∶=
∑

𝑚∈𝑀
𝜋(𝐵 × {𝑚})

∶=
∑

𝑚∈𝑀
∫𝐵

𝑒−𝑡 𝑡
𝑚

𝑚!
𝜇(𝑑𝑡)

= ∫𝑀∫𝐵
𝑒−𝑡 𝑡

𝑚

𝑚!
𝜇(𝑑𝑡) 𝜁 (𝑑𝑚)

= ∬𝐵×𝑀
𝑒−𝑡 𝑡

𝑚

𝑚!
𝜇 × 𝜁 (𝑑𝑡, 𝑑𝑚)
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which shows that the measure 𝜋(𝑑𝑡, 𝑑𝑚) ∶= 𝑒−𝑡 𝑡
𝑚

𝑚! 𝜇 × 𝜁 (𝑑𝑡, 𝑑𝑚) has all the properties re-
quired by the exercise.
The uniqueness follows, however, from the uniqueness theorem for measures (Theorem 5.7):
the family of ‘rectangles’ of the form 𝐵 ×𝑀 ∈ ℬ[0,∞) × 𝒫 (N) is a ∩-stable generator of
the product 𝜎-algebra ℬ[0,∞)⊗ 𝒫 (N) and contains an exhausting sequence, say, [0,∞) ×
{1, 2,… 𝑘} ↑ [0,∞) × N. But on this generator 𝜋 is (uniquely) determined by prescribing
the values 𝜋(𝐵 × {𝑚}).

■■

Problem 14.17 Solution: Assume first that 𝜆 ⩾ 0. The point here is that Corollary 14.15 does not
apply to the function 𝑠 → 𝑒−𝜆𝑠 since this function is decreasing and has the value 1 for 𝑠 = 0.
Consider therefore 𝜙(𝑠) ∶= 1 − 𝑒−𝜆𝑠. This 𝜙 is admissible in 14.15 and we get

∫ 𝜙(𝑇 ) 𝑑P = ∫
(

1 − 𝑒−𝜆𝑇
)

𝑑P = ∫

∞

0
𝜆𝑒−𝜆𝑠P(𝑇 ⩾ 𝑠) 𝑑𝑠.

Rearranging this equality then yields

∫ 𝑒−𝜆𝑇 𝑑P = 1 − 𝜆∫

∞

0
𝑒−𝜆𝑠P(𝑇 ⩾ 𝑠) 𝑑𝑠.

If 𝜆 < 0 the formula remains valid if we understand it in the sense that either both sides are finite
or both sides are infinite. The above argument needs some small changes, though. First, 𝑒−𝜆𝑠
is now increasing (which is fine) but still takes the value 1 if 𝑠 = 0. So we should change to
𝜙(𝑠) ∶= 𝑒−𝜆𝑠 − 1. Now the same calculation as above goes through. If one side is finite, so is
the other; and if one side is infinite, then the other is infinite, too. The last statement follows from
Theorem 14.13 or Corollary 14.15.

■■

Problem 14.18 Solution:

(i) This is similar to Problem 6.1, in particular (i) and (vi).
(ii) Note that

1𝐵(𝑥, 𝑦) = 1(𝑎,𝑏](𝑥)1[𝑥,𝑏](𝑦)

= 1(𝑎,𝑏](𝑦)1(𝑎,𝑦](𝑥)

= 1(𝑎,𝑏](𝑥)1(𝑎,𝑏](𝑦)1[0,∞)(𝑦 − 𝑥);

the last expression is, however, a product of (combinations of) measurable functions, thus 1𝐵
is measurable and so is then 𝐵.
Without loss of generality we can assume that 𝑎 > 0, all other cases are similar.
Using Tonelli’s theorem 14.8 we get

𝜇 × 𝜈(𝐵) = ∬ 1𝐵(𝑥, 𝑦)𝜇 × 𝜈(𝑑𝑥, 𝑑𝑦)

184



Solution Manual. Last update 20th June 2025

= ∬ 1(𝑎,𝑏](𝑦)1(𝑎,𝑦](𝑥)𝜇 × 𝜈(𝑑𝑥, 𝑑𝑦)

= ∫(𝑎,𝑏] ∫(𝑎,𝑦]
𝜇(𝑑𝑥) 𝜈(𝑑𝑦)

= ∫(𝑎,𝑏]
𝜇(𝑎, 𝑦] 𝜈(𝑑𝑦)

= ∫(𝑎,𝑏]

(

𝜇(0, 𝑦] − 𝜇(0, 𝑎]
)

𝜈(𝑑𝑦)

= ∫(𝑎,𝑏]
𝜇(0, 𝑦]𝜈(𝑑𝑦) − 𝜇(0, 𝑎]∫(𝑎,𝑏]

𝜈(𝑑𝑦)

= ∫(𝑎,𝑏]
𝐹 (𝑦) 𝑑𝐺(𝑦) − 𝐹 (𝑎)

(

𝐺(𝑏) − 𝐺(𝑎)
)

. (*)

We remark at this point already that a very similar calculation (with 𝜇, 𝜈 and 𝐹 ,𝐺 inter-
changed and with an open interval rather than a semi-open interval) yields

∬ 1(𝑎,𝑏](𝑦)1(𝑦,𝑏](𝑥)𝜇(𝑑𝑥) 𝜈(𝑑𝑦)

= ∫(𝑎,𝑏]
𝐺(𝑦−) 𝑑𝐹 (𝑦) − 𝐺(𝑎)

(

𝐹 (𝑏) − 𝐹 (𝑎)
)

.
(**)

(iii) On the one hand we have

𝜇 × 𝜈
(

(𝑎, 𝑏] × (𝑎, 𝑏]
)

= 𝜇(𝑎, 𝑏]𝜈(𝑎, 𝑏]

=
(

𝐹 (𝑏) − 𝐹 (𝑎)
)(

𝐺(𝑏) − 𝐺(𝑎)
)

(+)

and on the other we find, using Tonelli’s theorem at step (T)

𝜇 × 𝜈
(

(𝑎, 𝑏] × (𝑎, 𝑏]
)

= ∬ 1(𝑎,𝑏](𝑥)1(𝑎,𝑏](𝑦)𝜇(𝑑𝑥) 𝜈(𝑑𝑦)

= ∬ 1(𝑎,𝑦](𝑥)1(𝑎,𝑏](𝑦)𝜇(𝑑𝑥) 𝜈(𝑑𝑦)+

+∬ 1(𝑦,𝑏](𝑥)1(𝑎,𝑏](𝑦)𝜇(𝑑𝑥) 𝜈(𝑑𝑦)

𝑇
= ∬ 1(𝑎,𝑏](𝑥)1[𝑥,𝑏](𝑦) 𝜈(𝑑𝑦)𝜇(𝑑𝑥)+

+∬ 1(𝑦,𝑏](𝑥)1(𝑎,𝑏](𝑦)𝜇(𝑑𝑥) 𝜈(𝑑𝑦)

∗,∗∗
= ∫(𝑎,𝑏]

𝐹 (𝑦) 𝑑𝐺(𝑦) − 𝐹 (𝑎)
(

𝐺(𝑏) − 𝐺(𝑎)
)

+

+ ∫(𝑎,𝑏]
𝐺(𝑦−) 𝑑𝐹 (𝑦) − 𝐺(𝑎)

(

𝐹 (𝑏) − 𝐹 (𝑎)
)

.

Combining this formula with the previous one marked (+) reveals that

𝐹 (𝑏)𝐺(𝑏) − 𝐹 (𝑎)𝐺(𝑎) = ∫(𝑎,𝑏]
𝐹 (𝑦) 𝑑𝐺(𝑦) + ∫(𝑎,𝑏]

𝐺(𝑦−) 𝑑𝐹 (𝑦).
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Finally, observe that

∫(𝑎,𝑏]

(

𝐹 (𝑦) − 𝐹 (𝑦−)
)

𝑑𝐺(𝑦) = ∫(𝑎,𝑏]
𝜇({𝑦}) 𝜈(𝑑𝑦)

=
∑

𝑎<𝑦⩽𝑏
𝜇({𝑦})𝜈({𝑦})

=
∑

𝑎<𝑦⩽𝑏
Δ𝐹 (𝑦)Δ𝐺(𝑦).

(Mind that the sum is at most countable because of Lemma 14.14) from which the claim
follows.

(iv) It is clear that uniform approximation allows to interchange limiting and integration proced-
ures so that we *really* do not have to care about this. We show the formula for monomials
𝑡, 𝑡2, 𝑡3, ... by induction. Write 𝜙𝑛(𝑡) = 𝑡𝑛, 𝑛 ∈ N.

Induction start 𝑛 = 1: in this case 𝜙1(𝑡) = 𝑡, 𝜙′
1(𝑡) = 1 and 𝜙(𝐹 (𝑠))−𝜙(𝐹 (𝑠−))−Δ𝐹 (𝑠) = 0,

i.e. the formula just becomes

𝐹 (𝑏) − 𝐹 (𝑎) = ∫(𝑎,𝑏]
𝑑𝐹 (𝑠)

which is obviously true.

Induction assumption: for some 𝑛 we know that

𝜙𝑛(𝐹 (𝑏)) − 𝜙𝑛(𝐹 (𝑎)) = ∫(𝑎,𝑏]
𝜙′
𝑛(𝐹 (𝑠−)) 𝑑𝐹 (𝑠)

+
∑

𝑎<𝑠⩽𝑏

[

𝜙𝑛(𝐹 (𝑠)) − 𝜙𝑛(𝐹 (𝑠−)) − 𝜙′
𝑛(𝐹 (𝑠−))Δ𝐹 (𝑠)

]

.

Induction step 𝑛 ⇝ 𝑛 + 1: Write, for brevity 𝐹 = 𝐹 (𝑠) and 𝐹− = 𝐹 (𝑠−). We have because
of (iii) with 𝐺 = 𝜙𝑛◦𝐹 and because of the induction assumption

𝜙𝑛+1(𝐹 (𝑏)) − 𝜙𝑛+1(𝐹 (𝑎))

= 𝐹 (𝑏)𝜙𝑛(𝐹 (𝑏)) − 𝐹 (𝑎)𝜙𝑛(𝐹 (𝑎))

= ∫(𝑎,𝑏]
𝐹 𝑛− 𝑑𝐹 + ∫(𝑎,𝑏]

𝐹− 𝑑𝐹
𝑛 +

∑

Δ𝐹Δ𝐹 𝑛

= ∫(𝑎,𝑏]
𝐹 𝑛− 𝑑𝐹 + ∫(𝑎,𝑏]

𝐹− 𝜙
′
𝑛(𝐹−) 𝑑𝐹+

+
∑

[

𝐹−𝜙𝑛(𝐹 ) − 𝐹−𝜙𝑛(𝐹−) − 𝐹−𝜙′
𝑛(𝐹−)Δ𝐹

]

+
∑

Δ𝐹Δ𝐹 𝑛

= ∫(𝑎,𝑏]
𝐹 𝑛− 𝑑𝐹 + ∫(𝑎,𝑏]

𝐹− 𝑛𝐹
𝑛−1
− 𝑑𝐹+

+
∑

[

𝐹−𝐹
𝑛 − 𝐹 𝑛+1− − 𝐹−𝑛𝐹 𝑛−1− Δ𝐹 + Δ𝐹Δ𝐹 𝑛

]

= ∫(𝑎,𝑏]
(𝑛 + 1)𝐹 𝑛− 𝑑𝐹 +

∑

[

𝐹−𝐹
𝑛 − 𝐹 𝑛+1− − 𝑛𝐹 𝑛−Δ𝐹 + Δ𝐹Δ𝐹 𝑛

]

= ∫(𝑎,𝑏]
𝜙′
𝑛+1◦𝐹− 𝑑𝐹 +

∑

[

𝐹−𝐹
𝑛 − 𝐹 𝑛+1− − 𝑛𝐹 𝑛−Δ𝐹 + Δ𝐹Δ𝐹 𝑛

]
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The expression under the sum can be written as

𝐹−𝐹
𝑛 − 𝐹 𝑛+1− − 𝑛𝐹 𝑛−Δ𝐹 + Δ𝐹Δ𝐹 𝑛

= (𝐹− − 𝐹 )𝐹 𝑛 + 𝐹 𝑛+1 − 𝐹 𝑛+1− − 𝑛𝐹 𝑛−Δ𝐹 + Δ𝐹Δ𝐹 𝑛

= 𝐹 𝑛+1 − 𝐹 𝑛+1− + Δ𝐹
(

− 𝐹 𝑛 − 𝑛𝐹 𝑛− + Δ𝐹 𝑛
)

= 𝐹 𝑛+1 − 𝐹 𝑛+1− + Δ𝐹
(

− 𝐹 𝑛 − 𝑛𝐹 𝑛− + 𝐹 𝑛 − 𝐹 𝑛−
)

= 𝐹 𝑛+1 − 𝐹 𝑛+1− − (𝑛 + 1)𝐹 𝑛−Δ𝐹

= 𝜙𝑛+1◦𝐹 − 𝜙𝑛+1◦𝐹− − 𝜙′
𝑛+1◦𝐹−Δ𝐹

and the induction is complete.
■■

Problem 14.19 Solution:

(i) We have the following pictures:

✲

✻

1 3 4 5 6 9 x

2

4

3

f (x)

1

This is the graph of the original func-
tion 𝑓 (𝑥).
Open and full dots indicate the con-
tinuity behaviour at the jump points.
𝑥-values are to be measured in 𝜇-
length, i.e. 𝑥 is a point in the measure
space (𝑋,𝒜 , 𝜇).

✲

✻

2 3 4 t

m1

m2

m3

�f (t)

1

This is the graph of the associated
distribution function 𝜇𝑓 (𝑡). It is de-
creasing and left-continuous at the
jump points.
𝑡-values are to be measured using Le-
besgue measure in [0,∞).
𝑚1 = 𝜇

(

[4, 5]
)

𝑚2 − 𝑚1 = 𝜇
(

[6, 9]
)

𝑚3 − 𝑚2 = 𝜇
(

[4, 5]
)
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✲

✻

2

3

4

f ∗(�)

m1 m2 m3 �

1

This is the graph of the decreasing re-
arrangement 𝑓 ∗(𝜉) of 𝑓 (𝑥). It is de-
creasing and right-continuous at the
jump points. (Please note that the
picture is wrong and actually depicts
the left-continuous inverse which is
inf{𝑡 ∶ 𝜇𝑓 (𝑡) < 𝜉} — mind the “⩽”
vs. “<” inside the infimum)
𝜉-values are to be measured using
Lebesgue measure in [0,∞).
𝑚1, 𝑚2, 𝑚3 are as in the previous pic-
ture.

(ii) The first equality,

∫R
|𝑓 |𝑝 𝑑𝜇 = 𝑝∫

∞

0
𝑡𝑝−1 𝜇𝑓 (𝑡) 𝑑𝑡,

follows immediately from Theorem 14.13 with 𝑢 = |𝑓 | and 𝜇𝑓 (𝑡) = 𝜇({|𝑓 | ⩾ 𝑡}).
To show the second equality we have two possibilities. We can...

a) ...show the second equality first for (positive) simple functions and use then a (by now
standard...) Beppo Levi/monotone convergence argument to extend the result to all positive
measurable functions. Assume that 𝑓 (𝑥) = ∑𝑁

𝑗=0 𝑎𝑗1𝐵𝑗 (𝑥) is a positive simple function in
standard representation, i.e. 𝑎0 = 0 < 𝑎1 < ⋯ < 𝑎𝑛 < ∞ and the sets 𝐵𝑗 = {𝑓 = 𝑎𝑗} are
pairwise disjoint. Then we have

𝜇({𝑓 = 𝑎𝑗}) = 𝜇({𝑓 ⩾ 𝑎𝑗} ⧵ {𝑓 ⩾ 𝑎𝑗+1})

= 𝜇({𝑓 ⩾ 𝑎𝑗}) − 𝜇({𝑓 ⩾ 𝑎𝑗+1})

= 𝜇𝑓 (𝑎𝑗) − 𝜇𝑓 (𝑎𝑗+1) (𝑎𝑛+1 ∶= ∞, 𝜇𝑓 (𝑎𝑛+1) = 0)
= 𝜆1

(

(𝜇𝑓 (𝑎𝑗+1), 𝜇𝑓 (𝑎𝑗)]
)

= 𝜆1(𝑓 ∗ = 𝑎𝑗).

This proves

∫ 𝑓 𝑝 𝑑𝜇 =
𝑛
∑

𝑗=0
𝑎𝑝𝑗 𝜇(𝐵𝑗) =

𝑛
∑

𝑗=0
𝑎𝑝𝑗 𝜆

1(𝑓 ∗ = 𝑎𝑗) = ∫ (𝑓 ∗)𝑝 𝑑𝜆1

and the general case follows from the above-mentioned Beppo Levi argument.

or we can

b) use Theorem 14.13 once again with 𝑢 = 𝑓 ∗ and 𝜇 = 𝜆1 provided we know that

𝜇
(

{|𝑓 | ⩾ 𝑡}
)

= 𝜆1
(

{𝑓 ∗ ⩾ 𝑡}
)

.

188



Solution Manual. Last update 20th June 2025

This, however, follows from

𝑓 ∗(𝜉) ⩾ 𝑡 ⇐⇒ inf{𝑠 ∶ 𝜇𝑓 (𝑠) ⩽ 𝜉} ⩾ 𝑡

⇐⇒ 𝜇𝑓 (𝑡) ⩾ 𝜉 (as 𝜇𝑓 is right cts. & decreasing)
⇐⇒ 𝜇

(

{|𝑓 | ⩾ 𝑡}
)

⩾ 𝜉

and therefore

𝜆1
(

{𝜉 ⩾ 0 ∶ 𝑓 ∗(𝜉) ⩾ 𝑡}
)

= 𝜆1
(

{𝜉 ⩾ 0 ∶ 𝜇(|𝑓 | ⩾ 𝑡) ⩾ 𝜉}
)

= 𝜇(|𝑓 | ⩾ 𝑡).

■■

Problem 14.20 Solution: (By Franzsika Kühn) Fix 𝑡 ∈ R. Applying the fundamental theorem of
calculus and Fubini’s theorem, we find

𝐹 (𝑡 + ℎ) − 𝐹 (𝑡) = ∫𝑋
(𝜙(𝑡 + ℎ, 𝑥) − 𝜙(𝑡, 𝑥))𝜇(𝑑𝑥) = ∫𝑋 ∫

𝑡+ℎ

𝑡
𝜕𝑡𝜙(𝑟, 𝑥) 𝑑𝑟 𝜇(𝑑𝑥)

= ∫

𝑡+ℎ

𝑡 ∫𝑋
𝜕𝑡𝜙(𝑟, 𝑥)𝜇(𝑑𝑥)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑓 (𝑟)

𝑑𝑟.

for all ℎ ∈ R. Since 𝑓 is (by assumption) continuous, this implies

lim
ℎ→0

1
ℎ
(𝐹 (𝑡 + ℎ) − 𝐹 (𝑡)) = lim

ℎ→0
1
ℎ ∫

𝑡+ℎ

𝑡
𝑓 (𝑟) 𝑑𝑟 = 𝑓 (𝑡)

def
= ∫𝑋

𝜕𝑡𝜙(𝑡, 𝑥)𝜇(𝑑𝑥).

■■
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15 Integrals with respect to image

measures.

Solutions to Problems 15.1–15.16

Problem 15.1 Solution: The first equality

∫ 𝑢 𝑑(𝑇 (𝑓𝜇)) = ∫ 𝑢◦𝑇 𝑓 𝑑𝜇

is just Theorem 15.1 combined with Lemma 10.8 the formula for measures with a density.
The second equality

∫ 𝑢◦𝑇 𝑓 𝑑𝜇 = ∫ 𝑢 𝑓◦𝑇 −1 𝑑𝑇 (𝜇)

is again Theorem 15.1.
The third equality finally follows again from Lemma 10.8.

■■

Problem 15.2 Solution: Observe that 𝑇𝜖 is represented by the 𝑛 × 𝑛 diagonal matrix 𝐴 with entries
𝜖. Since det 𝐴 = 𝜖𝑛, the claim follows from Example 15.3(iii).

■■

Problem 15.3 Solution: Let 𝑥, 𝑦 ∈ R. We have
1[0,1](𝑥 − 𝑦)1[0,1](𝑦) = 1[−𝑥,−𝑥+1](−𝑦)1[0,1](𝑦)

= 1[𝑥−1,𝑥](𝑦)1[0,1](𝑦)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑥 < 0 or 𝑥 > 2,

1[0,𝑥](𝑦), 𝑥 ∈ [0, 1],

1[𝑥−1,1], 𝑥 ∈ [1, 2].

(∗)

This shows that
(1[0,1] ∗ 1[0,1])(𝑥) = ∫R

1[0,1](𝑥 − 𝑦)1[0,1](𝑦) 𝑑𝑦

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑥 < 0 or 𝑥 > 2,

∫ 𝑥
0 𝑑𝑦 = 𝑥, 𝑥 ∈ [0, 1],

∫ 1
𝑥−1 𝑑𝑦 = 2 − 𝑥, 𝑥 ∈ [1, 2],
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= 𝑥1[0,1](𝑥) + (2 − 𝑥)1[1,2](𝑥).

Since convolutions are linear and commutative, we get

(1[0,1] ∗1[0,1] ∗ 1[0,1])(𝑥)

=
(

1[0,1] ∗ (1[0,1] ∗ 1[0,1])
)

(𝑥)

= ∫ 1[0,1](𝑥 − 𝑦)(𝑦1[0,1](𝑦) + (2 − 𝑦)1[1,2](𝑦)) 𝑑𝑦

= ∫ 𝑦1[0,1](𝑥 − 𝑦)1[0,1](𝑦) 𝑑𝑦 + ∫ (2 − 𝑦)1[0,1](𝑥 − 𝑦)1[1,2](𝑦) 𝑑𝑦

=∶ 𝐼1(𝑥) + 𝐼2(𝑥).

Let us work out the two integrals separately. For the first expression we find using (∗)

𝐼1(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑥 > 0 or 𝑥 > 2,

∫ 𝑥
0 𝑦 =

𝑥2

2 , 𝑥 ∈ [0, 1],

∫ 1
1−𝑥 𝑦 𝑑𝑦 =

1
2 (1 − (1 − 𝑥)2), 𝑥 ∈ [1, 2].

= 𝑥2

2
1[0,1](𝑥) +

1
2
(1 − (1 − 𝑥)2)1[1,2](𝑥).

A similar calculation for the second integral yields

1[0,1](𝑥 − 𝑦)1[1,2](𝑦) = 1[𝑥−1,𝑥](𝑦)1[1,2](𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑥 < 1 or 𝑥 > 3,

1[1,𝑥](𝑦), 𝑥 ∈ [1, 2],

1[𝑥−1,2](𝑦), 𝑥 ∈ [2, 3].

This gives

𝐼2(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑥 < 1 or 𝑥 > 3,

∫ 𝑥
1 (2 − 𝑦) 𝑑𝑦 = 2(𝑥 − 1) − 1

2 (𝑥
2 − 1), 𝑥 ∈ [1, 2],

∫ 2
𝑥−1(2 − 𝑦) 𝑑𝑦 = 2(3 − 𝑥) − 1

2 (4 − (1 − 𝑥)2), 𝑥 ∈ [2, 3]

=
(

2(𝑥 − 1) − 1
2
(𝑥2 − 1)

)

1[1,2](𝑥) +
(

2(1 + 𝑥) − 1
2
(4 − (1 − 𝑥)2)

)

1[2,3](𝑥).

Finally

(1[0,1] ∗ 1[0,1] ∗ 1[0,1])(𝑥) =
𝑥2

2
1[0,1](𝑥) +

(

−𝑥2 + 3𝑥 − 3
2

)

1[1,2](𝑥)+
(

2(3 − 𝑥) − 1
2
(4 − (1 − 𝑥)2)

)

1[2,3](𝑥).

■■

Problem 15.4 Solution: Observe that the assertion is equivalent to saying

(supp 𝑢 + supp𝑤)𝑐 ⊂ (supp(𝑢 ∗ 𝑤))𝑐 .
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Assume that 𝑥0 ∈ (supp 𝑢 + supp𝑤)𝑐 . Since this is an open set, there is some 𝑟 > 0 such that
𝐵𝑟(𝑥0) ⊂ (supp 𝑢 + supp𝑤)𝑐 . Pick any 𝑥 ∈ 𝐵𝑟(𝑥0). For all 𝑦 ∈ supp𝑤 we find 𝑥− 𝑦 ∉ supp 𝑢. In
particular,

𝑢(𝑥 − 𝑦) ⋅𝑤(𝑦) = 0 ∀ 𝑦 ∈ supp𝑤.

On the other hand, the very definition of the support, gives

𝑢(𝑥 − 𝑦) ⋅𝑤(𝑦) = 0 ∀ 𝑦 ∉ supp𝑤.

This implies that 𝑢(𝑥 − 𝑦)𝑤(𝑦) = 0 for all 𝑦 ∈ R𝑛. From the definition of the convolution we see
that (𝑢 ∗ 𝑤)(𝑥) = 0. Since 𝑥 ∈ 𝐵𝑟(𝑥0) is arbitrary, we get 𝑥0 ∉ supp(𝑢 ∗ 𝑤).

■■

Problem 15.5 Solution:

(i) The measurability of 𝑢,𝑤 entails that (𝑥, 𝑦) → 𝑢(𝑥𝑦−1)𝑤(𝑦) is again measurable. From
Tonelli’s theorem we see the measurability of 𝑥 → 𝑢⊛𝑤(𝑥). In order to show commutativ-
ity, we use the transformation theorem (Theorem 15.1) for the map 𝑧 ∶= Φ(𝑦) ∶= 𝑥𝑦−1:

𝑢 ⊛ 𝑤(𝑥) = ∫(0,∞)
𝑢(𝑥𝑦−1)𝑤(𝑦)𝑑𝑦

𝑦

= ∫(0,∞)
𝑢(𝑧)𝑤(𝑥𝑧−1)𝑑𝑧

𝑧

= 𝑤⊛ 𝑢(𝑥).

Again by Tonelli’s theorem

∫(0,∞)
𝑢 ⊛ 𝑤(𝑥)𝜇(𝑑𝑥) = ∫(0,∞)

(

∫(0,∞)
𝑢(𝑥𝑦−1)𝑤(𝑦)𝑑𝑦

𝑦

)

𝑑𝑥
𝑥

= ∫(0,∞)

(

∫(0,∞)
𝑢(𝑥𝑦−1) 𝑑𝑥

𝑥

)

𝑤(𝑦) 𝑑𝑦
𝑦
. (⋆)

Fix 𝑦 ∈ (0,∞) and define 𝜃𝑦 ∶= 𝑦−1𝑥. From Theorem 7.10 we know that the image
measure 𝜃𝑦(𝜆)(𝑑𝑧) of 𝜆 is given by 𝑦𝜆(𝑑𝑧) gegeben ist, and because of Theorem 15.1 we
get

∫(0,∞)
𝑢(𝑥𝑦−1) 𝑑𝑥

𝑥
= 𝑦−1 ∫(0,∞)

𝑢(𝑥𝑦−1) 𝑑𝑥
𝑥𝑦−1

= 𝑦−1 ∫(0,∞)
𝑢(𝑧)

𝜃𝑦(𝜆)(𝑑𝑧)
𝑧

= ∫(0,∞)
𝑢(𝑧)𝑑𝑧

𝑧
. (⋆⋆)

If we insert this into (⋆), we obtain

∫(0,∞)
𝑢 ⊛ 𝑤(𝑥)𝜇(𝑑𝑥) = ∫(0,∞)

(

∫(0,∞)
𝑢(𝑧)𝑑𝑧

𝑧

)

𝑤(𝑦)𝑑𝑦
𝑦

= ∫(0,∞)
𝑢 𝑑𝜇 ∫(0,∞)

𝑤𝑑𝜇.
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(ii) Consider first the case 𝑝 = ∞: As |𝑢(𝑥𝑦−1)| ⩽ ‖𝑢‖𝐿∞(𝜇) for 𝜇-a.a. 𝑦 ∈ (0,∞), we get

|𝑢 ⊛ 𝑤(𝑥)| ⩽ ∫ |𝑢(𝑥𝑦−1)𝑤(𝑦)|𝜇(𝑑𝑦) ⩽ ‖𝑢‖𝐿∞ ∫ |𝑤(𝑦)|𝜇(𝑑𝑦) = ‖𝑢‖𝐿∞‖𝑤‖1.

This proves ‖𝑢 ⊛ 𝑤‖𝐿∞ ⩽ ‖𝑢‖𝐿∞‖𝑤‖1.
Now we take 𝑝 ∈ [1,∞). Note that

𝜈(𝑑𝑦) ∶= 1
‖𝑤‖1

|𝑤(𝑦)|𝜇(𝑑𝑦)

is a probability measure. Jensen’s inequality (for 𝑉 (𝑥) = 𝑥𝑝) yields

|𝑢 ⊛ 𝑤(𝑥)|𝑝 ⩽
(

∫(0,∞)
|𝑢(𝑥𝑦−1)||𝑤(𝑦)|𝜇(𝑑𝑦)

)𝑝

= ‖𝑤‖𝑝1

(

∫(0,∞)
|𝑢(𝑥𝑦−1)| 𝜈(𝑑𝑦)

)𝑝

⩽ ‖𝑤‖𝑝1 ∫(0,∞)
|𝑢(𝑥𝑦−1)|𝑝 𝜈(𝑑𝑦)

= ‖𝑤‖𝑝−11 ∫(0,∞)
|𝑢(𝑥𝑦−1)|𝑝|𝑤(𝑦)|𝜇(𝑑𝑦),

and from Tonelli’s theorem we get

∫ |𝑢 ⊛ 𝑤(𝑥)|𝑝 𝑑𝜇(𝑥) ⩽ ‖𝑤‖𝑝−11 ∫(0,∞)

(

∫(0,∞)
|𝑢(𝑥𝑦−1)|𝑝|𝑤(𝑦)|𝜇(𝑑𝑦)

)

𝜇(𝑑𝑥)

= ‖𝑤‖𝑝−11 ∫(0,∞)

(

∫(0,∞)
|𝑢(𝑥𝑦−1)|𝑝 𝜇(𝑑𝑥)

)

|𝑤(𝑦)|𝜇(𝑑𝑦).

Just as in (⋆⋆) we conclude that

∫(0,∞)
|𝑢(𝑥𝑦−1)|𝑝 𝜇(𝑑𝑥)

def
= ∫(0,∞)

|𝑢(𝑥𝑦−1)|𝑝 𝑑𝑥
𝑥

= ∫(0,∞)
|𝑢(𝑧)|𝑝 𝑑𝑧

𝑧
def
= ∫(0,∞)

|𝑢(𝑧)|𝑝 𝜇(𝑑𝑧).

If we insert this result into the estimates from above we see

∫ |𝑢 ⊛ 𝑤(𝑥)|𝑝 𝑑𝜇(𝑥) ⩽ ‖𝑤‖𝑝−11 ∫(0,∞)

(

∫(0,∞)
|𝑢(𝑧)|𝑝 𝜇(𝑑𝑧)

)

|𝑤(𝑦)|𝜇(𝑑𝑦)

= ‖𝑤‖𝑝−11 ∫ |𝑢|𝑝 𝑑𝜇 ∫ |𝑤| 𝑑𝜇

= ‖𝑤‖1‖𝑢‖
𝑝
𝑝.

Finally, take 𝑝th roots:
‖𝑢 ⊛ 𝑤‖𝑝 ⩽ ‖𝑤‖1‖𝑢‖𝑝.

■■

Problem 15.6 Solution: We have for any 𝐶 ∈ ℬ

𝑇 (𝜇)|𝐵(𝐶) = 𝑇 (𝜇)(𝐵 ∩ 𝐶)
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= 𝜇
(

𝑇 −1(𝐵 ∩ 𝐶)
)

= 𝜇
(

𝑇 −1(𝐵) ∩ 𝑇 −1(𝐶)
)

= 𝜇
(

𝐴 ∩ 𝑇 −1(𝐶)
)

= 𝜇|𝐴
(

𝑇 −1(𝐶)
)

= 𝑇 (𝜇|𝐴)(𝐶).

■■

Problem 15.7 Solution: By definition, we find for any Borel set 𝐵 ∈ ℬ(R𝑛)

𝛿𝑥 ⋆ 𝛿𝑦(𝐵) = ∬ 1𝐵(𝑠 + 𝑡) 𝛿𝑥(𝑑𝑠) 𝛿𝑦(𝑑𝑡)

= ∫ 1𝐵(𝑥 + 𝑡) 𝛿𝑦(𝑑𝑡)

= 1𝐵(𝑥 + 𝑦)

= ∫ 1𝐵(𝑧) 𝛿𝑥+𝑦(𝑑𝑧)

which means that 𝛿𝑥⋆𝛿𝑦 = 𝛿𝑥+𝑦. Note that, by Tonelli’s theorem the order of the iterated integrals
is irrelevant.
Similarly, since 𝑧 + 𝑡 ∈ 𝐵 ⇐⇒ 𝑡 ∈ 𝐵 − 𝑧, we find

𝛿𝑧 ⋆ 𝜇(𝐵) = ∬ 1𝐵(𝑠 + 𝑡) 𝛿𝑧(𝑑𝑠)𝜇(𝑑𝑡)

= ∫ 1𝐵(𝑧 + 𝑡)𝜇(𝑑𝑡)

= ∫ 1𝐵−𝑧(𝑡)𝜇(𝑑𝑡)

= 𝜇(𝐵 − 𝑧)

= 𝜏−𝑧(𝜇)(𝐵)

where 𝜏𝑧(𝑡) ∶= 𝜏(𝑡 − 𝑧) is the shift operator so that 𝜏−1−𝑧 (𝐵) = 𝐵 − 𝑧.
■■

Problem 15.8 Solution: Since 𝑥+ 𝑦 ∈ 𝐵 ⇐⇒ 𝑥 ∈ 𝐵 − 𝑦, we can rewrite formula in 15.4(iii) in the
following way:

𝜇 ⋆ 𝜈(𝐵) = ∬ 1𝐵(𝑥 + 𝑦)𝜇(𝑑𝑥) 𝜈(𝑑𝑦)

= ∫

[

∫ 1𝐵−𝑦(𝑥)𝜇(𝑑𝑥)
]

𝜈(𝑑𝑦)

= ∫ 𝜇(𝐵 − 𝑦) 𝜈(𝑑𝑦).

Similarly we get

𝜇 ⋆ 𝜈(𝐵) = ∫ 𝜇(𝐵 − 𝑦) 𝜈(𝑑𝑦) = ∫ 𝜈(𝐵 − 𝑥)𝜇(𝑑𝑥).
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Thus, if 𝜇 has no atoms, i.e. if 𝜇({𝑧}) = 0 for all 𝑧 ∈ R𝑛, we find

𝜇 ⋆ 𝜈({𝑧}) = ∫ 𝜇
(

{𝑧} − 𝑦
)

𝜈(𝑑𝑦) = ∫ 𝜇
(

{𝑧 − 𝑦}
⏟⏟⏟

=0

)

𝜈(𝑑𝑦) = 0.

■■

Problem 15.9 Solution: Because of Tonelli’s theorem we can iterate the very definition of ‘convolu-
tion’ of two measures, Definition 15.4(iii), and get

𝜇1 ⋆⋯ ⋆ 𝜇𝑛(𝐵) = ∫ ⋯∫ 1𝐵(𝑥1 +⋯ + 𝑥𝑛)𝜇1(𝑑𝑥1)⋯𝜇𝑛(𝑑𝑥𝑛)

so that the formula derived at the end of Remark 15.5(ii), page 156, applies and yields

∫ |𝜔|P⋆𝑛(𝑑𝜔)

= ∫ ⋯∫ |𝜔1 + 𝜔2 +⋯ + 𝜔𝑛|P(𝑑𝜔1)P(𝑑𝜔2)⋯P(𝑑𝜔𝑛)

∗
⩽ ∫ ⋯∫

(

|𝜔1| + |𝜔2| +⋯ + |𝜔𝑛|
)

P(𝑑𝜔1)P(𝑑𝜔2)⋯P(𝑑𝜔𝑛)

=
𝑛
∑

𝑗=1
∫ ⋯∫ |𝜔𝑗|P(𝑑𝜔1)P(𝑑𝜔2)⋯P(𝑑𝜔𝑛)

=
𝑛
∑

𝑗=1
∫ |𝜔𝑗|P(𝑑𝜔𝑗) ⋅

∏

𝑘≠𝑗
∫ P(𝑑𝜔𝑘)

=
𝑛
∑

𝑗=1
∫ |𝜔𝑗|P(𝑑𝜔𝑗)

= 𝑛∫ |𝜔1|P(𝑑𝜔1)

where we use the symmetry of the iterated integrals in the integrating measures as well as the fact
that P(R𝑛) = ∫ P(𝑑𝜔𝑘) = 1. Note that we could have +∞ on either side, i.e. the integrability
condition is only important for the second assertion.
The equality ∫ 𝜔P⋆𝑛(𝑑𝜔) = 𝑛 ∫ 𝜔P(𝑑𝜔) follows with same calculation (note that we do not get
an inequality as there is no need for the triangle inequality at point (*) above). The integrability
condition is now needed since the integrands are no longer positive. Note that, since 𝜔 ∈ R𝑛,
the above equality is an equality between vectors in R𝑛; this is no problem, just read the equality
coordinate-by-coordinate.

■■

Problem 15.10 Solution: Since the convolution 𝑝 → 𝑢⋆𝑝 is linear, it is enough to consider monomi-
als of the form 𝑝(𝑥) = 𝑥𝑘. Thus, by the binomial formula,

𝑢 ⋆ 𝑝(𝑥) = ∫ 𝑢(𝑥 − 𝑦) 𝑦𝑘 𝑑𝑦

= ∫ 𝑢(𝑦) (𝑥 − 𝑦)𝑘 𝑑𝑦
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=
𝑘
∑

𝑗=0

(

𝑘
𝑗

)

𝑥𝑗 ∫ 𝑢(𝑦) 𝑦𝑘−𝑗 𝑑𝑦.

Since supp 𝑢 is compact, there is some 𝑟 > 0 such that supp 𝑢 ⊂ 𝐵𝑟(0) and we get for any 𝑚 ∈ N0,
and in particular for 𝑚 = 𝑘 − 𝑗 or 𝑚 = 𝑘, that

|

|

|

|

∫ 𝑢(𝑦)𝑦𝑚 𝑑𝑦
|

|

|

|

⩽ ∫supp 𝑢
‖𝑢‖∞|𝑦|𝑚 𝑑𝑦

⩽ ∫𝐵𝑟(0)
‖𝑢‖∞𝑟

𝑚 𝑑𝑦

= 2𝑟 ⋅ 𝑟𝑚 ⋅ ‖𝑢‖∞

which is clearly finite. This shows that 𝑢 ⋆ 𝑝 exists and that it is a polynomial.
■■

Problem 15.11 Solution: That the convolution 𝑢 ⋆ 𝑤 is bounded and continuous follows from The-
orem 15.8.
Monotonicity follows from the monotonicity of the integral: if 𝑥 ⩽ 𝑧, then

𝑢 ⋆ 𝑤(𝑥) = ∫ 𝑢(𝑦)
⏟⏟⏟

⩾ 0

⋅𝑤(𝑥 − 𝑦)
⏟⏞⏟⏞⏟
⩽𝑤(𝑧−𝑦)

𝑑𝑦 ⩽ ∫ 𝑢(𝑦) ⋅𝑤(𝑧 − 𝑦) 𝑑𝑦 = 𝑢 ⋆ 𝑤(𝑦).

■■

Problem 15.12 Solution: (This solution is written for 𝑢 ∈ 𝐶𝑐(R𝑛) and 𝑤 ∈ 𝐶∞(R𝑛)).
Let 𝜕𝑖 = 𝜕∕𝜕𝑥𝑖 denote the partial derivative in direction 𝑥𝑖 where 𝑥 = (𝑥1,… , 𝑥𝑛) ∈ R𝑛. Since

𝑤 ∈ 𝐶∞ ⇐⇒ 𝜕𝑖𝑤 ∈ 𝐶∞,

it is enough to show 𝜕𝑖(𝑢 ⋆ 𝑤) = 𝑢 ⋆ 𝜕𝑖𝑤 and to iterate this equality. In particular, we find
𝜕𝛼(𝑢 ⋆ 𝑤) = 𝑢 ⋆ 𝜕𝛼𝑤 where

𝜕𝛼 = 𝜕𝛼1+⋯𝛼𝑛
𝜕𝛼1𝑥1⋯ 𝜕𝛼𝑛𝑥𝑛

, 𝛼 ∈ N𝑛
0.

Since 𝑢 has compact support and since the derivative is a local operation (i.e., we need to know a
function only in a neighbourhood of the point where we differentiate), and since we have for any
𝑟 > 0

sup
𝑦∈supp 𝑢

sup
𝑥∈𝐵𝑟(0)

|

|

|

|

𝜕
𝜕𝑥𝑖
𝑤(𝑥 − 𝑦)

|

|

|

|

⩽ 𝑐(𝑟),

we can use the differentiability lemma for parameter-dependent integrals, Theorem 12.5 to find for
any 𝑥 ∈ 𝐵𝑟∕2(0), say,

𝜕
𝜕𝑥𝑖 ∫

𝑢(𝑦)𝑤(𝑥 − 𝑦) 𝑑𝑦 = ∫ 𝑢(𝑦) 𝜕
𝜕𝑥𝑖

𝑤(𝑥 − 𝑦) 𝑑𝑦

= ∫ 𝑢(𝑦)
( 𝜕
𝜕𝑥𝑖
𝑤
)

(𝑥 − 𝑦) 𝑑𝑦
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= 𝑢 ⋆ 𝜕𝑖𝑤(𝑥).

■■

Problem 15.13 Solution: Let 𝜒𝑡 be a Friedrichs mollifier. From Lemma 15.10 we know

𝑢 ∈ 𝐶𝑐(R𝑛) ⇐⇒ 𝑢 ∗ 𝜒𝑡 ∈ 𝐶∞
𝑐 (R𝑛).

Since 𝑢 ∈ 𝐶𝑐(R𝑛) is uniformly continuous, we find that

lim
𝑡→0

sup
𝑥

|𝑢(𝑥) − 𝑢(𝑥 − 𝑡𝑧)| = 0

and since ∫ 𝜒𝑡(𝑦) 𝑑𝑦 = ∫ 𝜒𝑡(𝑥 − 𝑦) 𝑑𝑦 = 1 we get

|𝑢(𝑥) − 𝑢 ∗ 𝜒𝑡(𝑥)| =
|

|

|

|

∫ (𝑢(𝑥) − 𝑢(𝑦))𝜒𝑡(𝑥 − 𝑦) 𝑑𝑦
|

|

|

|

⩽ ∫ |𝑢(𝑥) − 𝑢(𝑦)|𝑡−𝑛𝜒
(𝑥−𝑦

𝑡

)

𝑑𝑦

= ∫ |𝑢(𝑥) − 𝑢(𝑥 − 𝑡𝑧)|𝜒(𝑧) 𝑑𝑧

⩽ ∫ sup
𝑥

|𝑢(𝑥) − 𝑢(𝑥 − 𝑡𝑧)|𝜒(𝑧) 𝑑𝑧

dom. conv.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

𝑡→0
0.

In the last step we use the integrable dominating function 2‖𝑢‖∞𝜒(𝑢).
■■

Problem 15.14 Solution: The measurability considerations are just the same as in Theorem 15.6, so
we skip this part.
By assumption,

1
𝑝
+ 1
𝑞
= 1 + 1

𝑟
;

We can rewrite this as
1
𝑟
+

[

1
𝑝
− 1
𝑟

]

⏟⏞⏟⏞⏟
=1− 1

𝑞∈[0,1)

+
[

1
𝑞
− 1
𝑟

]

⏟⏞⏟⏞⏟
=1− 1

𝑝∈[0,1)

= 1. (*)

Now write the integrand appearing in the definition of 𝑢 ⋆ 𝑤(𝑥) in the form

|𝑢(𝑥 − 𝑦)𝑤(𝑦)| =
[

|𝑢(𝑥 − 𝑦)|𝑝∕𝑟|𝑤(𝑦)|𝑞∕𝑟
]

⋅
[

|𝑢(𝑥 − 𝑦)|1−𝑝∕𝑟
]

⋅
[

|𝑤(𝑦)|1−𝑞∕𝑟
]

and apply the generalized Hölder inequality (cf. Problem 13.5) with the exponents from (*):

|𝑢 ⋆ 𝑤(𝑥)| ⩽ ∫ |𝑢(𝑥 − 𝑦)𝑤(𝑦)| 𝑑𝑦
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⩽
[

∫ |𝑢(𝑥 − 𝑦)|𝑝|𝑤(𝑦)|𝑞 𝑑𝑦
]

1
𝑟
[

∫ |𝑢(𝑥 − 𝑦)|𝑝 𝑑𝑦
]

1
𝑝−

1
𝑟
[

∫ |𝑤(𝑦)|𝑞 𝑑𝑦
]

1
𝑞−

1
𝑟
.

Raising this inequality to the 𝑟th power we get, because of the translation invariance of Lebesgue
measure,

|𝑢 ⋆ 𝑤(𝑥)|𝑟 ⩽
[

∫ |𝑢(𝑥 − 𝑦)|𝑝|𝑤(𝑦)|𝑞 𝑑𝑦
]

‖𝑢‖𝑟−𝑝𝑝 ⋅ ‖𝑤‖𝑟−𝑞𝑞

= |𝑢|𝑝 ⋆ |𝑤|𝑞(𝑥) ⋅ ‖𝑢‖𝑟−𝑝𝑝 ⋅ ‖𝑤‖𝑟−𝑞𝑞 .

Now we integrate this inequality over 𝑥 and use Theorem 15.6 for 𝑝 = 1 and the integral

∫ |𝑢|𝑝 ⋆ |𝑤|𝑞(𝑥) 𝑑𝑥 = ‖|𝑢|𝑝 ⋆ |𝑤|𝑞‖1 ⩽ ‖𝑢‖𝑝𝑝 ⋅ ‖𝑤‖
𝑞
𝑞.

Thus,

‖𝑢 ⋆ 𝑤‖𝑟𝑟 = ∫ |𝑢 ⋆ 𝑤(𝑥)|𝑟 𝑑𝑥 ⩽ ‖𝑢‖𝑝𝑝 ⋅ ‖𝑤‖
𝑞
𝑞 ⋅ ‖𝑢‖

𝑟−𝑝
𝑝 ⋅ ‖𝑤‖𝑟−𝑞𝑞 = ‖𝑢‖𝑟𝑝 ⋅ ‖𝑤‖

𝑟
𝑞

and the claim follows.
■■

Problem 15.15 Solution: For 𝑁 = 1 the inequality is trivial, for 𝑁 = 2 it is in line with Problem
15.14 with 𝑝 = 𝑞.

Let us, first of all, give a heuristic derivation of this result which explains how one arrives at the
particular form for the value of 𝑝 = 𝑝(𝑟,𝑁). We may assume that𝑁 ⩾ 2. Set 𝐹𝑗 ∶= 𝑓𝑗 ⋆…⋆𝑓𝑁
for 𝑗 = 1, 2,…𝑁 − 1. Then

‖𝑓1 ⋆⋯ ⋆ 𝑓𝑁‖𝑟

⩽ ‖𝑓1‖𝑝‖𝐹2‖𝑞2 = ‖𝑓1‖𝑝‖𝑓2 ⋆ 𝐹3‖𝑞2
by Pr. 15.14 where 1

𝑟
+ 1 = 1

𝑝
+ 1

𝑞2
=
(1
𝑝
− 1

)

+ 1
𝑞2
+ 1

⩽ ‖𝑓1‖𝑝‖𝑓2‖𝑝‖𝐹3‖𝑞3 = ‖𝑓1‖𝑝‖𝑓2‖𝑝‖𝑓3 ⋆ 𝐹4‖𝑞3
by Pr. 15.14 where 1

𝑟
+ 1 =

(1
𝑝
− 1

)

+ 1
𝑝
+ 1

𝑞3
⏟⏟⏟
= 1
𝑞2

+1

= 2
(1
𝑝
− 1

)

+ 1 + 1
𝑞3

and repeating this procedure 𝑁 − 2 times we arrive at

‖𝑓1 ⋆⋯ ⋆ 𝑓𝑁‖𝑟 ⩽ ‖𝑓1‖𝑝⋯ ‖𝑓𝑁−2‖𝑝 ⋅ ‖𝑓𝑁−1 ⋆ 𝑓𝑁‖𝑞𝑁−1

⩽ ‖𝑓1‖𝑝⋯ ‖𝑓𝑁−2‖𝑝 ⋅ ‖𝑓𝑁−1‖𝑝 ⋅ ‖𝑓𝑁‖𝑞𝑁

with the condition
1
𝑟
+ 1 = (𝑁 − 2)

(1
𝑝
− 1

)

+ 1 + 1
𝑞𝑁−1

= (𝑁 − 2)
(1
𝑝
− 1

)

+ 1
𝑝
+ 1
𝑞𝑁
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and since we need 𝑞𝑁 = 𝑝 we get
1
𝑟
+ 1 = (𝑁 − 2)

(1
𝑝
− 1

)

+ 2
𝑝
= 𝑁
𝑝

−𝑁 + 2

and rearranging this identity yields
𝑝 = 𝑁𝑟

(𝑁 − 1)𝑟 + 1
.

If you do not like this derivation of if you got lost counting the repetitions, here’s the formal proof
using induction—but with the drawback that one needs a good educated guess what 𝑝 = 𝑝(𝑁, 𝑟)
should look like. The start of the induction 𝑁 = 2 is done in Problem 15.14 (starting at 𝑁 = 1
won’t help much as we need Young’s inequality for 𝑁 = 2 anyway...).
The induction hypothesis is, of course,

‖𝑓1 ⋆⋯ ⋆ 𝑓𝑀‖𝑡 ⩽
𝑀
∏

𝑗=1
‖𝑓𝑗‖𝜏 for all 𝑀 = 1, 2,… , 𝑁 − 1

where 𝑡 > 0 is arbitrary and 𝜏 = 𝑀𝑡
(𝑀−1)𝑡+1 .

The induction step uses Young’s inequality:
‖𝑓1 ⋆ 𝑓2 ⋆⋯ ⋆ 𝑓𝑁‖𝑟 ⩽ ‖𝑓1‖𝑝 ⋅ ‖𝑓2 ⋆⋯ ⋆ 𝑓𝑁‖𝑞

where 𝑝 = 𝑁𝑟
(𝑁−1)𝑟+1 and 𝑞 is given by

1
𝑟
+ 1 = 1

𝑞
+ 1
𝑞
= (𝑁 − 1)𝑟 + 1

𝑁𝑟
+ 1
𝑞
= 1 + 1

𝑞
− 1
𝑁

+ 1
𝑁𝑟

so that
𝑞 = 𝑁𝑟

𝑁 + 𝑟 − 1
.

Using the induction hypothesis we now get
‖𝑓1 ⋆⋯ ⋆ 𝑓𝑁‖𝑟 ⩽ ‖𝑓1‖𝑝 ⋅ ‖𝑓2 ⋆⋯ ⋆ 𝑓𝑁‖𝑞 ⩽ ‖𝑓1‖𝑝 ⋅

(

‖𝑓2‖𝑠⋯ ‖𝑓𝑁‖𝑠
)

where 𝑠 is, because of the induction assumption, given by
𝑠 = (𝑁 − 1)𝑞

(𝑁 − 2)𝑞 + 1

=
(𝑁 − 1) 𝑁𝑟

𝑁+𝑟−1

(𝑁 − 2) 𝑁𝑟
𝑁+𝑟−1 + 1

= (𝑁 − 1)𝑁𝑟
(𝑁 − 2)𝑁𝑟 +𝑁 + 𝑟 − 1

= (𝑁 − 1)𝑁𝑟
𝑁2𝑟 − 2𝑁𝑟 + 𝑟 + (𝑁 − 1)

= (𝑁 − 1)𝑁𝑟
(𝑁 − 1)2𝑟 + (𝑁 − 1)

= 𝑁𝑟
(𝑁 − 1)𝑟 + 1

= 𝑝

and we are done.
■■
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Problem 15.16 Solution: Note that 𝑣(𝑥) = 𝑑
𝑑𝑥
(1 − cos 𝑥)1[0,2𝜋)(𝑥) = 1(0,2𝜋)(𝑥) sin 𝑥. Thus,

(i)

𝑢 ⋆ 𝑣(𝑥) = ∫

2𝜋

0
1R(𝑥 − 𝑦) sin 𝑦 𝑑𝑦 = ∫

2𝜋

0
sin 𝑦 𝑑𝑦 = 0 ∀ 𝑥.

(ii) Since all functions 𝑢, 𝑣,𝑤, 𝜙 are continuous, we can use the usual rules for the (Riemann)
integral and get, using integration by parts and the fundamental theorem of integral calculus,

𝑣 ⋆ 𝑤(𝑥) = ∫
𝑑
𝑑𝑥
𝜙(𝑥 − 𝑦) ∫

𝑥

−∞
𝜙(𝑡) 𝑑𝑡 𝑑𝑥

= ∫
(

− 𝑑
𝑑𝑦
𝜙(𝑥 − 𝑦)

)

∫

𝑦

−∞
𝜙(𝑡) 𝑑𝑡 𝑑𝑥

= ∫ 𝜙(𝑥 − 𝑦) 𝑑
𝑑𝑦 ∫

𝑦

−∞
𝜙(𝑡) 𝑑𝑡 𝑑𝑥

= ∫ 𝜙(𝑥 − 𝑦)𝜙(𝑦) 𝑑𝑦

= 𝜙 ⋆ 𝜙(𝑥).

If 𝑥 ∈ (0, 4𝜋), then 𝑥 − 𝑦 ∈ (0, 2𝜋) for some suitable 𝑦 = 𝑦= and even for all 𝑦 from an
interval (𝑦0 − 𝜖, 𝑦0 + 𝜖) ⊂ (0, 2𝜋). Since 𝜙 is positive with support [0, 2𝜋], the positivity
follows.

(iii) Obviously,

(𝑢 ⋆ 𝑣) ⋆ 𝑤
(𝑖)
= 0 ⋆ 𝑤 = 0

while

𝑢 ⋆ (𝑣 ⋆ 𝑤)(𝑥) = ∫ 1R(𝑥 − 𝑦)𝑣 ⋆ 𝑤(𝑦) 𝑑𝑦

= ∫ 𝑣 ⋆ 𝑤(𝑦) 𝑑𝑦

= ∫ 𝜙 ⋆ 𝜙(𝑦) 𝑑𝑦

> 0.

Note that 𝑤 is not an (𝑝th power, 𝑝 < ∞) integrable function so that we cannot use Fubini’s
theorem to prove associativity of the convolution.

■■
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16 Jacobi’s transformation theorem.

Solutions to Problems 16.1–16.12

Problem 16.1 Solution: Since 𝐹 and 𝐹𝑖 are 𝐹𝜎-sets, we get

𝐹 =
⋃

𝑘∈N
𝐶𝑘, 𝐹𝑖 =

⋃

𝑘∈N
𝐶 𝑖𝑘

for closed sets 𝐶𝑘 resp. 𝐶 𝑖𝑘. Since complements of closed sets are open, we find, using the rules
for (countable) unions and intersections that

(i)
𝑛
⋂

𝑖=1
𝐹𝑖 =

𝑛
⋂

𝑖=1

⋃

𝑘∈N
𝐶 𝑖𝑘 =

⋃

𝑘∈N

𝑛
⋂

𝑖=1
𝐶 𝑖𝑘

⏟⏟⏟
closed set

.

(ii) ⋃

𝑖∈N
𝐹𝑖 =

⋃

𝑖∈N

⋃

𝑘∈N
𝐶 𝑖𝑘 =

⋃

(𝑖,𝑘)∈N×N
𝐶 𝑖𝑘

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
countable union!

.

Moreover, ⋂
𝑖∈N

𝐹 𝑐𝑖 =
⋂

𝑖∈N

⋂

𝑘∈N

[

𝐶 𝑖𝑘
]𝑐 =

⋂

(𝑖,𝑘)∈N×N

[

𝐶 𝑖𝑘
]𝑐

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
countable intersection!

.

(iii) 𝐹 =
⋃

𝑘∈N
𝐶𝑘 ⇐⇒ 𝐹 𝑐 =

[

⋃

𝑘∈N
𝐶𝑘

]𝑐

=
⋂

𝑘∈N
𝐶𝑐𝑘

⏟⏟⏟
open

.

(iv) Set 𝑐1 ∶= 𝐶 and 𝐶𝑖 = ∅, 𝑖 ⩾ 2. Then 𝐶 =
⋃

𝑖∈N
𝐶𝑖 is an 𝐹𝜎-set.

■■

Problem 16.2 Solution: Write 𝜆 = 𝜆𝑛 and ℬ = ℬ(R𝑛). Fix 𝐵 ∈ ℬ. According to Lemma 16.12
there are sets 𝐹 ∈ 𝐹𝜎 and 𝐺 ∈ 𝐺𝛿 such that

𝐹 ⊂ 𝐵 ⊂ 𝐺 and 𝜆(𝐹 ) = 𝜆(𝐵) = 𝜆(𝐺).

Since for closed sets 𝐶𝑗 and open sets 𝑈𝑗 we have 𝐹 =
⋃

𝐶𝑗 and𝐺 =
⋂

𝑈𝑗 we get for some 𝜖 > 0
and suitable 𝑀 =𝑀𝜖 ∈ N, 𝑁 = 𝑁𝜖 ∈ N that

𝐶1 ∪⋯ ∪ 𝐶𝑁 ⊂ 𝐵 ⊂ 𝑈1 ∩⋯ ∩ 𝑈𝑀

and
|

|

|

𝜆(𝑈1 ∩⋯ ∩ 𝑈𝑀 ) − 𝜆(𝐵)||
|

⩽ 𝜖, (*)
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|

|

|

𝜆(𝐵) − 𝜆(𝐶1 ∪⋯ ∪ 𝐶𝑁 )
|

|

|

⩽ 𝜖. (**)

Since finite unions of closed sets are closed and finite intersections of open sets are open, (*) proves
outer regularity while (**) proves inner regularity (w.r.t. close sets).
To see inner regularity with compact sets, we note that the closed set 𝐶 ′ ∶= 𝐶1 ∪ ⋯ ∪ 𝐶𝑁 is
approximated by the following compact sets

𝐾𝓁 ∶= 𝐵𝓁(0) ∩ 𝐶 ′ ↑ 𝐶 ′ as 𝓁 → ∞

and, because of the continuity of measures, we get for suitably large 𝐿 = 𝐿𝜖 ∈ N that
|

|

|

𝜆(𝐾𝐿) − 𝜆(𝐶1 ∪⋯ ∪ 𝐶𝑁 )
|

|

|

⩽ 𝜖

which can be combined with (**) to give
|

|

|

𝜆(𝐾𝐿) − 𝜆(𝐵)
|

|

|

⩽ 2𝜖.

This shows inner regularity for the compact sets.
■■

Problem 16.3 Solution: Notation (for brevity): Write 𝜆 = 𝜆𝑛, 𝜆̄ = 𝜆𝑛, ℬ = ℬ(R𝑛) and ℬ∗ =
ℬ∗(R𝑛). By definition, 𝐵∗ = 𝐵 ∪𝑁∗ where 𝑁∗ is a subset of a ℬ-measurable null set 𝑁 . (We
indicate ℬ∗-sets by an asterisk, 𝐶 (with and without ornaments and indices 𝐶 ′ ...) is always a
closed set and 𝑈 etc. is always an open set.
Solution 1: Following the hint we get (with the notation of Problem 11.6)

𝜆(𝐵) = 𝜆̄(𝐵∗) = 𝜆∗(𝐵∗)

= inf
ℬ∋𝐴⊃𝐵∗

𝜆(𝐴) (by 11.6)
= inf

ℬ∋𝐴⊃𝐵∗
inf
𝑈⊃𝐴

𝜆(𝑈 ) (by 16.2)
⩽ inf
𝑈 ′⊃𝐵∪𝑁

inf
𝑈⊃𝑈 ′

𝜆(𝑈 ) (as 𝐵 ∗⊂ 𝐵 ∪𝑁)
= inf
𝑈 ′⊃𝐵∗

𝜆(𝑈 ′) (by 16.2)
= 𝜆(𝐵 ∪𝑁) (by 16.2)
⩽ 𝜆(𝐵) + 𝜆(𝑁)

= 𝜆(𝐵).

Inner regularity (for closed sets) follows similarly,

𝜆(𝐵) = 𝜆̄(𝐵∗) = 𝜆∗(𝐵∗)

= sup
ℬ∋𝐴⊂𝐵∗

𝜆(𝐴) (by 11.6)

= sup
ℬ∋𝐴⊂𝐵∗

sup
𝐶⊂𝐴

𝜆(𝐶) (by 16.2)
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⩾ sup
𝐶 ′⊂𝐵∗

sup
𝐶⊂𝐶 ′

𝜆(𝐶)

= sup
𝐶 ′⊂𝐵∗

𝜆(𝐶 ′) (by 16.2)

⩾ sup
𝐶 ′⊂𝐵

𝜆(𝐶 ′) (as 𝐵 ⊂ 𝐵∗)

= 𝜆(𝐵), (by 16.2)

and inner regularity for compact sets is the same calculation.
There is a more elementary ....
Solution 2: (without Problem 11.6). Using the definition of the completion we get

𝜆̄(𝐵∗) = 𝜆(𝐵) = sup
𝐶 ′⊂𝐵

𝜆(𝐶 ′)

⩽ sup
𝐶⊂𝐵∗

𝜆(𝐶)

⩽ sup
𝐶 ′′⊂𝐵∪𝑁

𝜆(𝐶 ′′)

= 𝜆(𝐵 ∪𝑁)

= 𝜆(𝐵)

as well as

𝜆̄(𝐵∗) = 𝜆(𝐵) = inf
𝑈 ′⊃𝐵

𝜆(𝑈 ′)

⩽ inf
𝑈⊃𝐵∗

𝜆(𝑈 )

⩽ inf
𝑈 ′′⊃𝐵∪𝑁

𝜆(𝑈 ′′)

= 𝜆(𝐵 ∪𝑁)

= 𝜆(𝐵).

■■

Problem 16.4 Solution:

(i) Using the result of Problem 7.12 we write 𝑥, 𝑦 ∈ 𝐶 as triadic numbers:

𝑥 =
∞
∑

𝑖=1

𝑥𝑖
3𝑖

= 0.𝑥1𝑥2𝑥3… and 𝑦 =
∞
∑

𝑖=1

𝑦𝑖
3𝑖

= 0.𝑦1𝑦2𝑦3…

where 𝑥𝑖, 𝑦𝑖 ∈ {0, 2}. In order to enforce uniqueness, we only want to have truly infinite
sums, i.e. we use 0.002222… instead of 0.01000… etc.
Obviously, every 𝑧 ∈ 𝐶 − 𝐶 is of the form 𝑧 = 𝑥 − 𝑦 with 𝑥, 𝑦 ∈ 𝐶 and so 𝑧 = 0.𝑧1𝑧2𝑧3…
with 𝑧𝑖 = 𝑥𝑖 − 𝑦𝑖 ∈ {−2, 0, 2}. Thus,

1
2
(𝑧 + 1) = 1

2

( ∞
∑

𝑖=1

𝑥𝑖 − 𝑦𝑖
3𝑖

+
∞
∑

𝑖=1

2
3𝑖

)

= 1
2

∞
∑

𝑖=1

𝑥𝑖 − 𝑦𝑖 + 2
3𝑖

=
∞
∑

𝑖=1

𝑤𝑖

3𝑖
.
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By construction,𝑤𝑖 =
1
2 (𝑥𝑖−𝑦𝑖+2) ∈ 1

2{0, 2, 4} = {0, 1, 2}, i.e. the numbers 1
2 (𝑧+1) make

up the whole interval [0, 1].
This shows that 𝐶 − 𝐶 = [−1, 1].

(ii) Let 𝛼(𝑥, 𝑦) = 𝑥−𝑦 as in the hint. This is a Lipschitz (Hölder-1) continuous map fromR2 → R

and it has the following property: 𝐶 ×𝐶 → 𝛼(𝐶,𝐶) = [−1, 1]. But 𝐶 ×𝐶 is a Lebesgue null
set in R2 while 𝜆1[−1, 1] = 2. This situation cannot occur in Corollary 16.14.

■■

Problem 16.5 Solution:

(i) Obviously, 𝒢 ⊂ℬ[0,∞). On the other hand, 𝜎(𝒢 ) contains all open intervals of the form

(𝛼, 𝛽) =
⋃

𝑛∈N

[

𝛼 − 1
𝑛
,∞

)

⧵
[

𝛽,∞
)

, 0 ⩽ 𝛼 < 𝛽 < ∞ (*)

and all intervals of the form

[0, 𝛽) = [0,∞) ⧵ [𝛽,∞), 𝛽 > 0. (**)

Thus,

𝜎(𝒢 ) ⊃ 𝒪(R) ∩ [0,∞)

since any open set 𝑈 ∈ 𝒪(R) is a countable union of open intervals,

𝑈 =
⋃

𝛼<𝛽,𝛼,𝛽∈Q
(𝛼,𝛽)⊂𝑈

(𝛼, 𝛽),

so that 𝑈 ∩ [0,∞) ∈ 𝒪 ∩ [0,∞) is indeed a countable union of sets of the form (*) and (**).
Thus,

ℬ[0,∞) = 𝜎(𝒪 ∩ [0,∞)) ⊂ 𝜎(𝒢 ) ⊂ℬ[0,∞).

(ii) That 𝜇 is a measure follows from Lemma 10.8 (for a proof, see the online section ‘additional
material’). Since

𝜌(𝐵) = 𝜇(𝑇 −1
1∕5(𝐵)) = 𝑇1∕5(𝜌)(𝐵)

where 𝑇1∕5(𝑥) = 1
5 ⋅ 𝑥, 𝜌 is an image measure, hence a measure.

Since

𝜌[𝑎,∞) = 𝜇[5𝑎,∞) ⩽ 𝜇[𝑎,∞) ∀ 𝑎 ⩾ 0,

we have 𝜌||
|𝒢

⩽ 𝜇||
|𝒢

. On the other hand,

𝜌
[ 3
5 ,

4
5

)

= 𝜇[3, 4) = 1 > 0 = 𝜇
[ 3
5 ,

4
5

)

.

This does not contradict Lemma 16.6 since 𝒢 is not a semi-ring.
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■■

Problem 16.6 Solution: We want to show that
a) 𝜆𝑛(𝑥 + 𝐵) = 𝜆𝑛(𝐵), 𝐵 ∈ ℬ(R𝑛), 𝑥 ∈ R𝑛 (Theorem 5.8(i));
b) 𝜆𝑛(𝑡 ⋅ 𝐵) = 𝑡𝑛𝜆𝑛(𝐵), 𝐵 ∈ ℬ(R𝑛), 𝑡 ⩾ 0 (Problem 5.9);
c) 𝐴(𝜆𝑛) = |det 𝐴−1

| ⋅ 𝜆𝑛, 𝐴 ∈ R𝑛×𝑛, det 𝐴 ≠ 0 (Theorem 7.10).
From Theorem 16.4 we know that for any 𝐶1-diffeomorphism 𝜙 the formula

𝜆𝑛(𝜙(𝐵)) = ∫𝐵
|det𝐷𝜙| 𝑑𝜆𝑛

holds. Thus a), b), c) follow upon setting
a) 𝜙(𝑦) = 𝑥 + 𝑦 ⇐⇒ 𝐷𝜙 ≡ 1 ⇐⇒ |det𝐷𝜙| ≡ 1;
b) 𝜙(𝑦) = 𝑡 ⋅ 𝑦 ⇐⇒ 𝐷𝜙 ≡ 𝑡 ⋅ id ⇐⇒ |det𝐷𝜙| ≡ 𝑡𝑛;
c) 𝜙(𝑦) = 𝐴−1𝑦 ⇐⇒ 𝐷𝜙(𝑦) ≡ 𝐴−1 ⇐⇒ |det𝐷𝜙| ≡ |det 𝐴|−1.

■■

Problem 16.7 Solution:

(i) The map Φ ∶ R ∋ 𝑥 → (𝑥, 𝑓 (𝑥)) is obviously bijective and differentiable with deriv-
ative 𝐷Φ(𝑥) = (1, 𝑓 ′(𝑥)) so that |𝐷Φ(𝑥)|2 = 1 + (𝑓 ′(𝑥))2. The inverse of Φ is given
by Φ−1 ∶ (𝑥, 𝑓 (𝑥)) → 𝑥 which is clearly differentiable.

(ii) Since |𝐷Φ(𝑥)| =
√

1 + (𝑓 ′(𝑥))2 is positive and measurable, it is a density function
and 𝜇 ∶= |𝐷Φ(𝑥)| ⋅ 𝜆 is a measure, cf. Lemma 10.8, while 𝜎 = Φ(𝜇) is an image
measure in the sense of Definition 7.7.

(iii) This is Theorem 15.1 and/or Problem 15.1.
(iv) The normal is, by definition, orthogonal to the gradient: 𝐷Φ(𝑥) = (1, 𝑓 ′(𝑥)); obvi-

ously |𝑛(𝑥)| = 1 and

𝑛(𝑥) ⋅𝐷Φ(𝑥) =

(

−𝑓 ′(𝑥)
1

)

⋅

(

1
𝑓 ′(𝑥)

)

√

1 + (𝑓 ′(𝑥))2
= 0.

Further,

Φ̃(𝑥, 𝑟) =
⎛

⎜

⎜

⎝

𝑥 − 𝑟𝑓 ′(𝑥)
√

1+[𝑓 ′(𝑥)]2

𝑓 (𝑥) + 𝑟
√

1+[𝑓 ′(𝑥)]2

⎞

⎟

⎟

⎠

,

so that

𝐷Φ̃(𝑥, 𝑟) =
(

𝜕Φ̃(𝑥, 𝑟)
𝜕(𝑥, 𝑟)

)

=
⎛

⎜

⎜

⎝

1 − 𝑟 𝜕
𝜕𝑥

𝑓 ′(𝑥)
√

1+[𝑓 ′(𝑥)]2
𝑓 ′(𝑥) + 𝑟 𝜕

𝜕𝑥
1

√

1+[𝑓 ′(𝑥)]2

− 𝑓 ′(𝑥)
√

1+[𝑓 ′(𝑥)]2
1

√

1+[𝑓 ′(𝑥)]2

⎞

⎟

⎟

⎠
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For brevity we write 𝑓, 𝑓 ′, 𝑓 ′′ instead of 𝑓 (𝑥), 𝑓 ′(𝑥), 𝑓 ′′(𝑥). Now

𝜕
𝜕𝑥

𝑓 ′(𝑥)
√

1 + [𝑓 ′(𝑥)]2
=
𝑓 ′′

√

1 + [𝑓 ′]2 − 𝑓 ′ 𝑓 ′𝑓 ′′
√

1+[𝑓 ′]2

1 + [𝑓 ′]2

and

𝜕
𝜕𝑥

1
√

1 + [𝑓 ′(𝑥)]2
=

− 𝑓 ′𝑓 ′′
√

1+[𝑓 ′]2

1 + [𝑓 ′]2
.

Thus, det𝐷Φ̃(𝑥, 𝑟) becomes

1
√

1 + [𝑓 ′]2

(

1 −
𝑟 𝑓 ′′

√

1 + [𝑓 ′]2 − 𝑟 [𝑓 ′]2𝑓 ′′
√

1+[𝑓 ′]2

1 + [𝑓 ′]2

)

+ 𝑓 ′
√

1 + [𝑓 ′]2

(

𝑓 ′ −

𝑟 𝑓 ′𝑓 ′′
√

1+[𝑓 ′]2

1 + [𝑓 ′]2

)

= 1
√

1 + [𝑓 ′]2
−
𝑟 𝑓 ′′ − 𝑟 [𝑓 ′]2𝑓 ′′

1+[𝑓 ′]2

1 + [𝑓 ′]2
+ [𝑓 ′]2

√

1 + [𝑓 ′]2
−

𝑟 [𝑓 ′]2𝑓 ′′

1+[𝑓 ′]2

1 + [𝑓 ′]2

= 1 + [𝑓 ′]2
√

1 + [𝑓 ′]2
− 𝑟 𝑓 ′′

1 + [𝑓 ′]2

=
√

1 + [𝑓 ′]2 − 𝑟 𝑓 ′′

1 + [𝑓 ′]2

If 𝑥 is from a compact set, say [𝑐, 𝑑], we can, because of the continuity of 𝑓, 𝑓 ′ and
𝑓 ′′, achieve that for sufficiently small values of |𝑟| < 𝜖 we get that det𝐷Φ̃ > 0, i.e. Φ̃
is a local 𝐶1-diffeomorphism.

(v) The set is a ‘tubular’ neighbourhood of radius 𝑟 around the graph Γ𝑓 for 𝑥 ∈ [𝑐, 𝑑].
Measurability follows, since Φ̃ is a diffeomorphism, from the fact that the set 𝐶(𝑟) is
the image of the cartesian product of measurable sets.

(vi) Because of part (iv) we have, for fixed 𝑥 and sufficiently small values of 𝑟, that the
determinant is positive so that

lim
𝑟↓0

1
2𝑟 ∫(−𝑟,𝑟)

|

|

|

det𝐷Φ̃(𝑥, 𝑠)||
|

𝜆1(𝑑𝑠)

= lim
𝑟↓0

1
2𝑟 ∫(−𝑟,𝑟)

|

|

|

|

√

1 + (𝑓 ′(𝑥))2 − 𝑠 𝑓 ′′(𝑥)
1 + (𝑓 ′(𝑥))2

|

|

|

|

𝜆1(𝑑𝑠)

= lim
𝑟↓0

1
2𝑟 ∫(−𝑟,𝑟)

(

√

1 + (𝑓 ′(𝑥))2 − 𝑠 𝑓 ′′(𝑥)
1 + (𝑓 ′(𝑥))2

)

𝜆1(𝑑𝑠)

= lim
𝑟↓0

1
2𝑟 ∫(−𝑟,𝑟)

√

1 + (𝑓 ′(𝑥))2 𝜆1(𝑑𝑠)

− lim
𝑟↓0

1
2𝑟 ∫(−𝑟,𝑟)

𝑠 𝑓 ′′(𝑥)
1 + (𝑓 ′(𝑥))2

𝜆1(𝑑𝑠)

=
√

1 + (𝑓 ′(𝑥))2 − 𝑓 ′′(𝑥)
1 + (𝑓 ′(𝑥))2

lim
𝑟↓0

1
2𝑟 ∫(−𝑟,𝑟)

𝑠 𝜆1(𝑑𝑠)
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=
√

1 + (𝑓 ′(𝑥))2

= |

|

|

det𝐷Φ̃(𝑥, 0)||
|

.

(vii) We have
1
2𝑟 ∫R2

1𝐶(𝑟)(𝑥, 𝑦) 𝜆2(𝑑𝑥, 𝑑𝑦)

= 1
2𝑟 ∫R2

1Φ̃(Φ−1(𝐶)×(−𝑟,𝑟))(𝑥, 𝑦) 𝜆
2(𝑑𝑥, 𝑑𝑦)

= 1
2𝑟 ∫R2

1Φ−1(𝐶)×(−𝑟,𝑟)(𝑧, 𝑠)
|

|

|

det𝐷Φ̃(𝑧, 𝑠)||
|

𝜆2(𝑑𝑧, 𝑑𝑠) (Thm 16.4)

= ∫R
1Φ−1(𝐶)(𝑧)

[

1
2𝑟 ∫(−𝑟,𝑟)

|

|

|

det𝐷Φ̃(𝑧, 𝑠)||
|

𝜆1(𝑑𝑠)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
←←←←←←←←←←←←←→
𝑟↓0

|det𝐷Φ̃(𝑧,0)|

𝜆1(𝑑𝑧). (Tonelli)

Since Φ−1(𝐶) is a bounded subset ofR, we can use the result of part (vii) and domin-
ated convergence and the proof is finished.

(viii) This follows from (i)–(iii) and the fact that
|

|

|

det𝐷Φ̃(𝑥, 0)||
|

=
√

1 + (𝑓 ′(𝑥))2

and the geometrical meaning of the weighted area 1
2𝑟 𝜆

2(𝐶(𝑟))—recall that 𝐶(𝑟) was a
tubular neighbourhood of the graph.

■■

Problem 16.8 Solution:

(i) |det𝐷Φ(𝑥)| is positive and measurable, hence a density and, by Lemma 10.8, |det𝐷Φ|⋅

𝜆𝑑 is a measure. Therefore, Φ(|det𝐷Φ| ⋅ 𝜆𝑑) is an image measure in the sense of
Definition 7.7.
Using the rules for densities and integrals w.r.t. image measures we get (cf. e.g. Theorem
15.1 and/or Problem 15.1)

∫𝑀
𝑢 𝑑𝜆𝑀 = ∫𝑀

𝑢 𝑑Φ
(

|det𝐷Φ| ⋅ 𝜆𝑑
)

= ∫Φ−1(𝑀)
𝑢◦Φ ⋅ |det𝐷Φ| 𝑑𝜆𝑑 .

(ii) This is the formula from part (i) with Φ = 𝜃𝑟; observe that 𝜃𝑟(R𝑛) = R𝑛.
(iii) The equality

∫ 𝑢 𝑑𝜆𝑛 = ∫(0,∞)∫{‖𝑥‖=1}
𝑢(𝑟 𝑥) 𝑟𝑛−1 𝜎(𝑑𝑥) 𝜆1(𝑑𝑟)

is just Theorem 16.22. The equality

∫(0,∞)∫{‖𝑥‖=𝑟}
𝑢(𝑥) 𝜎(𝑑𝑥) 𝜆1(𝑑𝑟)

= ∫(0,∞)∫{‖𝑥‖=1}
𝑢(𝑟 𝑥) 𝑟𝑛−1 𝜎(𝑑𝑥) 𝜆1(𝑑𝑟)

follows from part (ii).
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■■

Problem 16.9 Solution: We have
Γ
(1
2

)

= ∫(0,∞)
𝑦−1∕2 𝑒−𝑦 𝜆(𝑑𝑦).

Using the change of variables 𝑦 = 𝜙(𝑥) = 𝑥2, we get 𝐷𝜙(𝑥) = 2𝑥 and
Γ
( 1
2

)

= 2∫(0,∞)
𝑒−𝑥

2
𝜆(𝑑𝑥) = 2∫(−∞,∞)

𝑒−𝑥
2
𝜆(𝑑𝑥)

16.16
=

√

𝜋.

■■

Problem 16.10 Solution: Write Φ = (Φ1,Φ2,Φ3). Then

𝐷Φ(𝑟, 𝜃, 𝜔) =
⎛

⎜

⎜

⎜

⎝

𝜕Φ1
𝜕𝑟

𝜕Φ1
𝜕𝜃

𝜕Φ1
𝜕𝜔

𝜕Φ2
𝜕𝑟

𝜕Φ2
𝜕𝜃

𝜕Φ2
𝜕𝜔

𝜕Φ3
𝜕𝑟

𝜕Φ3
𝜕𝜃

𝜕Φ3
𝜕𝜔

⎞

⎟

⎟

⎟

⎠

=
⎛

⎜

⎜

⎜

⎝

cos 𝜃 cos𝜔 −𝑟 sin 𝜃 cos𝜔 −𝑟 cos 𝜃 sin𝜔
sin 𝜃 cos𝜔 𝑟 cos 𝜃 cos𝜔 −𝑟 sin 𝜃 sin𝜔

sin𝜔 0 𝑟 cos𝜔

⎞

⎟

⎟

⎟

⎠

Developing according to the bottom row we calculate for the determinant
det𝐷Φ(𝑟, 𝜃, 𝜔)

= sin𝜔 det

(

−𝑟 sin 𝜃 cos𝜔 −𝑟 cos 𝜃 sin𝜔
𝑟 cos 𝜃 cos𝜔 −𝑟 sin 𝜃 sin𝜔

)

+ 𝑟 cos𝜔 det

(

cos 𝜃 cos𝜔 −𝑟 sin 𝜃 cos𝜔
sin 𝜃 cos𝜔 𝑟 cos 𝜃 cos𝜔

)

= sin𝜔
(

𝑟2 sin2 𝜃 cos𝜔 sin𝜔 + 𝑟2 cos2 𝜃 cos𝜔 sin𝜔
)

+ 𝑟 cos𝜔
(

𝑟 cos2 𝜃 cos2 𝜔 + 𝑟 sin2 𝜃 cos2 𝜔
)

= 𝑟2 sin2 𝜔 cos𝜔 + 𝑟2 cos𝜔 cos2 𝜔

= 𝑟2 cos𝜔

where we use repeatedly the elementary relation sin2 𝜙 + cos2 𝜙 = 1.
Thus,

∭
R3

𝑢(𝑥, 𝑦, 𝑧) 𝑑𝜆3(𝑥, 𝑦, 𝑧)

= ∭
Φ−1(R3)

𝑢◦Φ(𝑟, 𝜃, 𝜔) |det𝐷Φ(𝑟, 𝜃, 𝜔)| 𝑑𝜆3(𝑟, 𝜃, 𝜔)

= ∫

∞

0 ∫

2𝜋

0 ∫

𝜋∕2

−𝜋∕2
𝑈 (𝑟 cos 𝜃 cos𝜔, 𝑟 sin 𝜃 cos𝜔, 𝑟 sin𝜔) 𝑟2 cos𝜔𝑑𝑟 𝑑𝜃 𝑑𝜔.

■■
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Problem 16.11 Solution:

(i) We change in
Γ(𝑥) = ∫

∞

0
𝑒−𝑡𝑡𝑥−1 𝑑𝑡

variables according to 𝑢2 = 𝑡, and get

Γ(𝑥) = 2∫

∞

0
𝑒−𝑢

2
𝑢2𝑥−1 𝑑𝑢.

Using Tonelli’s theorem we find

Γ(𝑥)Γ(𝑦) = 4
(

∫

∞

0
𝑒−𝑢

2
𝑢2𝑥−1 𝑑𝑢

)(

∫

∞

0
𝑒−𝑣

2
𝑣2𝑦−1 𝑑𝑣

)

= 4∫(0,∞)2
𝑒−𝑢

2−𝑣2𝑢2𝑥−1𝑣2𝑦−1 𝑑(𝑢, 𝑣).

(ii) We have to show that 𝐵(𝑥, 𝑦)Γ(𝑥 + 𝑦) = Γ(𝑥)Γ(𝑦). Using polar coordinates in (i) we see

Γ(𝑥)Γ(𝑦) = 4∫

∞

𝑟=0 ∫

2𝜋

𝜙=0
𝑒−𝑟

2
𝑟2𝑥+2𝑦−1(cos𝜙)2𝑥−1(sin𝜙)2𝑦−1 𝑑𝜙𝑑𝑟

= 4
(

∫

∞

𝑟=0
𝑒−𝑟

2
𝑟2𝑥+2𝑦−1 𝑑𝑟

)

(

∫

𝜋∕2

𝜙=0
(cos𝜙)2𝑥−1(sin𝜙)2𝑦−1 𝑑𝜙

)

. (⋆)

Setting 𝑠 ∶= 𝑟2 we see

∫

∞

𝑟=0
𝑒−𝑟

2
𝑟2𝑥+2𝑦−1 𝑑𝑟 = 1

2 ∫

∞

𝑠=0
𝑒−𝑠𝑠(𝑥+𝑦)−1 𝑑𝑠 = 1

2
Γ(𝑥 + 𝑦).

Change variables in the second integral of (⋆) according to 𝑡 = cos2 𝜙 and use sin2 𝜙 +
cos2 𝜙 = 1. This yields

∫

𝜋∕2

𝜙=0
(cos𝜙)2𝑥−1(sin𝜙)2𝑦−1 𝑑𝜙 = 1

2 ∫

1

0
𝑡2𝑥−1(1 − 𝑡)2𝑦−1 𝑑𝑡 = 1

2
𝐵(𝑥, 𝑦).

■■

Problem 16.12 Solution: We introduce planar polar coordinates as in Example 16.15:
(𝑥, 𝑦) = (𝑟 cos 𝜃, 𝑟 sin 𝜃), 𝑟 > 0, 𝜃 ∈ [0, 2𝜋).

Thus,

∬
‖𝑥‖2+‖𝑦‖2<1

𝑥𝑚 𝑦𝑛 𝑑𝜆2(𝑥, 𝑦)

= ∫

1

0 ∫

2𝜋

0
𝑟𝑛+𝑚+1 cos𝑚 𝜃 sin𝑛 𝜃 𝑑𝑟 𝑑𝜃

=
(

∫

1

0
𝑟𝑛+𝑚+1 𝑑𝑟

)(

∫

2𝜋

0
cos𝑚 𝜃 sin𝑛 𝜃 𝑑𝜃

)

= 𝑟𝑚+𝑛+2

𝑚 + 𝑛 + 2
|

|

|

|

𝑟=1

𝑟=0

(

∫

2𝜋

0
cos𝑚 𝜃 sin𝑛 𝜃 𝑑𝜃

)

= 1
𝑚 + 𝑛 + 2 ∫

2𝜋

0
cos𝑚 𝜃 sin𝑛 𝜃 𝑑𝜃.

(*)

211



R.L. Schilling: Measures, Integrals & Martingales

Consider the integral
1

𝑚 + 𝑛 + 2 ∫

2𝜋

0
cos𝑚 𝜃 sin𝑛 𝜃 𝑑𝜃;

Since sine and cosine are periodic and since we integrate over a whole period, we can also write
1

𝑚 + 𝑛 + 2 ∫

𝜋

−𝜋
cos𝑚 𝜃 sin𝑛 𝜃 𝑑𝜃;

If 𝑛 is odd, sin𝑛 𝜃 is odd while cos𝑚 𝜃 is always even. Thus, the integral equals, for odd 𝑛, zero.
Since the l.h.s. of the expression (*) is symmetric in 𝑚 and 𝑛, so is the r.h.s. and we get

∬
‖𝑥‖2+‖𝑦‖2<1

𝑥𝑚 𝑦𝑛 𝑑𝜆2(𝑥, 𝑦) = 0

whenever 𝑚 or 𝑛 or both are odd.
If both 𝑚 and 𝑛 are even, we get

∬
‖𝑥‖2+‖𝑦‖2<1
𝑥>0, 𝑦>0

𝑥𝑚 𝑦𝑛 𝑑𝜆2(𝑥, 𝑦) = ∬
‖𝑥‖2+‖𝑦‖2<1
±𝑥>0, ±𝑦>0

𝑥𝑚 𝑦𝑛 𝑑𝜆2(𝑥, 𝑦)

for any choice of signs, thus

∬
‖𝑥‖2+‖𝑦‖2<1

𝑥𝑚 𝑦𝑛 𝑑𝜆2(𝑥, 𝑦) = 4 ∬
‖𝑥‖2+‖𝑦‖2<1
𝑥>0, 𝑦>0

𝑥𝑚 𝑦𝑛 𝑑𝜆2(𝑥, 𝑦).

Introducing planar polar coordinates yields, as seen above, for even 𝑚 and 𝑛,

4 ∬
‖𝑥‖2+‖𝑦‖2<1
𝑥>0, 𝑦>0

𝑥𝑚 𝑦𝑛 𝑑𝜆2(𝑥, 𝑦) = 4
𝑚 + 𝑛 + 2 ∫

𝜋∕2

0
cos𝑚 𝜃 sin𝑛 𝜃 𝑑𝜃

= 4
𝑚 + 𝑛 + 2 ∫

1

0
(1 − 𝑡2)

𝑚−1
2 (𝑡2)

𝑛−1
2 𝑡 𝑑𝑡

where we use the substitution 𝑡 = sin 𝜃 and cos 𝜃 =
√

1 − sin2 𝜃 =
√

1 − 𝑡2. A further substitution
𝑠 = 𝑡2 yields

= 2
𝑚 + 𝑛 + 2 ∫

1

0
(1 − 𝑠)

𝑚−1
2 𝑠

𝑛−1
2 𝑑𝑠

= 2
𝑚 + 𝑛 + 2 ∫

1

0
(1 − 𝑠)

𝑚+1
2 −1𝑠

𝑛+1
2 −1 𝑑𝑠

= 2
𝑚 + 𝑛 + 2

𝐵
(𝑚+1

2 , 𝑛+12
)

which is Euler’s Beta function. There is a well-known relation between the Euler Beta- and Gamma
functions:

𝐵(𝑥, 𝑦) = Γ(𝑥)Γ(𝑦)
Γ(𝑥 + 𝑦)

(*)
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so that, finally,

∬
‖𝑥‖2+‖𝑦‖2<1

𝑥𝑚 𝑦𝑛 𝑑𝜆2(𝑥, 𝑦) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 𝑚 or 𝑛 odd;
2

𝑚+𝑛+2

Γ
(𝑚+1

2

)

Γ
( 𝑛+1

2

)

Γ
( 𝑛+𝑚+2

2

) else

=
Γ
(𝑚+1

2

)

Γ
( 𝑛+1

2

)

Γ
( 𝑛+𝑚+4

2

)

where we also use the rule that 𝑥Γ(𝑥) = Γ(𝑥 + 1).
Let us briefly sketch the proof of (*): our calculation shows that

𝐵(𝑥, 𝑦) = 2∫

𝜋∕2

0
sin2𝑥−1 𝜃 cos2𝑦−1 𝜃 𝑑𝜃;

multiplying this formula with 𝑟2𝑥+2𝑦−1 𝑒−𝑟2 , integrating w.r.t. 𝑟 over (0,∞) and changing variables
according to 𝑠 = 𝑟2 yields on the one hand

∫

∞

0
𝐵(𝑥, 𝑦) 𝑟2𝑥+2𝑦−1 𝑒−𝑟2 𝑑𝑟 = 1

2 ∫

∞

0
𝐵(𝑥, 𝑦) 𝑠𝑥+𝑦−1 𝑒−𝑠 𝑑𝑠

= 1
2
𝐵(𝑥, 𝑦) Γ(𝑥 + 𝑦)

while, on the other hand, we get by switching from polar to cartesian coordinates,

∫

∞

0
𝐵(𝑥, 𝑦) 𝑟2𝑥+2𝑦−1 𝑒−𝑟2 𝑑𝑟

= 2∫

∞

0 ∫

𝜋∕2

0
sin2𝑥−1 𝜃 cos2𝑦−1 𝜃 𝑟2𝑥+2𝑦−1 𝑒−𝑟2 𝑑𝑟 𝑑𝜃

= 2∫

∞

0 ∫

𝜋∕2

0
(𝑟 sin 𝜃)2𝑥−1(𝑟 cos 𝜃)2𝑦−1 𝑒−𝑟2 𝑟 𝑑𝑟 𝑑𝜃

= 2∬(0,∞)×(0,∞)
𝜉2𝑥−1 𝜂2𝑦−1 𝑒−𝜉

2−𝜂2 𝑑𝜉 𝑑𝜂

= 2∫(0,∞)
𝜉2𝑥−1 𝑒−𝜉

2
𝑑𝜉 ∫(0,∞)

𝜂2𝑦−1 𝑒−𝜂
2
𝑑𝜂

= 1
2 ∫(0,∞)

𝑠𝑥−1 𝑒−𝑠 𝑑𝑠∫(0,∞)
𝑡𝑦−1 𝑒−𝑡 𝑑𝑡

= 1
2
Γ(𝑥)Γ(𝑦)

with the obvious applications of Tonelli’s theorem and, in the penultimate equality, the obvious
substitutions.

■■
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17 Dense and determining sets.

Solutions to Problems 17.1–17.9

Problem 17.1 Solution: Let 𝑓 ∈ 𝑝(𝜇) and fix 𝜖 > 0. It is enough to show that there is some ℎ ∈ 
such that ‖𝑓 −ℎ‖𝑝 ⩽ 𝜖. Since  is dense in 𝑝(𝜇), there exists some 𝑔 ∈  satisfying ‖𝑓 −𝑔‖𝑝 ⩽
𝜖∕2. On the other hand, as  is dense in , there is some ℎ ∈  such that ‖𝑔 − ℎ‖𝑝 ⩽ 𝜖∕2. Now
the triangle inequality gives

‖𝑓 − ℎ‖𝑝 ⩽ ‖𝑓 − 𝑔‖𝑝 + ‖𝑔 − ℎ‖𝑝 ⩽
𝜖
2
+ 𝜖

2
.

■■

Problem 17.2 Solution:

(i) Continuity follows from the continuity of the function 𝑥 → 𝑑(𝑥,𝐴), cf. (17.1). Clearly,
0 ⩽ 𝑢𝑘 ⩽ 1 and 𝑢𝑘|𝐾 = 1 and 𝑢|𝑈 𝑐

𝑘 = 0. Since 𝑈𝐾 ↓ 𝐾 , we get 𝑢𝑘 ↓ 1𝐾 . Since 𝑈𝑘 is
closed and bounded, it is clear that 𝑈𝑘 is compact, i.e. supp 𝑢𝑘 is compact.

(ii) This follows from (i) and monotone convergence.
(iii) We have 𝜇(𝐾) = 𝜈(𝐾) for all compact sets 𝐾 ⊂ R𝑛 and the compact sets generate

the Borel 𝜎-algebra. In particular, this holds for [−𝑘, 𝑘]𝑛 ↑ R𝑛, so that the conditions
for the uniqueness theorem for measures (Theorem 5.7) are satisfied. We conclude that
𝜇 = 𝜈.

(iv) Since each 𝑥 has a compact neighbourhood, we can choose 𝑘 so large that 𝐵1∕𝑘(𝑥)
becomes compact. In particular,𝐾 ⊂

⋃

𝑥∈𝐾 𝐵1∕𝑘(𝑥)(𝑥) is an open cover. We can choose
each 𝑘(𝑥) so large, that 𝐵1∕𝑘(𝑥)(𝑥) has a compact closure. Since 𝐾 is compact, we find
finitely many 𝑥𝑖 such that 𝐾 ⊂

⋃

𝑖 𝐵1∕𝑘(𝑥𝑖)(𝑥𝑖) = 𝑈𝑘 where 𝑘 ∶= max𝑖 𝑘𝑖. In particular,
𝑈𝑘 ⊂

⋃

𝑖 𝐵1∕(𝑥𝑖)(𝑥𝑖) is compact. This produces a sequence of 𝑈𝑘 ↓ 𝐾 . The rest follows
almost literally as in the previous steps.

■■

Problem 17.3 Solution:

(i) We have to show that ‖𝜏ℎ𝑓‖𝑝𝑝 = ‖𝑓‖𝑝 for all 𝑝 ∈ 𝑝(𝑑𝑥). This is an immediate con-
sequence of the invariance of Lebesgue measure under translations:

‖𝜏ℎ𝑓‖
𝑝
𝑝 = ∫R

|𝑓 (𝑥 − ℎ)|𝑝 𝑑𝑥 = ∫R
|𝑓 (𝑦)|𝑝 𝑑𝑦 = ‖𝑓‖𝑝𝑝.
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(ii) We show the assertion first for 𝑓 ∈ 𝐶𝑐(R). If 𝑓 ∈ 𝐶𝑐(R), then 𝐾 ∶= supp 𝑓 is compact.
Pick 𝑅 > 0 in such a way that 𝐾 + 𝐵1(0) ⊂ 𝐵𝑅(0). Since limℎ→0 𝑓 (𝑥 − ℎ) = 𝑓 (𝑥) and

|𝑓 (𝑥 − ℎ) − 𝑓 (𝑥)| ⩽ 2‖𝑓‖∞1𝐵𝑅(0)(𝑥) ∈ 𝑝(𝑑𝑥)

for any ℎ < 1, we can use dominated convergence to get
‖𝜏ℎ𝑓 − 𝑓‖𝑝𝑝 = ∫ |𝑓 (𝑥 − ℎ) − 𝑓 (𝑥)|𝑝 𝑑𝑥 ←←←←←←←←←←←←←←←←←→

ℎ→0
0.

Now take 𝑓 ∈ 𝑝(𝑑𝑥). Since 𝐶𝑐(R) is dense in 𝑝(𝑑𝑥), cf. Theorem 17.8, there is a
sequence (𝑓𝑛)𝑛∈N ⊂ 𝐶𝑐(R) such that ‖𝑓𝑛 − 𝑓‖𝑝 → 0. From part (i) we get

‖𝜏ℎ𝑓 − 𝑓‖𝑝 ⩽ ‖𝜏ℎ(𝑓 − 𝑓𝑛)‖𝑝
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

⩽‖𝑓𝑛−𝑓‖𝑝

+‖𝜏ℎ𝑓𝑛 − 𝑓𝑛‖𝑝 + ‖𝑓𝑛 − 𝑓‖𝑝

←←←←←←←←←←←←←←←←←→
ℎ→0

2‖𝑓𝑛 − 𝑓‖𝑝 ←←←←←←←←←←←←←←←←←←←←→𝑛→∞
0.

This finishes the proof of the first assertion. The second claim follows in a similar way.
Consider first 𝑓 ∈ 𝐶𝑐(R) and 𝐾 ∶= supp 𝑓 . Since 𝐾 is compact, there is some 𝑅 > 0
with (ℎ +𝐾) ∩𝐾 = ∅1 for all ℎ > 𝑅. If ℎ > 𝑅, then

|𝑓 (𝑥 − ℎ) − 𝑓 (𝑥)|𝑝 = |𝑓 (𝑥 − ℎ)|𝑝1𝐾 (𝑥 + ℎ) + |𝑓 (𝑥)|𝑝1𝐾 (𝑥)

and so
‖𝜏ℎ𝑓 − 𝑓‖𝑝𝑝 = ∫𝐾+ℎ

|𝑓 (𝑥 − ℎ)|𝑝 𝑑𝑥 + ∫𝐾
|𝑓 (𝑥)|𝑝 𝑑𝑥

= ∫𝐾
|𝑓 (𝑦)|𝑝 𝑑𝑦 + ∫𝐾

|𝑓 (𝑥)|𝑝 𝑑𝑥

= 2‖𝑓‖𝑝𝑝.

This proves the assertion for 𝑓 ∈ 𝐶𝑐(R), and the general case follows via density as in the
first part of (ii).

■■

Problem 17.4 Solution:

(i) Continuity is an immediate consequence of the dominated convergence theorem: assume
that (𝑥𝑛)𝑛∈N is a sequence converging to 𝑥 ∈ R. Since 1[𝑥𝑛−ℎ,𝑥𝑛+ℎ] → 1[𝑥−ℎ,𝑥+ℎ] a.e. and
𝑓 ∈ 1(𝑑𝑥), we see that 𝑀ℎ𝑓 (𝑥𝑛) →𝑀ℎ𝑓 (𝑥) as 𝑛→ ∞.
Contractivity of 𝑀ℎ follows from

∫ |𝑀ℎ𝑓 (𝑥)| 𝑑𝑥 = 1
2ℎ ∫

|

|

|

|

|

∫

𝑥+ℎ

𝑥−ℎ
𝑓 (𝑡) 𝑑𝑡

|

|

|

|

|

𝑑𝑥

⩽ 1
2ℎ ∫

ℎ

−ℎ ∫
|𝑓 (𝑥 + 𝑡)| 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
∫ |𝑓 (𝑦)| 𝑑𝑦=‖𝑓‖1

𝑑𝑡 ⩽ ‖𝑓‖1

(use Tonelli’s theorem to interchange the order of integrations).
1We use the notation ℎ +𝐾 ∶= {ℎ + 𝑥; 𝑥 ∈ 𝐾}.
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(ii) Assume first that 𝑓 ∈ 𝐶𝑐(R). Because of the continuity of the function 𝑓 we find

|𝑀ℎ𝑓 (𝑥) − 𝑓 (𝑥)| ⩽
1
2ℎ ∫

ℎ

−ℎ
|𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥)| 𝑑𝑥 ⩽ sup

𝑡∈[−ℎ,ℎ]
|𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥)| ←←←←←←←←←←←←←←←←←→

ℎ→0
0

for all 𝑥 ∈ R. Since the support of 𝑓 , 𝐾 ∶= supp 𝑓 , is compact, there is some 𝑅 > 0
such that 𝐾 +𝐵1(0) ⊆ 𝐵𝑅(0). For ℎ < 1 we get 𝑀ℎ𝑓 (𝑥) = 0 = 𝑓 (𝑥) if 𝑥 ∉ 𝐵𝑅(0). Since
|𝑀ℎ𝑓 (𝑥)| ⩽ |𝑓 (𝑥)| for 𝑥 ∈ R, we get

|𝑀ℎ𝑓 (𝑥) − 𝑓 (𝑥)| = |𝑀ℎ𝑓 (𝑥) − 𝑓 (𝑥)|1𝐵𝑅(0)(𝑥) ⩽ 2‖𝑓‖∞1𝐵𝑅(0)(𝑥) ∈ 1(𝑑𝑥).

An application of the dominated convergence theorem reveals

‖𝑀ℎ𝑓 − 𝑓‖1 = ∫ |𝑀ℎ𝑓 (𝑥) − 𝑓 (𝑥)| 𝑑𝑥
ℎ→0
←←←←←←←←←←←←←←←←←→ 0,

i.e. the claim is true for any 𝑓 ∈ 𝐶𝑐(R). Now we take a general 𝑓 ∈ 1(𝑑𝑥). Because of
Theorem 17.8 there is a sequence (𝑓𝑛)𝑛∈N ⊂ 𝐶𝑐(R) such that ‖𝑓𝑛 − 𝑓‖1 → 0. Therefore,

‖𝑀ℎ𝑓 − 𝑓‖1 ⩽ ‖𝑀ℎ(𝑓 − 𝑓𝑛)‖1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=‖𝑓𝑛−𝑓‖1

+‖𝑀ℎ𝑓𝑛 − 𝑓𝑛‖1 + ‖𝑓𝑛 − 𝑓‖1

←←←←←←←←←←←←←←←←←→
ℎ→0

2‖𝑓𝑛 − 𝑓‖1 ←←←←←←←←←←←←←←←←←←←←→𝑛→∞
0.

■■

Problem 17.5 Solution:

(i) Let 𝐴 ∈ ℬ(𝑋) such that 𝑓 ∶= 1𝐴 ∈ 𝑝(𝜇). Clearly, 𝜇(𝐴) < ∞ and because of the
outer regularity of 𝜇 there is an open set 𝑈 ⊂ 𝑋 such that 𝐴 ⊂ 𝑈 and 𝜇(𝑈 ) < ∞.
Literally as in the proof of Lemma 17.3 we can construct some 𝜙𝜖 ∈ 𝐶Lip(𝑋) ∩ 𝑝(𝜇)
with ‖𝑓 − 𝜙𝜖‖𝑝 ⩽ 𝜖 (just replace in the proof 𝐶𝑏(𝑋) with 𝐶Lip(𝑋)).

(ii) If 𝑓 ∈ 𝑝(𝜇), then the Sombrero lemma shows that there is a sequence of simple func-
tions (𝑓𝑛)𝑛∈N satisfying 0 ⩽ 𝑓𝑛 ⩽ 𝑓 , 𝑓𝑛 ↑ 𝑓 . Using the monotone convergence
theorem, we see ∫ (𝑓 − 𝑓𝑛)𝑝 𝑑𝜇 ↓ 0; in particular, there is some 𝑛 ∈ N such that
‖𝑓𝑛 − 𝑓‖𝑝 ⩽ 𝜖. Using linearity and the result of part (i), we get some 𝜙𝜖 ∈ 𝐶Lip(𝑋)
such that ‖𝑓𝑛 − 𝜙𝜖‖𝑝 ⩽ 𝜖. Therefore,

‖𝑓 − 𝜙𝜖‖𝑝 ⩽ ‖𝑓 − 𝑓𝑛‖𝑝 + ‖𝑓𝑛 − 𝜙𝜖‖𝑝 ⩽ 2𝜖.

(iii) We use the decomposition 𝑓 = 𝑓+ − 𝑓−. Since 𝑓+, 𝑓− ∈ 𝑝(𝜇), part (ii) furnishes
functions 𝜙, 𝜓 ∈ 𝐶Lip(𝑋) ∩ 𝑝(𝜇) such that ‖𝑓+ − 𝜙‖𝑝 ⩽ 𝜖 and ‖𝑓− − 𝜓‖𝑝 ⩽ 𝜖.
Consequently,

‖𝑓 − (𝜙 − 𝜓)‖𝑝 ⩽ ‖𝑓+ − 𝜙‖𝑝 + ‖𝑓− − 𝜓‖𝑝 ⩽ 2𝜖.

■■
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Problem 17.6 Solution: A set 𝑈 ⊂ 𝑋 is said to be relatively compact if it closure 𝑈 is compact.
(i) Let (𝑥𝑛)𝑛∈N be a countable dense subset of 𝑋. By assumption, each 𝑥𝑛 has a relatively

compact open neighbourhood: 𝑥𝑛 ∈ 𝑉𝑛 and 𝑉 𝑛 is compact. Since 𝐵1∕𝑘(𝑥𝑛) ⊂ 𝑉𝑛 for
sufficiently large values of 𝑘 ⩾ 𝑘0(𝑥𝑛), we see that the balls 𝐵1∕𝑘(𝑥𝑛), 𝑘 ⩾ 𝑘0(𝑥𝑛), are
also relatively compact. Thus,

{𝐵1∕𝑘(𝑥𝑛) ∶ 𝑛 ∈ N, 𝑘 ⩾ 𝑘0(𝑥𝑛)} =∶ {𝑈𝑛; 𝑛 ∈ N}

is a sequence of relatively compact, open sets. For any open set 𝑈 ⊂ 𝑋 we find

𝑈 =
⋃

𝑛∈N
𝑈𝑛⊂𝑈

𝑈𝑛.

(The inclusion ‘⊃’ is obvious. In order to see ‘⊂’ we observe that for any 𝑥 ∈ 𝑈 there
is some 𝑟 > 0 with 𝐵𝑟(𝑥) ⊂ 𝑈 . Since (𝑥𝑛)𝑛∈N is dense, we may choose 𝑛 ∈ N and
𝑘 ⩾ 𝑘0(𝑥𝑛) such that 𝐵1∕𝑘(𝑥𝑛) ⊂ 𝐵𝑟(𝑥) ⊂ 𝑈 .)

(ii) The sets 𝐾𝑛 ∶= 𝑈 1 ∪⋯ ∪ 𝑈 𝑛 are compact and increase towards 𝑋.
(iii) Assume that𝑈 ⊂ 𝑋 is an open set such that 𝜇(𝑈 ) <∞ and let (𝑈𝑛)𝑛∈N be the sequence

from part (i). Because of (i), there is a subsequence (𝑈𝑛(𝑘))𝑘∈N ⊂ (𝑈𝑛)𝑛∈N such that
𝑈 =

⋃

𝑘 𝑈𝑛(𝑘). Set 𝑊𝑛 ∶=
⋃𝑛
𝑘=1 𝑈𝑛(𝑘) and observe that 𝑊𝑛 ∈ . Since 𝑊𝑛 ↑ 𝑈 ,

Beppo Levi’s theorem shows that

‖1𝑊𝑛
− 1𝑈‖𝑝 ←←←←←←←←←←←←←←←←←←←←→𝑛→∞

0.

This tells us that 1𝑈 ∈ .
(iv) First we show that 𝜇 is outer regular. Set

𝐺𝑛 ∶=
𝑛
⋃

𝑘=1
𝑈𝑘.

Obviously, the 𝐺𝑛 are open sets, 𝐺𝑛 ↑ 𝑋 and 𝜇(𝐺𝑛) < ∞ – here we use that the 𝑈𝑘 are
relatively compact and that 𝜇 is finite on compact sets. This means that the assumptions
of Theorem H.3 are satisfied, and we see that 𝜇 is outer regular.
Let 𝐵 ∈ ℬ(𝑋), 𝜇(𝐵) < ∞ and fix 𝜖 > 0. Since 𝜇 is outer regular, there is a sequence
of open sets (𝑈𝑛)𝑛∈N such that 𝑈𝑛 ⊃ 𝐵 and 𝜇(𝑈𝑛) < ∞. By monotone convergence,
‖1𝑈𝑛 − 1𝐵‖𝑝 → 0 as 𝑛→ ∞. Pick 𝑛 ∈ N such that ‖1𝑈𝑛 − 1𝐵‖𝑝 ⩽ 𝜖. Because of (iii),
there is some 𝐷 ∈  with ‖1𝑈𝑛 − 1𝐷‖𝑝 ⩽ 𝜖. Consequently,

‖1𝐵 − 1𝐷‖𝑝 ⩽ ‖𝐼𝐵 − 1𝑈𝑛‖𝑝 + ‖1𝑈𝑛 − 1𝐷‖𝑝 ⩽ 2𝜖.

(v) By definition,  ⊂ 𝑝(𝜇), i.e. it is enough to show that for every 𝑓 ∈ 𝑝(𝜇) and
𝜖 > 0 there is some 𝐷 ∈  such that ‖𝑓 − 1𝐷‖𝑝 ⩽ 𝜖. Using the Sombrero lemma
(Corollary 8.9) and the dominated convergence theorem we can construct a sequence
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of simple functions (𝑓𝑛)𝑛∈N ⊂ 𝑝(𝜇) such that ‖𝑓 −𝑓𝑛‖𝑝 → 0. If 𝑛 is sufficiently large,
we have ‖𝑓 − 𝑓𝑛‖𝑝 ⩽ 𝜖. Since 𝑓𝑛 is of the form

𝑓𝑛(𝑥) =
𝑁
∑

𝑗=1
𝑐𝑗1𝐵𝑗 (𝑥)

where 𝑐𝑗 ∈ R, 𝐵𝑗 ∈ ℬ(𝑋), 𝑗 = 1,… , 𝑁 , we can use part (iv) to get 𝐷 ∈  with
‖𝑓𝑛 − 1𝐷‖𝑝 ⩽ 𝜖. With the triangle inequality we see that ‖𝑓 − 1𝐷‖𝑝 ⩽ 2𝜖. The
separability of 𝑝(𝜇) now follows from the fact that  is a countable set.

■■

Problem 17.7 Solution:

(i) Assume first that 𝐴 is an open set. Without loss of generality 𝐴 ≠ ∅. Fix 𝜖 > 0. Since
{

𝑥 ∈ 𝐴 ∶ 𝑑(𝑥,𝐴𝑐) < 1
𝑛

}

↓ ∅ as 𝑛→ ∞

the continuity of measures furnishes some 𝑁 ∈ N such that

𝜇
{

𝑑(⋅, 𝐴𝑐) < 1
𝑛

}

< 𝜖 ∀𝑛 ⩾ 𝑁.

Define 𝜙𝑛(𝑥) ∶= min{𝑛𝑑(𝑥,𝐴𝑐), 1}. Clearly, 𝜙𝑛 ∈ 𝐶𝑏(𝑋) and ‖𝜙𝜖‖∞ ⩽ 1 = ‖1𝐴‖∞.
Since 0 ⩽ 𝜙𝑛 ⩽ 1𝐴 ∈ 𝑝 we even have 𝜙𝑛 ∈ 𝑝(𝜇). Moreover,

{1𝐴 ≠ 𝜙𝑛} ⊂
{

𝑑(⋅, 𝐴𝑐) < 1
𝑛

}

;

therefore, 𝜇{1𝐴 ≠ 𝜙𝑛} ⩽ 𝜖 for all 𝑛 ⩾ 𝑁 . Using dominated convergence gives ‖1𝐴 −
𝜙𝑛‖𝑝 ←←←←←←←←←←←←←←←←←←←←→

𝑛→∞
0. If 𝑛 ⩾ 𝑁 is large enough, we get ‖1𝐴 − 𝜙𝑛‖𝑝 ⩽ 𝜖. For such 𝑛, the

functions 𝜙𝑛 satisfy all requirements of the theorem.
In order to show the claim for any Borel set 𝐴 ∈ ℬ(𝑋), we proceed as in the proof of
Lemma 17.3: let 𝑈 ⊂ 𝑋, 𝜇(𝑈 ) <∞, and define

𝒟 ∶= {𝐴 ∈ ℬ(𝑈 ) ∶ ∀𝜖 > 0 ∃𝜙𝜖 ∈ 𝐶𝑏(𝑋)∩𝑝(𝜇) satisfying the assertion for 𝑓 = 1𝐴 }.

As in the proof of Lemma 17.3 we see that 𝒟 is a Dynkin system. By construction, the
open sets are contained in 𝒟 , and so ℬ(𝑈 ) ⊂ 𝒟 .
If 𝐴 ∈ ℬ(𝑋) is an arbitrary Borel set with 1𝐴 ∈ 𝑝(𝜇), we have 𝜇(𝐴) < ∞. Since 𝜇
is outer regular, there exists an open set 𝑈 ⊂ 𝑋 such that 𝐴 ⊂ 𝑈 and 𝜇(𝑈 ) <∞. Since
𝐴 ∈ ℬ(𝑈 ) ⊂ 𝒟 , the claim follows.

(ii) Let 𝑓 ∈ 𝑝(𝜇), 0 ⩽ 𝑓 ⩽ 1, and fix 𝜖 > 0. Without loss of generality we may assume
that ‖𝑓‖∞ = 1, otherwise we would use 𝑓∕‖𝑓‖∞. The (proof of the) Sombrero lemma
(Theorem 8.8) shows that

𝑓𝑛 ∶=
𝑛2𝑛−1
∑

𝑘=0

𝑘
2𝑛
1{ 𝑘

2𝑛 ⩽𝑓<
𝑘+1
2𝑛

} + 𝑛1{𝑓>𝑛}
0 ⩽ 𝑓 ⩽ 1

=
2𝑛−1
∑

𝑘=0

𝑘
2𝑛
1{ 𝑘

2𝑛 ⩽𝑓<
𝑘+1
2𝑛

}, 𝑛 ∈ N,
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monotonically converges to 𝑓 . With 𝑓0 ∶= 0 we get

𝑓 = lim
𝑛→∞

(𝑓𝑛 − 𝑓0) = lim
𝑛→∞

𝑛
∑

𝑗=1
(𝑓𝑗 − 𝑓𝑗−1) =

∑

𝑗⩾1
(𝑓𝑗 − 𝑓𝑗−1) =

∑

𝑗⩾1

1
2𝑗
𝜙𝑗

for 𝜙𝑗 ∶= 2𝑗(𝑓𝑗 − 𝑓𝑗−1). We claim that

𝜙𝑗(𝑥) ∈ {0, 1} ∀𝑥 ∈
{

𝑓𝑗−1 =
𝑘

2𝑗−1
}

.. (⋆⋆)

Indeed: By definition, 𝑓𝑗 attains on
{

𝑓𝑗−1 =
𝑘

2𝑗−1

}

=
{

𝑘
2𝑗−1 ⩽ 𝑓 < 𝑘+1

2𝑗−1

}

only the val-
ues 2𝑘

2𝑗 and 2𝑘+1
2𝑗 . In the first case, we have 𝜙𝑗 = 0, in the latter 𝜙𝑗 = 1. Thus, 𝜙𝑗(𝑥) = 1

happens if, and only if,

𝑥 ∈
{

𝑓𝑗 =
2𝑘 + 1
2𝑗

}

=
{2𝑘 + 1

2𝑗
⩽ 𝑓 < 2𝑘 + 2

2𝑗
}

.

Therefore, we can write 𝐴𝑗 ∶= {𝜙𝑗 = 1} in the following form

𝐴𝑗 =
2𝑛−1−1
⋃

𝑘=0

{2𝑘 + 1
2𝑗

⩽ 𝑓 < 2𝑘 + 2
2𝑗

}

.

Since 𝜙𝑗 = 1𝐴𝑗 , we get
𝑓 =

∑

𝑗⩾1

1
2𝑗
1𝐴𝑗 .

Observe that 1𝐴𝑗 ⩽ 2𝑗𝑓 ∈ 𝑝(𝜇). Because of part (i), there is for every 𝑗 ⩾ 1 a function
𝜙𝑗,𝜖 ∈ 𝐶𝑏(𝑋) ∩ 𝑝(𝜇) such that

‖𝜙𝑗,𝜖 − 𝜙𝑗‖𝑝 ⩽
𝜖
2𝑗
, 𝜇{𝜙𝑗,𝜖 ≠ 𝜙𝑗} ⩽ 𝜖

2𝑗
and ‖𝜙𝑗,𝜖‖∞ ⩽ ‖𝜙𝑗‖∞ ⩽ 1.

The function 𝜙𝜖 ∶= ∑

𝑗⩾1
𝜙𝑗,𝜖
2𝑗 enjoys all required properties:

• 𝜙𝜖 is continuous (since it is the uniform limit of continuous functions):
‖

‖

‖

‖

‖

‖

𝜙𝜖 −
𝑛
∑

𝑗=1

𝜙𝑗,𝜖
2𝑗

‖

‖

‖

‖

‖

‖∞

⩽
∞
∑

𝑗=𝑛+1

1
2𝑗
‖𝜙𝑗,𝜖‖∞ ⩽

∞
∑

𝑗=𝑛+1

1
2𝑗

←←←←←←←←←←←←←←←←←←←←→
𝑛→∞

0.

• ‖𝜙𝜖‖∞ ⩽
∑

𝑗⩾1
‖𝜙𝑗,𝜖‖∞

2𝑗 ⩽
∑

𝑗⩾1
1
2𝑗 = 1 = ‖𝑓‖∞.

• ‖𝜙𝜖 − 𝑓‖𝑝 ⩽
∑

𝑗⩾1
1
2𝑗 ‖𝜙𝑗,𝜖 − 𝜙𝑗‖𝑝 ⩽ 𝜖

∑

𝑗⩾1
1
2𝑗 ⩽ 𝜖. In particular, 𝜙𝜖 ∈ 𝑝(𝜇).

• 𝜇{𝜙𝜖 ≠ 𝑓} ⩽
∑

𝑗⩾1 𝜇{𝜙𝑗,𝜖 ≠ 𝜙𝑗} ⩽
∑

𝑗⩾1 𝜖2−𝑗 = 𝜖.
(iii) Observe, first of all, that the theorem holds for all 𝑔 ∈ 𝑝(𝜇) with 0 ⩽ 𝑔 ⩽ ‖𝑔‖∞ <∞;

for this, apply part (ii) to 𝑔∕‖𝑔‖∞. Without loss of generality we may assume for such
𝑔 that 𝜙𝜖 ⩾ 0; otherwise we would consider 𝜙𝜖 ∶= 𝜙𝜖 ∨ 0.
Let 𝑓 ∈ 𝑝(𝜇) and ‖𝑓‖∞ < ∞. We write 𝑓 = 𝑓+ − 𝑓− and, because of the preceding
remark, there are functions 𝜙𝜖, 𝜓𝜖 ∈ 𝐶𝑏(𝑋) ∩ 𝑝(𝜇), 𝜙𝜖 ⩾ 0, 𝜓𝜖 ⩾ 0, such that

‖𝜙𝜖‖∞ ⩽ ‖𝑓+
‖∞, 𝜇

{

𝑓+ ≠ 𝜙𝜖
}

⩽ 𝜖 and ‖𝑓+ − 𝜙𝜖‖𝑝 ⩽ 𝜖
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and
‖𝜓𝜖‖∞ ⩽ ‖𝑓−

‖∞, 𝜇
{

𝑓− ≠ 𝜓𝜖
}

⩽ 𝜖 and ‖𝑓− − 𝜓𝜖‖𝑝 ⩽ 𝜖.

For Φ𝜖 ∶= 𝜙𝜖 − 𝜓𝜖 ∈ 𝐶𝑏(𝑋) ∩ 𝑝(𝜇) we find

𝜇{Φ𝜖 ≠ 𝑓} ⩽ 𝜇{𝜙𝜖 ≠ 𝑓+} + 𝜇{𝜓𝜖 ≠ 𝑓−} ⩽ 2𝜖

as well as
‖Φ𝜖‖∞ ⩽ max{‖𝑓+

‖∞, ‖𝑓
−
‖∞} = ‖𝑓‖∞

(this step requires that 𝜙𝜖 ⩾ 0 and 𝜓𝜖 ⩾ 0). The triangle inequality yields

‖𝑓 − Φ𝜖‖𝑝 ⩽ ‖𝑓+ − 𝜙𝜖‖𝑝 + ‖𝑓− − 𝜓𝜖‖𝑝 ⩽ 2𝜖.

Consequently, Φ𝜖 satisfies the conditions of the theorem for 𝑓 .
(iv) Fix 𝑓 ∈ 𝑝(𝜇) and 𝜖 > 0. Using the Markov inequality we get

𝜇{|𝑓 | ⩾ 𝑅} ⩽ 1
𝑅𝑝 ∫

|𝑓 |𝑝 𝑑𝜇.

In particular, we can pick a sufficiently large 𝑅 > 0 such that 𝜇{|𝑓 | ⩾ 𝑅} ⩽ 𝜖. Using
monotone convergence, we see

∫{|𝑓 |>𝑅}
|𝑓 |𝑝 𝑑𝜇 < 𝜖

if 𝑅 > 0 is large. Setting 𝑓𝑅 ∶= (−𝑅) ∨ 𝑓 ∧ 𝑅, we can use (iii) to construct a function
𝜙𝜖 ∈ 𝐶𝑏(𝑋) ∩ 𝑝(𝜇) with

‖𝜙𝜖‖∞ ⩽ ‖𝑓𝑅‖∞, 𝜇
{

𝑓𝑅 ≠ 𝜙𝜖
}

⩽ 𝜖
𝑅𝑝

and ‖𝑓𝑅 − 𝜙𝜖‖𝑝 ⩽ 𝜖.

Obviously, ‖𝜙𝜖‖∞ ⩽ ‖𝑓‖∞. Moreover,

‖𝜙𝜖 − 𝑓‖𝑝𝑝

= ∫
{|𝑓 |⩽𝑅}

|𝜙𝜖 − 𝑓 |𝑝 𝑑𝜇 + ∫
{|𝑓 |>𝑅}
∩{𝜙𝜖=𝑓𝑅}

|𝜙𝜖 − 𝑓 |𝑝 𝑑𝜇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐼1

+ ∫
{|𝑓 |>𝑅}
∩{𝜙𝜖≠𝑓𝑅}

|𝜙𝜖 − 𝑓 |𝑝 𝑑𝜇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐼2

⩽ ‖𝜙𝜖 − 𝑓𝑅‖𝑝𝑝 + 𝐼1 + 𝐼2.

Let us estimate 𝐼1 and 𝐼2 separately. Since 𝑓𝑅|{|𝑓 |>𝑅} = 𝑅, we get

𝐼1 = ∫{𝑓>𝑅}∩{𝜙𝜖=𝑓𝑅}
(𝑓 − 𝑅)𝑝 𝑑𝜇 + ∫{𝑓<−𝑅}∩{𝜙𝜖=𝑓𝑅}

(−𝑅 − 𝑓 )𝑝 𝑑𝜇

⩽ ∫{𝑓>𝑅}∩{𝜙𝜖=𝑓𝑅}
𝑓 𝑝

⏟⏟⏟
|𝑓 |𝑝

𝑑𝜇 + ∫{𝑓<−𝑅}∩{𝜙𝜖=𝑓𝑅}
(−𝑓 )𝑝
⏟⏟⏟

|𝑓 |𝑝

𝑑𝜇

⩽ ∫{|𝑓 |>𝑅}
|𝑓 |𝑝 𝑑𝜇 < 𝜖.
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With the elementary estimate

|𝑎 + 𝑏|𝑝 ⩽ 𝐶(𝑝)(𝑎𝑝 + 𝑏𝑝) ∀𝑎, 𝑏 ⩾ 0, 𝑝 ⩾ 1 (♯)

(in fact, 𝐶(𝑝) = 2𝑝−1) we get

𝐼2 ⩽ 𝐶(𝑝)∫{|𝑓 |>𝑅}∩{𝜙𝜖≠𝑓𝑅}
|𝜙𝜖|

𝑝 𝑑𝜇 + 𝐶(𝑝)∫{|𝑓 |>𝑅}∩{𝜙𝜖≠𝑓𝑅}
|𝑓 |𝑝 𝑑𝜇

⩽ 𝐶(𝑝)‖𝜙𝜖‖𝑝∞𝜇{𝜙𝜖 ≠ 𝑓𝑅} + 𝐶(𝑝)∫{|𝑓 |>𝑅}
|𝑓 |𝑝 𝑑𝜇

⩽ 𝐶(𝑝)𝑅𝑝 𝜖
𝑅𝑝

+ 𝐶(𝑝)𝜖.

Therefore,
‖𝜙𝜖 − 𝑓‖𝑝𝑝 ⩽ 𝜖𝑝 + 𝜖 + 2𝐶(𝑝)𝜖.

Since 𝜖 > 0 is arbitrary, ‖𝜙𝜖 − 𝑓‖𝑝 is as small as we want it to be. Finally,

𝜇{𝑓 ≠ 𝜙𝜖} ⩽ 𝜇{𝑓𝑅 ≠ 𝜙𝜖} + 𝜇{|𝑓 | ⩾ 𝑅} ⩽ 2𝜖.

This shows that 𝜙𝜖 enjoys all required properties.
Remark: (♯) follows from Hölder’s inequality

|

|

|

|

|

|

𝑛
∑

𝑗=1
𝑥𝑗 ⋅ 𝑦𝑗

|

|

|

|

|

|

⩽

( 𝑛
∑

𝑗=1
|𝑥𝑗|

𝑝

)
1
𝑝

⋅

( 𝑛
∑

𝑗=1
|𝑦𝑗|

𝑞

)
1
𝑞

for 𝑥, 𝑦 ∈ R𝑛 and conjugate indices 𝑝, 𝑞 ⩾ 1. If we take, in particular, 𝑑 = 2, 𝑥 = (𝑎, 𝑏),
𝑦 = (1, 1), then

|𝑎 ⋅ 1 + 𝑏 ⋅ 1| ⩽ (|𝑎|𝑝 + |𝑏|𝑝)
1
𝑝 ⋅ 2

1
𝑞 .

Raising both sides to the 𝑝th power proves the estimate.
■■

Problem 17.8 Solution: We see immediately that ∫ 𝑏
𝑎 𝑝(𝑥)𝑓 (𝑥) 𝑑𝑥 = 0 for all polynomials 𝑝. Fix

𝑔 ∈ 𝐶[𝑎, 𝑏] and 𝜖 > 0. By Weierstraß’ theorem, there is some polynomial 𝑝 such that ‖𝑔−𝑝‖∞ ⩽ 𝜖.
Therefore,

|

|

|

|

|

∫

𝑏

𝑎
𝑔(𝑥)𝑓 (𝑥) 𝑑𝑥

|

|

|

|

|

=
|

|

|

|

∫

𝑏

𝑎
(𝑔(𝑥) − 𝑝(𝑥))𝑓 (𝑥) 𝑑𝑥 + ∫

𝑏

𝑎
𝑝(𝑥)𝑓 (𝑥) 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

|

|

|

|

⩽ ∫

𝑏

𝑎
|𝑝(𝑥) − 𝑔(𝑥)|
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

⩽𝜖

|𝑓 (𝑥)| 𝑑𝑥

⩽ 𝜖 ∫

𝑏

𝑎
|𝑓 (𝑥)| 𝑑𝑥.

From this we conclude that

∫

𝑏

𝑎
𝑔(𝑥)𝑓 (𝑥) 𝑑𝑥 = 0 ∀𝑔 ∈ 𝐶[𝑎, 𝑏].
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Define measures 𝜇± by 𝜇±(𝑑𝑥) ∶= 1[𝑎,𝑏](𝑥)1{±𝑓>0}(𝑥) 𝑑𝑥. Then ∫ 𝑔 𝑑𝜇+ = ∫ 𝑔 𝑑𝜇− for all
𝑔 ∈ 𝐶[𝑎, 𝑏]. According to Theorem 17.12, 𝐶[𝑎, 𝑏] is a determining set, and so 𝜇+ = 𝜇−. This is
only possible if 𝜇 = 0, hence 𝑓 = 0 Lebesgue a.e.

■■

Problem 17.9 Solution:

(i) First of all, we note that it is enough to know that the polynomials are uniformly dense
in the set 𝐶[−1, 1]. This follows immediately from the observation that any function in
𝐶[0, 1] can be mapped onto 𝐶[𝑎, 𝑏] using the affine transform 𝑎 + 𝑡(𝑏 − 𝑎), 𝑡 ∈ [0, 1] –
and vice versa. Fix 𝑢 ∈ 𝐶[−1, 1] and define a sequence of polynomials (𝑝𝑛)𝑛∈N by

𝑝𝑛(𝑥) ∶=
1
𝑐𝑛

(

𝑥2

16
− 1

)𝑛

, 𝑥 ∈ R,

where 𝑐𝑛 ∶= ∫ 4
−4(𝑥

2∕16−1)𝑛 𝑑𝑥. Since 𝑢 ∈ 𝐶[−1, 1], there is some 𝑢̃ ∈ 𝐶(R) such that
𝑢̃(𝑥) = 0 for |𝑥| > 2 and 𝑢̃(𝑥) = 𝑢(𝑥) for 𝑥 ∈ [−1, 1]. Define 𝑝𝑛(𝑥) ∶= 𝑝𝑛(𝑥)1[−4,4](𝑥)
and

𝑢𝑛(𝑥) ∶= 𝑢̃ ⋆ 𝑝𝑛(𝑥) = ∫ 𝑢̃(𝑥 − 𝑦)𝑝𝑛(𝑦) 𝑑𝑦, 𝑥 ∈ R.

We find
𝑢𝑛(𝑥) = ∫ 𝑢̃(𝑥 − 𝑦)𝑝𝑛(𝑦) 𝑑𝑦 ∀𝑥 ∈ [−2, 2],

since
|𝑥| ⩽ 2 ⇐⇒ 𝑢̃(𝑥 − 𝑦) = 0 ∀|𝑦| > 2.

Using the fact that

𝑢𝑛(𝑥) = ∫ 𝑢̃(𝑦)𝑝𝑛(𝑥 − 𝑦) 𝑑𝑦, 𝑥 ∈ [−2, 2]

we see that 𝑢𝑛|[−2,2] is a polynomial. Let us show that 𝑢𝑛 → 𝑢̃ converges uniformly –
and since 𝑢̃|[−1,1] = 𝑢, the claim follows. Using that 𝑝𝑛 ⩾ 0 and ∫ 𝑝𝑛 𝑑𝑥 = 1 we get

|

|

𝑢𝑛(𝑥) − 𝑢̃(𝑥)|| =
|

|

|

|

∫ (𝑢̃(𝑥 − 𝑦) − 𝑢̃(𝑥))𝑝𝑛(𝑦) 𝑑𝑦
|

|

|

|

⩽ ∫[

− 1
𝑅 ,

1
𝑅

]
|𝑢̃(𝑥 − 𝑦) − 𝑢̃(𝑥)|𝑝𝑛(𝑦) 𝑑𝑦

+ ∫R⧵
[

− 1
𝑅 ,

1
𝑅

]
|𝑢̃(𝑥 − 𝑦) − 𝑢̃(𝑥)|𝑝𝑛(𝑦) 𝑑𝑦

=∶ 𝐼1(𝑥) + 𝐼2(𝑥)

for all 𝑅 > 0. Let us bound 𝐼1 and 𝐼2 separately. Since 𝑢̃(𝑥) = 0 for |𝑥| > 2, the
function 𝑢̃ is uniformly continuous and we get

𝐼1(𝑥) ⩽ sup
𝑦∈

[

− 1
𝑅 ,

1
𝑅

]

|𝑢̃(𝑥 − 𝑦) − 𝑢̃(𝑥)|∫[

− 1
𝑅 ,

1
𝑅

]
𝑝𝑛(𝑦) 𝑑𝑦
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⩽ sup
𝑦∈

[

− 1
𝑅 ,

1
𝑅

]

|𝑢̃(𝑥 − 𝑦) − 𝑢̃(𝑥)|

←←←←←←←←←←←←←←←←←←←←←←→
𝑅→∞

0

uniformly for all 𝑥. Because of the boundedness of 𝑢̃ we see that

𝐼2(𝑥) ⩽ 2‖𝑢̃‖∞ ∫R⧵
[

− 1
𝑅 ,

1
𝑅

]
𝑝𝑛(𝑦) 𝑑𝑦.

Since 𝑝𝑛(𝑦) ↓ 0 for all 𝑦 ≠ 0, we can use the monotone convergence theorem to conclude
that 𝐼2 ←←←←←←←←←←←←←←←←←←←←→𝑛→∞

0 uniformly in 𝑥. This proves the claim.
(ii) Fix 𝑢 ∈ 𝐶𝑐[0,∞). Since 𝑢 has compact support, 𝑢(𝑥) = 0 for large 𝑥; in particular,

𝑢◦(− log)(𝑥) = 0 if 𝑥 is small. Therefore,
⎧

⎪

⎨

⎪

⎩

𝑢◦(− log)(𝑥), 𝑥 ∈ (0, 1]

0, 𝑥 = 0,

defines a continuous function on [0, 1]. According to (i), there is a sequence of polyno-
mials (𝑝𝑛)𝑛∈N with 𝑝𝑛 → 𝑢◦(− log) uniformly.

(iii) For 𝑝(𝑥) ∶= 𝑥𝑛 we obviously have 𝑝(𝑒−𝑡) = 𝑒−𝑛𝑡 = 𝜖𝑛(𝑡) and, by assumption,

∫ 𝑝(𝑒−𝑡)𝜇(𝑑𝑡) = ∫ 𝜖𝑛(𝑡)𝜇(𝑑𝑡) = ∫ 𝜖𝑛(𝑡) 𝜈(𝑑𝑡) = ∫ 𝑝(𝑒−𝑡) 𝜈(𝑑𝑡). (⋆)

Using the linearity of the integral, this equality extends to arbitrary polynomials 𝑝.
Assume that 𝑢 ∈ 𝐶𝑐[0,∞) and (𝑝𝑛)𝑛∈N as in (ii). Since 𝑝𝑛 converges uniformly to
𝑢◦(− log), we can interchange integration and limit to get

∫ 𝑢 𝑑𝜇 = ∫ (𝑢◦(− log))(𝑒−𝑡)𝜇(𝑑𝑡)

= lim
𝑛→∞∫ 𝑝𝑛(𝑒−𝑡)𝜇(𝑑𝑡)

(⋆)
= lim

𝑛→∞∫ 𝑝𝑛(𝑒−𝑡) 𝜈(𝑑𝑡)

= ∫ (𝑢◦(− log))(𝑒−𝑡) 𝜈(𝑑𝑡)

= ∫ 𝑢 𝑑𝜈.

■■
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18 Hausdorff measure.

Solutions to Problems 18.1–18.7

Problem 18.1 Solution: This is clear from the monotonicity of the infimum and the fact that there
are more 𝒫 -𝛿-covers than 𝒞 -𝛿-covers, i.e. we have


𝜙
𝛿,𝒫 (𝐴) ⩽ 

𝜙
𝛿,𝒞 (𝐴).

■■

Problem 18.2 Solution: From the proof of Corollary 18.10 we know, using the monotonicity of
measures


𝜙
(𝐴) = 𝜙(𝐺) = lim

𝑘→∞
𝜙(𝑈𝑘)

𝑈𝑘 ⊃ 𝐴
⩾ inf

{

𝜙(𝑈 ) ∶ 𝑈 ⊃ 𝐴, 𝑈 open} 𝑈 ⊃ 𝐴
⩾ 

𝜙
(𝐴).

When using the monotonicity we must make sure that 𝜙(𝑈𝑘) < ∞ – this we can enforce by
𝑈𝑘 ⇝ 𝑈𝑘 ∩ 𝑈 (where 𝑈 is the open set with finite Hausdorff measure).
For counting measure this is clearly violated: Any open set 𝑈 ⊃ 𝐴 ∶= {𝑎} has infinitely many
points! Nevertheless 𝐴 is itself a 𝐺𝛿-set.

■■

Problem 18.3 Solution: By Corollary 18.10 there are open sets 𝑈𝑖 such that 𝐻 ∶=
⋂

𝑖 𝑈𝑖 ⊃ 𝐵 and
𝜙(𝐻 ⧵ 𝐵) = 0 or 𝜙(𝐻) = 𝜙(𝐵). Now we can write each 𝑈𝑖 as an 𝐹𝜎-set:

𝑈𝑖 =
⋃

𝐵𝑟(𝑥)⊂𝑈𝑖,𝑥∈𝑈𝑖

𝐵𝑟∕2(𝑥)

is indeed a countable union of closed sets, since 𝑈𝑖 ⊂ 𝑋 contains a countable dense subset. So we
have

𝑈𝑖 =
⋃

𝑘
𝐹𝑖𝑘 for closed sets 𝐹𝑖𝑘.

Without loss of generality we may assume that the sets 𝐹𝑖𝑘 increase in 𝑘, otherwise we would
consider 𝐹𝑖1 ∪ ⋯ ∪ 𝐹𝑖𝑘. By the continuity of measure (here we require the measurability of 𝐵!)
we have

lim
𝑘→∞

𝜙(𝐵 ∩ 𝐹𝑖𝑘) = 𝜙(𝐵 ∩ 𝑈𝑖) = 𝜙(𝐵).
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In particular, for every 𝜖 > 0 there is some 𝑘(𝑖) with

𝜙(𝐵 ⧵ 𝐹𝑖𝑘(𝑖)) ⩽ 𝜖∕2𝑖, 𝑖 ∈ N.

Consider the closed set 𝐹 =
⋂

𝑖 𝐹𝑖𝑘(𝑖) and observe that

𝜙(𝐹 ) ⩾ 𝜙(𝐹 ∩ 𝐵) ⩾ 𝜙(𝐵) −
∑

𝑖
𝜙(𝐵 ⧵ 𝐹𝑖𝑘(𝑖)) ⩾ 𝜙(𝐵) −

∑

𝑖

𝜖
2𝑖

= 𝜙(𝐵) − 𝜖.

Since 𝐹 ⊂
⋂

𝑖 𝑈𝑖, we get

𝜙(𝐹 ⧵ 𝐵) ⩽ 𝜙
(

⋂

𝑖
𝑈𝑖 ⧵ 𝐵

)

= 𝜙(𝐻 ⧵ 𝐵) = 0.

By Corollary 18.10, the set 𝐹 ⧵ 𝐵 is contained in a 𝐺𝛿-set 𝐺 =
⋂

𝑖 𝑉𝑖 (where the 𝑉𝑖 are open sets)
such that 𝜙(𝐺) = 0 = 𝜙(𝐹 ⧵ 𝐵). Thus,

𝐹 ⧵ 𝐺 = 𝐹 ∩
⋃

𝑖
𝑉 𝑐
𝑖 =

⋃

𝑖
𝐹 ∩ 𝑉 𝑐

𝑖
⏟⏟⏟

closed

is an 𝐹𝜎-set inside 𝐵 – we have 𝐹 ⧵ 𝐺 ⊂ 𝐹 ⧵ (𝐹 ⧵ 𝐵) ⊂ 𝐵 – and

𝜙(𝐹 ⧵ 𝐺) ⩾ 𝜙(𝐹 ) −𝜙(𝐺) ⩾ 𝜙(𝐵) − 𝜖.

Now consider 𝜖 = 1
𝑛

and take unions of the thus obtained 𝐹𝜎-sets. But, clearly, countable unions
of 𝐹𝜎-sets are still 𝐹𝜎 .

■■

Problem 18.4 Solution: Fix 𝐴 ⊂ R𝑛. We have to show that for any 𝑄 ⊂ R𝑛 the equality

#𝑄 = #(𝑄 ∩ 𝐴) + #(𝑄 ⧵ 𝐴)

holds. We distinguish between two cases.
Case 1: #𝑄 = ∞. Then at least one of the terms #(𝑄 ∩ 𝐴), #(𝑄 ⧵ 𝐴) on the right-hand side must
be infinite, so the equality is clear.
Case 2: #𝑄 <∞. Then both sets (𝑄∩𝐴), (𝑄⧵𝐴) are finite and, as such, they are metrically separ-
ated. Therefore we can use the fact that 0

(𝐴) = #(𝐴) is a metric outer measure (Theorem 18.5)
to get equality.

■■

Problem 18.5 Solution: Use Lemma 18.17 to see 0 ⩽ dim 𝐵 ⩽ dim R
𝑛 as 𝐵 ⊂ R𝑛. From

Example 18.18 we know that dim R
𝑛 = 𝑛.

If𝐵 contains an open set𝑈 (or a set of non-zero Lebesgue measure), we see 𝑛(𝐵) ⩾ 𝑛(𝑈 ) > 0;
intersect with a large open ball 𝐾 to make sure that 𝑛(𝐵 ∩ 𝐾) < ∞ and 𝑈 ∩ 𝐾 ⊂ 𝐵 ∩ 𝐾 . This
shows 𝑛 = dim(𝐵 ∩𝐾) ⩽ dim(𝐵) ⩽ 𝑛.

■■
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Problem 18.6 Solution: By self-similarity, we see for the Sierpinski triangle of generation 𝑖, 𝑆 𝑖−1
and its follow-up stage 𝑆 𝑖 = 𝑆 𝑖1 ∪ 𝑆

𝑖
2 ∪ 𝑆

𝑖
3 that the 𝑆 𝑖𝑘’s are scaled versions of 𝑆 with a factor 1

2 .
So,

𝑠(𝑆 𝑖−1) = 𝑠(𝑆 𝑖1) +𝑠(𝑆 𝑖2) +𝑠(𝑆 𝑖3) = 3 ⋅ 2−𝑠𝑠(𝑆 𝑖−1)

and dividing by 𝑠(𝑆 𝑖−1) and solving the equality 1 = 3 ⋅ 2−𝑠 ⇐⇒ 2𝑠 = 3 ⇐⇒ 𝑠 = log 3∕ log 2

Koch’s snowflake 𝑆 has in each subsequent generation stage 4 new parts, each scaled by 1∕3, so

𝑠(𝑆) = 𝑠(𝑆1) +𝑠(𝑆2) +𝑠(𝑆3) +𝑠(𝑆4) = 4 ⋅ 3−𝑠𝑠(𝑆)

and dividing by 𝑠(𝑆) and solving the equality 1 = 4 ⋅ 3−𝑠 ⇐⇒ 3𝑠 = 4 ⇐⇒ 𝑠 = log 4∕ log 3.
■■

Problem 18.7 Solution: Let (𝑆𝑖)𝑖∈N be an 𝜖-cover of 𝐴. Then we have
∞
∑

𝑖=1
𝜙(diam𝑈𝑖) =

∞
∑

𝑖=1

𝜙(diam𝑈𝑖)
𝜓(diam𝑈𝑖)

𝜓(diam𝑈𝑖)

⩽
∞
∑

𝑖=1
sup
𝑥⩽𝜖

𝜙(𝑥)
𝜓(𝑥)

𝜓(diam𝑈𝑖)

= sup
𝑥⩽𝜖

𝜙(𝑥)
𝜓(𝑥)

∞
∑

𝑖=1
𝜓(diam𝑈𝑖).

Taking the inf over all admissible 𝜖-covers shows


𝜙
𝜖 (𝐴) ⩽ sup

𝑥⩽𝜖

𝜙(𝑥)
𝜓(𝑥)


𝜓
𝜖 (𝐴) ⩽ sup

𝑥⩽𝜖

𝜙(𝑥)
𝜓(𝑥)


𝜓
(𝐴).

Letting 𝜖 → 0 yields


𝜙
(𝐴) = lim

𝜖→0

𝜙
𝜖 (𝐴) ⩽ lim

𝜖→0
sup
𝑥⩽𝜖

𝜙(𝑥)
𝜓(𝑥)


𝜓
(𝐴) = lim sup

𝑥→0

𝜙(𝑥)
𝜓(𝑥)


𝜓
(𝐴) = 0.

■■

227





19 The Fourier transform.

Solutions to Problems 19.1–19.9

Problem 19.1 Solution:

(a) By definition,

1̂[−1,1](𝜉) =
1
2𝜋 ∫ 1[−1,1](𝑥)𝑒−𝑖 𝑥𝜉 𝑑𝑥

= 1
2𝜋

[

−𝑒
−𝑖 𝑥𝜉

𝑖 𝜉

]1

𝑥=−1

= 1
2𝜋

1
𝑖 𝜉

(

𝑒𝑖 𝜉 − 𝑒−𝑖 𝜉
)

= 1
𝜋
sin 𝜉
𝜉

for 𝜉 ≠ 0. Here we use that sin 𝜉 = Im 𝑒𝑖𝜉 = 1
2𝑖 (𝑒

𝑖𝜉 − 𝑒−𝑖 𝜉). For 𝜉 = 0 we have

1̂[−1,1](0) =
1
2𝜋 ∫ 1[−1,1](𝑥) 𝑑𝑥 = 1

𝜋
.

(Note that sin 𝜉
𝜉

→ 1 as 𝜉 → 0, i.e. the Fourier transform is continuous at 𝜉 = 0 – as one would
expect.)

(b) The convolution theorem, Theorem 19.11, shows that 𝑓 ∗ 𝑔 = (2𝜋)𝑓 ⋅ 𝑔̂. Because of part (a)
we get

ℱ (1[−1,1] ∗ 1[−1,1])(𝜉) = (2𝜋)
(

1
𝜋
sin 𝜉
𝜉

)2
= 2
𝜋
sin2 𝜉
𝜉2

.

(c) We get from the definition that

ℱ (𝑒−(⋅)1[0,∞)(⋅))(𝜉) =
1
2𝜋 ∫

∞

0
𝑒−𝑥𝑒−𝑖 𝑥𝜉 𝑑𝑥

= 1
2𝜋 ∫

∞

0
𝑒−𝑥(1+𝑖 𝜉) 𝑑𝑥

= − 1
2𝜋

1
1 + 𝑖 𝜉

[

𝑒−𝑥(1+𝑖 𝜉)
]∞
𝑥=0

= 1
2𝜋

1
1 + 𝑖 𝜉

.

(d) Obviously, we have

∫ 𝑒−𝑖 𝑥𝜉𝑒−|𝑥| = ∫(−∞,0)
𝑒−𝑖 𝑥𝜉𝑒𝑥 𝑑𝑥 + ∫(0,∞)

𝑒−𝑖 𝑥𝜉𝑒−𝑥 𝑑𝑥
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= ∫(0,∞)
𝑒𝑖 𝑦𝜉𝑒−𝑦 𝑑𝑦 + ∫(0,∞)

𝑒−𝑖 𝑥𝜉𝑒−𝑥 𝑑𝑥.

Thus,

ℱ (𝑒−|⋅|)(𝜉) = ℱ (𝑒−⋅1[0,∞))(−𝜉) +ℱ (𝑒−⋅1[0,∞))(𝜉)
(𝑐)
= 1

2𝜋

(

1
1 − 𝑖 𝜉

+ 1
1 + 𝑖 𝜉

)

= 1
𝜋

1
1 + 𝜉2

.

(e) From (d) and ℱ ◦ℱ 𝑢(𝑥) = (2𝜋)−1𝑢(−𝑥) (cf. Corollary 19.24) we find

ℱ
(

1
1 + 𝑥2

)

(𝜉)
(𝑑)
= 𝜋 ⋅ ℱ ◦ℱ (𝑒−|⋅|)(𝜉) = 1

2
𝑒−|−𝜉| = 1

2
𝑒−|𝜉|.

(f) Note that

∫[−1,1]
(1 − |𝑥|)𝑒−𝑖 𝑥𝜉 𝑑𝑥 = ∫[−1,1]

𝑒−𝑖 𝑥𝜉 𝑑𝑥 + ∫[−1,0]
𝑥𝑒−𝑖 𝑥𝜉 𝑑𝑥 − ∫[0,1]

𝑥𝑒−𝑖 𝑥𝜉 𝑑𝑥

= ∫[−1,1]
𝑒−𝑖 𝑥𝜉 𝑑𝑥 + ∫[0,1]

(−𝑦)𝑒𝑖 𝑦𝜉 𝑑𝑦 − ∫[0,1]
𝑥𝑒−𝑖 𝑥𝜉

= ∫[−1,1]
𝑒−𝑖 𝑥𝜉 𝑑𝑥 − ∫[0,1]

𝑥 (𝑒𝑖 𝑥𝜉 + 𝑒−𝑖 𝑥𝜉)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

2 cos(𝑥𝜉)

𝑑𝑥.

The first expression is as in part (a). For the second integral we use integration by parts:

∫

1

0
𝑥 cos(𝑥𝜉) 𝑑𝑥 =

[

𝑥
sin(𝑥𝜉)
𝜉

]1

𝑥=0
− 1
𝜉 ∫

1

0
sin(𝑥𝜉) 𝑑𝑥

= sin(𝜉)
𝜉

− 1
𝜉

[

cos(𝑥𝜉)
𝜉

]1

𝑥=0

= sin(𝜉)
𝜉

− cos(𝜉)
𝜉2

+ 1
𝜉2
.

Thus,

ℱ (1[−1,1](1 − | ⋅ |))(𝜉) = 1
𝜋
sin 𝜉
𝜉

− 1
𝜋

(

sin 𝜉
𝜉

− cos 𝜉
𝜉2

+ 1
𝜉2

)

= 1
𝜋
1 − cos 𝜉

𝜉2
.

(g) By definition,

ℱ

( ∞
∑

𝑘=0

𝑡𝑘

𝑘!
𝑒−𝑡𝛿𝑘

)

(𝜉) = 1
2𝜋 ∫ 𝑒−𝑖 𝑥𝜉

∞
∑

𝑘=0

𝑡𝑘

𝑘!
𝑒−𝑡𝛿𝑘(𝑑𝑥) =

1
2𝜋

∞
∑

𝑘=0

𝑡𝑘

𝑘!
𝑒−𝑡𝑒−𝑖 𝑘𝜉 .

Since 𝑒−𝑖 𝑘𝜉 = (𝑒−𝑖 𝜉)𝑘, we conclude that

ℱ

( ∞
∑

𝑘=0

𝑡𝑘

𝑘!
𝑒−𝑡𝛿𝑘

)

(𝜉) = 1
2𝜋

∞
∑

𝑘=0

(𝑡𝑒−𝑖 𝜉)𝑘

𝑘!
𝑒−𝑡 = 1

2𝜋
𝑒−𝑡𝑒𝑡𝑒

−𝑖 𝜉 = 1
2𝜋
𝑒𝑡(𝑒

−𝑖 𝜉−1).
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(h) The same calculation as in (g) yields

ℱ

( 𝑘
∑

𝑛=0

(

𝑛
𝑘

)

𝑝𝑘𝑞𝑛−𝑘𝛿𝑘

)

(𝜉) = 1
2𝜋 ∫ 𝑒−𝑖 𝑥𝜉

𝑛
∑

𝑘=0

(

𝑛
𝑘

)

𝑝𝑘𝑞𝑛−𝑘𝛿𝑘(𝑑𝑥)

= 1
2𝜋

𝑛
∑

𝑘=0

(

𝑛
𝑘

)

𝑝𝑘𝑞𝑛−𝑘𝑒−𝑖 𝜉𝑘

= 1
2𝜋

𝑛
∑

𝑘=0

(

𝑛
𝑘

)

(𝑝𝑒−𝑖 𝜉)𝑘𝑞𝑛−𝑘

= 1
2𝜋

(

𝑝𝑒−𝑖𝜉 + 𝑞
)𝑛 .

In the final step we use the binomial theorem.
■■

Problem 19.2 Solution: Observe that for complex numbers 𝑢, 𝑣 ∈ C
|𝑢 + 𝑣|2 = (𝑢 + 𝑣)(𝑢 + 𝑣)

= (𝑢 + 𝑣)(𝑢̄ + 𝑣̄)

= 𝑢𝑢̄ + 𝑢𝑣̄ + 𝑣𝑢̄ + 𝑣𝑣̄

= |𝑢|2 + 2Re 𝑢𝑣̄ + |𝑣|2

and so, setting 𝑣⇝ −𝑣

|𝑢 − 𝑣|2 = |𝑢|2 − 2Re 𝑢𝑣̄ + |𝑣|2

and so, setting 𝑣⇝ 𝑖𝑣

|𝑢 + 𝑖𝑣|2 = |𝑢|2 + 2 Im 𝑢𝑣̄ − |𝑣|2

and so, setting 𝑣⇝ −𝑖𝑣

|𝑢 − 𝑖𝑣|2 = |𝑢|2 − 2 Im 𝑢𝑣̄ − |𝑣|2

And this gives
|𝑢 + 𝑣|2 − |𝑢 − 𝑣|2 + 𝑖|𝑢 + 𝑖𝑣|2 − 𝑖|𝑢 − 𝑖𝑣|2 = 4Re 𝑢𝑣̄ + 4𝑖 Im 𝑢𝑣̄ = 4𝑢𝑣̄.

Thus, we have the following ‘polarization’ formula

∫ 𝑢𝑣̄ 𝑑𝑥 = 1
4

[

∫ |𝑢 + 𝑣|2 𝑑𝑥 − ∫ |𝑢 − 𝑣|2 𝑑𝑥 + 𝑖∫ |𝑢 + 𝑖𝑣|2 𝑑𝑥 − 𝑖∫ |𝑢 − 𝑖𝑣|2 𝑑𝑥
]

= 1
4
[

‖𝑢 + 𝑣‖22 − ‖𝑢 − 𝑣‖22 + 𝑖‖𝑢 + 𝑖𝑣‖
2
2 − 𝑖‖𝑢 − 𝑖𝑣‖

2
2
]

and now the claim follows directly from the statement of Plancherel’s theorem.

Alternative solution: Mimic the proof of Theorem 19.20: We have 𝑢, 𝑣, 𝑢̂, 𝑣 ∈ 𝐿2(𝜆𝑛) (as a result
of Theorem 19.20), and so 𝑢 ⋅ 𝑣̄ and 𝑢̂ ⋅ 𝑣 are integrable. Therefore,

∫ 𝑢̂(𝜉)𝑣(𝜉) 𝑑𝜉 = (2𝜋)−𝑛 ∫ 𝑢̂(𝜉)𝑣̌(𝜉) 𝑑𝜉
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19.12
= (2𝜋)−𝑛 ∫ 𝑢(𝑥)ℱ

[

𝑣̌
]

(𝑥) 𝑑𝑥

19.9
= (2𝜋)−𝑛 ∫ 𝑢(𝑥)𝑣(𝑥) 𝑑𝑥.

■■

Problem 19.3 Solution: Assume that 𝜇 = 𝜇. We have

𝜒(𝜉) = ∫ 𝑒−𝑖𝑥𝜉 𝜇(𝑑𝑥)

𝜇 = 𝜇
= ∫ 𝑒−𝑖𝑥𝜉 𝜇(𝑑𝑥)

15.1
= ∫ 𝑒−𝑖(−𝑥)𝜉 𝜇(𝑑𝑥)

= ∫ 𝑒−𝑖𝑥𝜉 𝜇(𝑑𝑥)

= ∫ 𝑒−𝑖𝑥𝜉 𝜇(𝑑𝑥)

= 𝜒(𝜉).

Therefore, 𝜒 is real-valued. On the other hand, the above calculation shows that

𝜒(𝜉) = ∫ 𝑒−𝑖𝑥𝜉𝜇(𝑑𝑥).

This means that 𝜒 = 𝜒 entails ℱ 𝜇 = ℱ 𝜇, and so 𝜇 = 𝜇 because of the injectivity of the Fourier
transform.

■■

Problem 19.4 Solution: From linear algebra we know that a symmetric positive definite matrix has
a unique symmetric positive square root, i.e. there is some 𝐵 ∈ R𝑛×𝑛 which is symmetric and
positive definite such that 𝐵2 = 𝐴. Since det(𝐵2) = (det 𝐵)2, we see that det 𝐵 =

√

det 𝐴 > 0.
Now we change coordinates according to 𝑦 ∶= 𝐵𝑥

∫ 𝑒−𝑖⟨𝑥,𝜉⟩𝑒−⟨𝑥,𝐴𝑥⟩ 𝑑𝑥 = ∫ 𝑒−𝑖⟨𝑥,𝜉⟩𝑒−⟨𝐵𝑥,𝐵𝑥⟩ 𝑑𝑥

= 1
det 𝐵 ∫ 𝑒−𝑖⟨𝐵

−1𝑦,𝜉⟩𝑒−|𝑦|
2
𝑑𝑦

= 1
√

det 𝐴 ∫ 𝑒−𝑖⟨𝑦,𝐵
−1𝜉⟩𝑒−|𝑦|

2
𝑑𝑦.

If we set
𝑔1∕2(𝑥) ∶=

1
𝜋𝑛∕2

exp
(

−|𝑥|2
)

,

cf. Example 19.2(iii), then the calculation from above gives

ℱ (𝑒−⟨⋅,𝐴⋅⟩)(𝜉) = 𝜋𝑛∕2
√

det 𝐴
ℱ (𝑔1∕2)

(

𝐵−1𝜉
)

.

232



Solution Manual. Last update 20th June 2025

Example 19.2(iii) now shows

ℱ (𝑒−⟨⋅,𝐴⋅⟩)(𝜉) = 𝜋𝑛∕2
√

det 𝐴
1

(2𝜋)𝑛
exp

(

− |𝐵−1𝜉|2

4

)

.

Finally, since 𝐵−1 = (𝐵−1)⊤,

|𝐵−1𝜉|2 = ⟨𝐵−1𝜉, 𝐵−1𝜉⟩ = ⟨𝜉, (𝐵−1𝐵−1

⏟⏞⏟⏞⏟
𝐴−1

)𝜉⟩,

we infer that
ℱ (𝑒−⟨⋅,𝐴⋅⟩)(𝜉) = 1

√

det 𝐴
1

2𝑛∕2
1

(2𝜋)𝑛∕2
exp

(

−
⟨𝜉, 𝐴−1𝜉⟩

4

)

.

■■

Problem 19.5 Solution: 𝑔𝑡(𝑥) = (2𝜋𝑡)−1∕2𝑒−𝑥2∕2𝑡 and 𝑔𝑡(𝜉) = (2𝜋)−1𝑒−𝑡𝜉2∕2. By Plancherel’s the-
orem (Theorem 19.20, plus polarization) or by Problem 19.2 we see that

∫ 𝑢̂(𝜉)𝑒−𝑡|𝜉|2∕2 𝑑𝜉 = (2𝜋)∫ 𝑢̂(𝜉)𝑔𝑡(𝜉) 𝑑𝜉

= ∫ 𝑢(𝑥)𝑔𝑡(𝑥) 𝑑𝑥

= ∫ 𝑢(𝑥)(2𝜋𝑡)−1∕2𝑒−𝑥2∕2𝑡 𝑑𝑥

= (2𝜋)−1∕2 ∫ 𝑢(𝑡𝑦)𝑒−𝑦2∕2 𝑑𝑦

⩽ 𝑐‖𝑢‖∞.

(In fact, 𝑐 = 1, see Example 14.11). Now let 𝑡 ↑ 0 using monotone convergence and use that, by
assumption, 𝑢̂ ⩾ 0.
The same argument holds for 𝐿2-functions since 𝑔𝑡 ∈ 𝐿2.

■■

Problem 19.6 Solution: We follow the hint and find using Fubini’s theorem

2
(𝑅
2

)𝑛

∫

1∕𝑅

−1∕𝑅
⋯∫

1∕𝑅

−1∕𝑅 ∫R𝑛
(1 − 𝑒𝑖⟨𝑥,𝜉⟩)𝜇(𝑑𝑥) 𝑑𝜉1… 𝑑𝜉𝑑

= 2∫R𝑛

(𝑅
2

)𝑛

∫

1∕𝑅

−1∕𝑅
⋯∫

1∕𝑅

−1∕𝑅
(1 − 𝑒𝑖⟨𝑥,𝜉⟩) 𝑑𝜉1… 𝑑𝜉𝑑 𝜇(𝑑𝑥)

= 2∫R𝑛

𝑅
2 ∫

1∕𝑅

−1∕𝑅
… 𝑅

2 ∫

1∕𝑅

−1∕𝑅
(1 − 𝑒𝑖⟨𝑥,𝜉⟩) 𝑑𝜉1… 𝑑𝜉𝑑 𝜇(𝑑𝑥)

= 2∫R𝑛

(

1 − 𝑅
2 ∫

1∕𝑅

−1∕𝑅
… 𝑅

2 ∫

1∕𝑅

−1∕𝑅
𝑒𝑖⟨𝑥,𝜉⟩ 𝑑𝜉1… 𝑑𝜉𝑑

)

𝜇(𝑑𝑥)

= 2∫R𝑛

(

1 −
𝑛
∏

𝑛=1

𝑅
2 ∫

1∕𝑅

−1∕𝑅
𝑒𝑖𝑥𝑛𝜉𝑛 𝑑𝜉𝑛

)

𝜇(𝑑𝑥)
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= 2∫R𝑛

(

1 −
𝑛
∏

𝑛=1

𝑅
2

[

𝑒𝑖𝑥𝑛𝜉𝑛
𝑖𝑥𝑛

]𝜉𝑛=1∕𝑅

𝜉𝑛=−1∕𝑅

)

𝜇(𝑑𝑥)

= 2∫R𝑛

(

1 −
𝑛
∏

𝑛=1

𝑒𝑖𝑥𝑛∕𝑅 − 𝑒−𝑖𝑥𝑛∕𝑅
2𝑖𝑥𝑛∕𝑅

)

𝜇(𝑑𝑥)

= 2∫R𝑛

(

1 −
𝑛
∏

𝑛=1

sin(𝑥𝑛∕𝑅)
𝑥𝑛∕𝑅

)

𝜇(𝑑𝑥)

⩾ 2∫R𝑛⧵[−2𝑅,2𝑅]𝑛

(

1 −
𝑛
∏

𝑛=1

sin(𝑥𝑛∕𝑅)
𝑥𝑛∕𝑅

)

𝜇(𝑑𝑥).

In the last step we use that the integrand is positive since | sin 𝑦∕𝑦| ⩽ 1. Observe that
𝑥 ∈ R𝑛 ⧵ [−2𝑅, 2𝑅]𝑛 ⇐⇒ ∃𝑛 = 1,… , 𝑛 ∶ |𝑥𝑛| > 2𝑅

and so
𝑛
∏

𝑛=1

sin(𝑥𝑛∕𝑅)
𝑥𝑛∕𝑅

⩽ 1
2

hence

2
(𝑅
2

)𝑛

∫

1∕𝑅

−1∕𝑅
⋯∫

1∕𝑅

−1∕𝑅 ∫R𝑛
(1 − 𝑒𝑖⟨𝑥,𝜉⟩)𝜇(𝑑𝑥) 𝑑𝜉1… 𝑑𝜉𝑑

⩾ 2∫R𝑛⧵[−2𝑅,2𝑅]𝑛

(

1 −
𝑛
∏

𝑛=1

sin(𝑥𝑛∕𝑅)
𝑥𝑛∕𝑅

)

𝜇(𝑑𝑥)

⩾ 2∫R𝑛⧵[−2𝑅,2𝑅]𝑛

(

1 − 1
2

)

𝜇(𝑑𝑥)

⩾ ∫R𝑛⧵[−2𝑅,2𝑅]𝑛
𝜇(𝑑𝑥).

Remark. A similar inequality exists for the Fourier transform (instead of the inverse Fourier
transform). This has the form

𝜇 (R𝑛 ⧵ [−2𝑅, 2𝑅]𝑛) ⩽ 2(𝜋𝑅)𝑛 ∫[−1∕𝑅,1∕𝑅]𝑛

(

𝜇(0) − Re𝜇(𝜉)
)

𝑑𝜉.

■■

Problem 19.7 Solution:

(i) Let 𝜉1,… , 𝜉𝑛 ∈ R𝑛 and 𝜆1,… , 𝜆𝑛 ∈ C. From the definition of the Fourier transform
we get

𝑛
∑

𝑖,𝑘=1
𝜙(𝜉𝑗 − 𝜉𝑘)𝜆𝑗 𝜆̄𝑘 =

1
(2𝜋)𝑛

𝑛
∑

𝑗,𝑘=1
𝜆𝑗 𝜆̄𝑘 ∫ 𝑒−𝑖 𝑥(𝜉𝑗−𝜉𝑘) 𝑑𝜇(𝑥)

= 1
(2𝜋)𝑛

𝑛
∑

𝑗,𝑘=1
𝜆𝑗 𝜆̄𝑘 ∫ 𝑒−𝑖 𝑥𝜉𝑗𝑒−𝑖 𝑥𝜉𝑘 𝑑𝜇(𝑥)

= 1
(2𝜋)𝑛 ∫

( 𝑛
∑

𝑗=1
𝜆𝑗𝑒

−𝑖 𝑥𝜉𝑗

)( 𝑛
∑

𝑘=1
𝜆𝑘𝑒−𝑖 𝑥𝜉𝑘

)

𝑑𝜇(𝑥)
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= 1
(2𝜋)𝑛 ∫

|

|

|

|

|

|

𝑛
∑

𝑗=1
𝜆𝑗𝑒

−𝑖 𝑥𝜉𝑗
|

|

|

|

|

|

2

𝑑𝜇(𝑥) ⩾ 0.

Note that this already implies that 𝜙(−𝜉) = 𝜙(𝜉). The argument is as follows: If we
have for a matrix (𝑎𝑗𝑘) that ∑𝑗𝑘 𝑎𝑗𝑘𝜆𝑗 𝜆̄𝑗 ⩾ 0, then

0 ⩽
∑

𝑗𝑘
𝑎𝑗𝑘𝜆𝑗 𝜆̄𝑘 =

∑

𝑗𝑘
𝑎𝑗𝑘𝜆𝑗 𝜆̄𝑘 =

∑

𝑗𝑘
𝑎𝑗𝑘𝜆̄𝑗𝜆𝑘 =

∑

𝑘𝑗
𝑎𝑘𝑗 𝜆̄𝑘𝜆𝑗

which means that 𝑎𝑗𝑘 = 𝑎𝑘𝑗 . Apply this to the matrix 𝑎𝑗𝑘 = 𝜙(𝜉𝑗 − 𝜉𝑘) with 𝑚 = 2 and
𝜉1 = 𝜉 and 𝜉2 = 0 to infer that 𝜙(𝜉) = 𝜙(−𝜉).

(ii) We want to use the differentiability lemma for parameter-dependent integrals. For this
we define

𝑢(𝜉, 𝑥) ∶= 1
(2𝜋)𝑛

𝑒−𝑖 𝑥𝜉 .

Since 𝜇 is a finite measure and |𝑢(𝑥, 𝜉)| ⩽ (2𝜋)−𝑛, we find 𝑢(𝜉, ⋅) ∈ 𝐿1(𝜇). Moreover,

|𝜕𝜉𝑗𝑢(𝜉, 𝑥)| = (2𝜋)−𝑑|𝑥𝑗| ⩽ (2𝜋)−𝑑|𝑥|

⩽ (2𝜋)−𝑑
(

1[−1,1](𝑥) + |𝑥|𝑚1R⧵[−1,1](𝑥)
)

=∶ 𝑤(𝑥) ∈ 𝐿1(𝜇)

is an integrable majorant. With Theorem 12.5 we find

𝜕𝜉𝑗𝜙(𝜉) = 𝜕𝜉𝑗 ∫ 𝑢(𝜉, 𝑥)𝜇(𝑑𝑥) = 1
(2𝜋)𝑛 ∫

(−𝑖𝑥𝑗)𝑒−𝑖 𝑥𝜉𝜇(𝑑𝑥).

Iterating this argument, we see that 𝜕𝛼𝜙 exists for any 𝛼 ∈ N𝑛
0 such that |𝛼| ⩽ 𝑚.

(iii) We follow the hint and consider first the case 𝑑 = 1 and 𝑛 = 1. We can rewrite the
expression 𝜙(2ℎ) − 2𝜙(0) + 𝜙(−2ℎ) using Fourier transforms:

𝜙(2ℎ) − 2𝜙(0) + 𝜙(−2ℎ) = 1
2𝜋 ∫ (𝑒−𝑖 2ℎ𝑥 − 2 + 𝑒𝑖 2ℎ𝑥)𝜇(𝑑𝑥)

= 1
𝜋 ∫ (cos(2ℎ𝑥) − 1)𝜇(𝑑𝑥).

L’Hospital’s theorem applies and gives
1 − cos(2𝑦)

4𝑦2
𝑦→0
←←←←←←←←←←←←←←←←←→

1
2
.

Now we can use Fatou’s lemma

∫ 𝑥2 1
2
𝜇(𝑑𝑥) = ∫ 𝑥2 lim

ℎ→0

1 − cos(2ℎ𝑥)
4(ℎ𝑥)2

𝜇(𝑑𝑥)

⩽ lim inf
ℎ→0

1
4ℎ2 ∫

(1 − cos(2ℎ𝑥))𝜇(𝑑𝑥)

= −𝜋 lim inf
ℎ→0

1
4ℎ2

(

𝜙(2ℎ) − 2𝜙(0) + 𝜙(−2ℎ))

= −𝜋𝜙′′(0) <∞.
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If 𝑛 ⩾ 1, we use induction. Assume that 𝜙 ∈ 𝐶2𝑛(R) and that the assertion has been
proved for 𝑛−1. Since𝜙 ∈ 𝐶2𝑛(R) ⇒ 𝜙 ∈ 𝐶2(𝑛−1), we see by the induction assumption
that ∫ |𝑥|2(𝑛−1) 𝑑𝜇(𝑥) <∞. Thus, 𝜈(𝑑𝑥) ∶= 𝑥2(𝑛−1)𝜇(𝑑𝑥) is a measure and

𝜈(𝜉) = 1
2𝜋 ∫ 𝑥2(𝑛−1)𝑒−𝑖 𝑥𝜉 𝑑𝜇(𝑥)

= 1
2𝜋

1
(−𝑖)2(𝑛−1)

𝑑2(𝑛−1)

𝑑𝜉2(𝑛−1) ∫
𝑒−𝑖 𝑥𝜉 𝑑𝜇(𝑥).

Consequently, we see that 𝜈̂ ∈ 𝐶2(R). The first part of the proof (𝑛 = 1) gives

∫ |𝑥|2𝑛 𝑑𝜇(𝑥) = ∫ |𝑥|2 𝑑𝜈(𝑥) <∞.

If 𝑑 ⩾ 1, then we set 𝜋𝑗(𝑥) ∶= 𝑥𝑗 , 𝑥 ∈ R𝑛, 𝑗 ∈ {1,… , 𝑑}. Apply the case 𝑑 = 1 to the
measures 𝜋𝑗(𝜇).

(iv) Assume that 𝑧 ∈ C𝑛. If𝐾 ∶= supp𝜇 is compact, then we get, because of the continuity
of 𝑒−𝑖 𝑧𝑥, that 𝑀 ∶= sup𝑥∈𝐾 |𝑒−𝑖 𝑧𝑥| <∞. From

∫ 𝑢 𝑑𝜇 = ∫supp𝜇
𝑢 𝑑𝜇 for any 𝑢 ⩾ 0

we conclude that
∫ |𝑒−𝑖 𝑧𝑥| 𝑑𝜇(𝑥) ⩽𝑀𝜇(R𝑛) <∞,

i.e.
𝜙(𝑧) = 1

(2𝜋)𝑛 ∫
𝑒−𝑖 𝑧𝑥 𝑑𝜇(𝑥)

is well-defined. Setting

𝑢𝑛(𝑥) ∶=
1

(2𝜋)𝑛
𝑛
∑

𝑘=0

(−𝑖 𝑧𝑥)𝑘

𝑘!
, 𝑥 ∈ R𝑛,

we get

|𝑢𝑛(𝑥)| ⩽
1

(2𝜋)𝑛
𝑛
∑

𝑘=0

|𝑧𝑥|𝑘

𝑘!
⩽ 1

(2𝜋)𝑛
𝑒|𝑧𝑥| ⩽ 1

(2𝜋)𝑛
sup
𝑥∈𝐾

𝑒|𝑧𝑥| <∞.

Since 𝜇 is a finite measure, we can use the dominated convergence theorem to get

𝜙(𝑧) = ∫ lim
𝑛→∞

𝑢𝑛(𝑥)𝜇(𝑑𝑥)

= lim
𝑛→∞∫ 𝑢𝑛(𝑥) 𝑑𝜇(𝑥)

= 1
(2𝜋)𝑛

∞
∑

𝑘=0

1
𝑘! ∫

(𝑧𝑥)𝑘 𝑑𝜇(𝑥).

This proves that 𝜙 is analytic.
■■
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Problem 19.8 Solution: Note that 𝑒𝑖 𝑥∕𝑛 𝑛→∞
←←←←←←←←←←←←←←←←←←←←→ 1 for all 𝑥 ∈ R. On the other hand, we gather from

∫𝐵 𝑒
𝑖𝑥∕𝑛 𝑑𝑥 = 0 that 1𝐵𝑒𝑖⋅∕𝑛 ∈ 1(𝑑𝑥). As |𝑒𝑖 𝑥∕𝑛| = 1, we get 𝜆1(𝐵) < ∞. By dominated

convergence
0 = lim

𝑛→∞∫𝐵
𝑒𝑖 𝑥∕𝑛 𝑑𝑥 = ∫𝐵

lim
𝑛→∞

𝑒𝑖 𝑥∕𝑛

⏟⏞⏞⏟⏞⏞⏟
1

𝑑𝑥 = 𝜆1(𝐵).

Alternative solution: Set 𝑓 (𝑥) ∶= 1𝐵(𝑥); by assumption, 𝑓 (1∕𝑛) = 0. Since the Fourier trans-
form is continous, cf. 19.3, we get

𝑓 (0) = lim
𝑛→∞

𝑓
(1
𝑛

)

= 0.

On the other hand, 𝑓 (0) = (2𝜋)−1𝜆1(𝐵).
■■

Problem 19.9 Solution:

(i) ⇐: Since 𝜇(R ⧵ 2𝜋
𝜉
Z) = 0 we find

𝜇 =
∑

𝑗∈Z
𝑝𝑗𝛿 2𝜋

𝜉 Z

with 𝑝𝑗 ∶= 𝜇(2𝜋
𝜉
𝑗). From the definition of the Fourier transform we get

𝜇̂(𝜂) = 1
2𝜋 ∫ 𝑒−𝑖 𝑥𝜂𝜇(𝑑𝑥)

= 1
2𝜋

∑

𝑗∈Z
𝑝𝑗 exp

[

−𝑖
(

2𝜋
𝜉
𝑗
)

𝜂
]

for all 𝜂 ∈ R. Setting 𝜂 = 𝜉, we see
𝜇̂(𝜉) = 1

2𝜋
∑

𝑗∈Z
𝑝𝑗 exp(−𝑖2𝜋𝑗)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

1

= 1
2𝜋

∑

𝑗∈Z
𝑝𝑗 exp(−𝑖 0) = 𝜇̂(0).

⇒: From 𝜇̂(𝜉) = 𝜇̂(0) we conclude
2𝜋(𝜇̂(0) − 𝜇̂(𝜉)) = ∫ (1 − 𝑒−𝑖 𝑥𝜉)𝜇(𝑑𝑥) = 0.

In particular, ∫ (1 − 𝑒−𝑖 𝑥𝜉)𝜇(𝑑𝑥) ∈ R, i.e.

∫ (1 − 𝑒−𝑖 𝑥𝜉)𝜇(𝑑𝑥) = Re∫ (1 − 𝑒−𝑖 𝑥𝜉)𝜇(𝑑𝑥) = ∫ (1 − cos(𝑥𝜉))𝜇(𝑑𝑥) = 0.

Since 1 − cos(𝑥𝜉) ⩾ 0, this implies
𝜇 {𝑥 ∈ R; 1 − cos(𝑥𝜉) > 0} = 0.

Consequently,
0 = 𝜇 {𝑥 ∈ R; cos(𝑥𝜉) ≠ 1} = 𝜇

(

R ⧵ 2𝜋
𝜉
Z

)

.
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(ii) Because of |𝜇(𝜉1)| = 𝜇(0) there is some 𝑧1 ∈ R such that

𝜇(𝜉1) = 𝜇(0)𝑒𝑖 𝑧1𝜉1 .

Therefore,
1
2𝜋 ∫ 𝑒−𝑖 𝜉1(𝑥+𝑧1) 𝜇(𝑑𝑥) = 𝜇̂(0).

Observe that the left-hand side is just the Fourier transform of the measure 𝜈(𝐵) ∶= 𝜇(𝐵−
𝑧1), 𝐵 ∈ ℬ(R), and so

𝜈̂(𝜉1) = 𝜇̂(0) = 𝜈̂(0).

From part (i) we get that 𝜈(R ⧵ 2𝜋
𝜉1
Z) = 0. This is the same as

𝜇
{

R ⧵
(

𝑧1 +
2𝜋
𝜉1
Z

)}

= 0.

Using the same argument we find some 𝑧2 ∈ R, such that

𝜇
{

R ⧵
(

𝑧2 +
2𝜋
𝜉2
Z

)}

= 0.

Setting
𝐴 ∶=

(

𝑧1 +
2𝜋
𝜉1
Z

)

∩
(

𝑧2 +
2𝜋
𝜉2
Z

)

we see that 𝜇(R ⧵ 𝐴) = 0. Let us show that 𝐴 contains at most one element: Assume, on
the contrary, that there are two distinct points in 𝐴, then there are 𝑛, 𝑛′ ∈ Z and 𝑚,𝑚′ ∈ Z
such that

𝑧1 +
2𝜋
𝜉1
𝑛 = 𝑧2 +

2𝜋
𝜉2
𝑛′,

𝑧1 +
2𝜋
𝜉1
𝑚 = 𝑧2 +

2𝜋
𝜉2
𝑚′.

Subtracting these identities, we get
2𝜋
𝜉1

(𝑛 − 𝑚) = 2𝜋
𝜉2

(𝑛′ − 𝑚′)

⇒
𝜉2
𝜉1

= 𝑛′ − 𝑚′

𝑛 − 𝑚
∈ Q.

This is clearly contradicting the assumption 𝜉1
𝜉2

∉ Q.
■■
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20 The Radon–Nikodým theorem.

Solutions to Problems 20.1–20.9

Problem 20.1 Solution: The assumption 𝜈 ⩽ 𝜇 immediately implies 𝜈 ≪ 𝜇. Indeed,
𝜇(𝑁) = 0 ⇐⇒ 0 ⩽ 𝜈(𝑁) ⩽ 𝜇(𝑁) = 0 ⇐⇒ 𝜈(𝑁) = 0.

Using the Radon–Nikodým theorem we conclude that there exists a measurable function 𝑓 ∈
+(𝒜 ) such that 𝜈 = 𝑓 ⋅ 𝜇. Assume that 𝑓 > 1 on a set of positive 𝜇-measure. Without loss
of generality we may assume that the set has finite measure, otherwise we would consider the
intersection 𝐴𝑘 ∩ {𝑓 > 1} with some exhausting sequence 𝐴𝑘 ↑ 𝑋 and 𝜇(𝐴𝑘) <∞.
Then, for sufficiently small 𝜖 > 0 we know that 𝜇({𝑓 ⩾ 1 + 𝜖}) > 0 and so

𝜈({𝑓 ⩾ 1 + 𝜖}) = ∫{𝑓⩾1+𝜖}
𝑓 𝑑𝜇

⩾ (1 + 𝜖)∫{𝑓⩾1+𝜖}
𝑑𝜇

⩾ (1 + 𝜖)𝜇({𝑓 ⩾ 1 + 𝜖})

⩾ 𝜇({𝑓 ⩾ 1 + 𝜖})

which is impossible.
■■

Problem 20.2 Solution: Because of our assumption both 𝜇 ≪ 𝜈 and 𝜈 ≪ 𝜇 which means that we
know

𝜈 = 𝑓𝜇 and 𝜇 = 𝑔𝜈

for positive measurable functions 𝑓, 𝑔 which are a.e. unique. Moreover,
𝜈 = 𝑓𝜇 = 𝑓 ⋅ 𝑔𝜈

so that 𝑓 ⋅ 𝑔 is almost everywhere equal to 1 and the claim follows.
Because of Problem 20.4 (which is just Corollary 25.6) it is clear that 𝑓, 𝑔 < ∞ a.e. and, by the
same argument, 𝑓, 𝑔 > 0 a.e.
Note that we do not have to specify w.r.t. which measure we understand the ‘a.e.’ since their null
sets coincide anyway.

■■
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Problem 20.3 Solution: Take Lebesgue measure 𝜆 ∶= 𝜆1 on (R,ℬ(R)) and the function 𝑓 (𝑥) ∶=
𝑥 +∞ ⋅ 1[0,1]𝑐 (𝑥). Then 𝑓 ⋅ 𝜆 is certainly not 𝜎-finite.

■■

Problem 20.4 Solution: See the proof of Corollary 25.6.
■■

Problem 20.5 Solution: See the proof of Theorem 25.9.
■■

Problem 20.6 Solution: (i) If 𝐹 is AC, continuity is trivial, just take 𝑁 = 2 in the very definition of
AC functions.
To see that 𝐹 is also BV, we take 𝜖 = 1 and choose 𝛿 > 0 such that for any subcollection 𝑎 ⩽
𝑥1 < 𝑦1 < ⋯ < 𝑥𝑁 < 𝑦𝑁 ⩽ 𝑏 with ∑

𝑛(𝑦𝑛 − 𝑥𝑛) < 𝛿 we have ∑

𝑛 |𝐹 (𝑦𝑛) − 𝐹 (𝑥𝑛)| < 1. Let
𝑀 = [(𝑏−𝑎)∕𝛿]+1 and 𝑎𝑖 = 𝑎+𝑖(𝑏−𝑎)∕𝑀 for 𝑖 = 0, 1,… ,𝑀 . Clearly, 𝑎𝑖−𝑎𝑖−1 = (𝑏−𝑎)∕𝑀 < 𝛿
and, in particular, 𝑉 (𝑓, [𝑎𝑖−1, 𝑎𝑖]) < 1 for all 𝑖 = 0, 1,…𝑀 . Thus,

𝑉 (𝑓 ; [𝑎, 𝑏]) ⩽
𝑀
∑

𝑖=1
𝑉 (𝑓, [𝑎𝑖−1, 𝑎𝑖]) < 𝑀.

(ii) Following the hint, we see that 𝑓 is increasing. Define 𝑔 ∶= 𝐹 − 𝑓 . We have to show that 𝑔 is
increasing. Let 𝑥 < 𝑦. Obviously,

𝑉 (𝑓 ; [𝑎, 𝑥]) + 𝐹 (𝑦) − 𝐹 (𝑥) ⩽ 𝑉 (𝑓 ; [𝑎, 𝑥]) + |𝐹 (𝑦) − 𝐹 (𝑥)| ⩽ 𝑉 (𝑓 ; [𝑎, 𝑦])

(since the points 𝑥 < 𝑦 can be added to extend any partition of [𝑎, 𝑥] to give a partition of [𝑎, 𝑦]).
This gives 𝑔(𝑥) ⩽ 𝑔(𝑦).
(iii) Fix 𝜖 > 0 and pick 𝑅 = 𝑅(𝜖) in such a way that

∫{|𝑓 |>𝑅}
|𝑓 | 𝑑𝜆 < 𝜖

2
.

This is possible since 𝑓 is integrable: use, e.g. monotone convergence. Now pick 𝑥1 < 𝑦1 < 𝑥2 <
𝑦2 < ⋯ < 𝑥𝑁 < 𝑦𝑁 with ∑𝑁

𝑛=1 |𝑦𝑛 − 𝑥𝑛| < 𝛿 where 𝛿 = 𝛿(𝜖) ∶= 𝜖∕(2𝑅) with the 𝑅 we’ve just
chosen. Then

|𝐹 (𝑦𝑛) − 𝐹 (𝑥𝑛)| ⩽ ∫[𝑥𝑛,𝑦𝑛)
|𝑓 (𝑡)| 𝜆(𝑑𝑡)

= ∫[𝑥𝑛,𝑦𝑛)∩{|𝑓 |⩽𝑅}
|𝑓 (𝑡)| 𝜆(𝑑𝑡) + ∫[𝑥𝑛,𝑦𝑛)∩{|𝑓 |>𝑅}

|𝑓 (𝑡)| 𝜆(𝑑𝑡).

Summing over 𝑛 = 1,… , 𝑁 gives
𝑁
∑

𝑛=1
|𝐹 (𝑦𝑛) − 𝐹 (𝑥𝑛)| ⩽ 𝑅

𝑁
∑

𝑛=1
|𝑦𝑛 − 𝑥𝑛| +

𝑁
∑

𝑛=1
∫[𝑥𝑛,𝑦𝑛)∩{|𝑓 |>𝑅}

|𝑓 | 𝑑𝜆 ⩽ 𝑅𝛿 + ∫{|𝑓 |>𝑅}
|𝑓 | 𝑑𝜆 ⩽ 𝜖.
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(iv) Write 𝐹 = 𝑓1 − 𝑓2 with 𝑓𝑖 increasing (see part (ii)). From (ii) we know that we can pick
𝑓1(𝑥) = 𝑉 (𝐹 , [𝑎, 𝑥]). Since 𝐹 is absolutely continuous, so is 𝑓1, hence 𝑓2. This follows from the
observation that

𝑉 (𝐹 , [𝑎, 𝑦]) − 𝑉 (𝐹 , [𝑎, 𝑥]) = 𝑉 (𝐹 , [𝑥, 𝑦]) ∀ 𝑥 < 𝑦.

Since the 𝑓𝑖 are continuous, the set-functions 𝜇𝑖[𝑎, 𝑥) ∶= 𝑓𝑖(𝑥)−𝑓𝑖(𝑎) are pre-measures and extend
to measures on the Borel 𝜎-algebra – see also Problem 6.1.
Now let 𝑁 be a Lebesgue null-set. For every 𝛿 > 0 we can cover 𝑁 by countably many intervals
[𝑥𝑘, 𝑦𝑘) such that ∑𝑘∈N(𝑦𝑘 −𝑥𝑘) < 𝛿. This follows from the Carathéodory extension of Lebesgue
measure defined on the half-open intervals (Theorem 6.1 and Proposition 6.3). Set

𝑅𝑚 ∶=
𝑚
⋃

𝑘=1
[𝑥𝑘, 𝑦𝑘) ↑ 𝑅 =

⋃

𝑘∈N
[𝑥𝑘, 𝑦𝑘) ⊃ 𝑁.

Fix 𝑚. Without loss of generality we can assume that the intervals in 𝑅𝑚 are non-overlapping and
their length is still < 𝛿. (Otherwise, we could merge the overlapping intervals into one, reducing
the number of intervals, their total lenght is still < 𝛿).
Since the 𝑓𝑖 are AC, we find for every 𝜖 some 𝛿 such that

𝑚
∑

𝑘=1
|𝑓𝑖(𝑦𝑘) − 𝑓𝑖(𝑥𝑘)| < 𝜖.

In particular, using the continuity of measures,

𝜇𝑖(𝑁) ⩽ 𝜇(𝑅) ⩽ lim
𝑚→∞

𝜇(𝑅𝑚) ⩽ lim
𝑚→∞

𝑚
∑

𝑘=1
𝜇𝑖([𝑥𝑘, 𝑦𝑘)) = lim

𝑚→∞

𝑚
∑

𝑘=1
|𝑓𝑖(𝑦𝑘) − 𝑓𝑖(𝑥𝑘)| < 𝜖,

which shows that the Lebesgue null-set is also a 𝜇𝑖-null set, i.e. 𝜇𝑖 ≪ 𝜆 and therefore the claim
follows from the Radon–Nikodým theorem.

■■

Problem 20.7 Solution: This problem is somewhat ill-posed. We should first embed it into a suitable
context, say, on the measurable space (R,ℬ(R)). Denote by 𝜆 = 𝜆1 one-dimensional Lebesgue
measure. Then

𝜇 = 1[0,2]𝜆 and 𝜈 = 1[1,3]𝜆

and from this it is clear that

𝜈 = 1[1,2]𝜈 + 1(2,3]𝜈 = 1[1,2]𝜆 + 1(2,3]𝜆

and from this we read off that

1[1,2]𝜈 ≪ 𝜇
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while

1(2,3]𝜈⊥𝜇.

It is interesting to note how ‘big’ the null-set of ambiguity for the Lebesgue decomposition is—it
is actually R ⧵ [0, 3] a, from a Lebesgue (i.e. 𝜆) point of view, huge and infinite set, but from a
𝜇-𝜈-perspective a negligible, namely null, set.

■■

Problem 20.8 Solution: Since we deal with a bounded measure we can use 𝐹 (𝑥) ∶= 𝜇(−∞, 𝑥) rather
than the more cumbersome definition for 𝐹 employed in Problem 6.1 (which is good for locally
finite measures!).
With respect to one-dimensional Lebesgue measure 𝜆 we can decompose 𝜇 according to Theorem
20.4 into

𝜇 = 𝜇◦ + 𝜇⊥ where 𝜇◦ ≪ 𝜆, 𝜇⊥⊥𝜆.

Now define 𝜇2 ∶= 𝜇◦ and 𝐹2 ∶= 𝜇◦(−∞, 𝑥). We have to prove property (2). For this we observe
that 𝜇◦ is a finite measure (since 𝜇◦ ⩽ 𝜇 and that, therefore, 𝜇◦ = 𝑓 ⋅𝜆 with a function 𝑓 ∈ 𝐿1(𝜆).
Thus, for every 𝑅 > 0

𝐹 (𝑦𝑗) − 𝐹 (𝑥𝑗) = 𝜇◦(𝑥𝑗 , 𝑦𝑗)

= ∫(𝑥𝑗 ,𝑦𝑗 )
𝑓 (𝑡) 𝜆(𝑑𝑡)

= ∫{𝑓<𝑅}∩(𝑥𝑗 ,𝑦𝑗 )
𝑓 (𝑡) 𝜆(𝑑𝑡) + ∫{𝑓⩾𝑅}∩(𝑥𝑗 ,𝑦𝑗 )

𝑓 (𝑡) 𝜆(𝑑𝑡)

⩽ 𝑅∫(𝑥𝑗 ,𝑦𝑗 )
𝜆(𝑑𝑡) + ∫{𝑓⩾𝑅}∩(𝑥𝑗 ,𝑦𝑗 )

𝑓 (𝑡) 𝜆(𝑑𝑡).

Summing over 𝑗 = 1, 2,… , 𝑁 gives
𝑁
∑

𝑗=1
|𝐹2(𝑦𝑗) − 𝐹2(𝑥𝑗)| ⩽ 𝑅 ⋅ 𝛿 + ∫{𝑓⩾𝑅}

𝑓 (𝑡) 𝜆(𝑑𝑡)

since ⨃

𝑗(𝑥𝑗 , 𝑦𝑗) ⊂ R. Now we choose for given 𝜖 > 0

• First 𝑅 = 𝑅(𝜖) such that ∫{𝑓⩾𝑅} 𝑓 (𝑡) 𝜆(𝑑𝑡) ⩽ 𝜖∕2

• and then 𝛿 ∶= 𝜖∕(2𝑅)

to confirm that
𝑁
∑

𝑗=1
|𝐹2(𝑦𝑗) − 𝐹2(𝑥𝑗)| ⩽ 𝜖

this settles b).

242



Solution Manual. Last update 20th June 2025

Now consider the measure 𝜇⊥. Its distribution function 𝐹⊥(𝑥) ∶= 𝜇⊥(−∞, 𝑥) is increasing, left-
continuous but not necessarily continuous. Such a function has, by Lemma 14.14 at most countably
many discontinuities (jumps), which we denote by 𝐽 . Thus, we can write

𝜇⊥ = 𝜇1 + 𝜇3

with the jump (or saltus) Δ𝐹 (𝑦) ∶= 𝐹 (𝑦+) − 𝐹 (𝑦−) if 𝑦 ∈ 𝐽 .

𝜇1 ∶=
∑

𝑦∈𝐽
Δ𝐹 (𝑦) ⋅ 𝛿𝑦, and 𝜇3 ∶= 𝜇⊥ − 𝜇1;

𝜇1 is clearly a measure (the sum being countable) with 𝜇1 ⩽ 𝜇⊥ and so is, therefore, 𝜇2 (since the
defining difference is always positive). The corresponding distribution functions are

𝐹1(𝑥) ∶=
∑

𝑦∈𝐽 ,𝑦<𝑥
Δ𝐹 (𝑦)

(called the jump or saltus function) and

𝐹2(𝑥) ∶= 𝐹⊥(𝑥) − 𝐹1(𝑥).

It is clear that 𝐹2 is increasing and, more importantly, continuous so that the problem is solved.
It is interesting to note that our problem shows that we can decompose every left- or right-continuous
monotone function into an absolutely continuous and singular part and the singular part again into
a continuous and discontinuous part:

𝑔 = 𝑔ac + 𝑔sc + 𝑔sd

where
𝑔 —is a monotone left- or right-continuous function;
𝑔ac —is a monotone absolutely continuous (and in particular continuous) function;
𝑔sc —is a monotone continuous but singular function;
𝑔sd —is a monotone discontinuous (even: pure jump), but nevertheless left- or right-continuous,

and singular function.
■■

Problem 20.9 Solution:

(i) In the following picture 𝐹1 is represented by a black line, 𝐹2 by a grey line and 𝐹3 is a dotted
black line.

(ii),(iii) The construction of the 𝐹𝑛’s also shows that

|𝐹𝑛(𝑥) − 𝐹𝑛+1(𝑥)| ⩽
1

2𝑛+1

since we modify 𝐹𝑛 only on a set 𝐼𝓁𝑛+1 by replacing a diagonal line by a combination of
diagonal-flat-diagonal and all this happens only within a range of 2−𝑛 units. Since the flat bit
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is in the middle, we get that the maximal deviation between 𝐹𝑛 and 𝐹𝑛+1 is at most 1
2 ⋅ 2−𝑛.

Just look at the pictures!
Thus the convergence of 𝐹𝑛 → 𝐹 is uniform, i.e. it preserves continuity and 𝐹 is continuous
as all the 𝐹𝑛’s are. That 𝐹 is increasing is already inherited from the pointwise limit of the
𝐹𝑛’s:

𝑥 < 𝑦 ⇐⇒ ∀ 𝑛 ∶ 𝐹𝑛(𝑥) ⩽ 𝐹𝑛(𝑦)

⇐⇒ 𝐹 (𝑥) = lim
𝑛
𝐹𝑛(𝑥) ⩽ lim

𝑛
𝐹𝑛(𝑦) = 𝐹 (𝑦).

(iv) Let 𝐶 denote the Cantor set. Then for 𝑥 ∈ [0, 1]⧵𝐶 we find 𝑛 and 𝓁 such that 𝑥 ∈ 𝐼𝓁𝑛 (which
is an open set!) and, since on those pieces 𝐹𝑛 and 𝐹 do not differ any more

𝐹𝑛(𝑥) = 𝐹 (𝑥) ⇐⇒ 𝐹 ′(𝑥) = 𝐹 ′
𝑛(𝑥) = 0

where we use that 𝐹𝑛|𝐼𝓁𝑛 is constant. Since 𝜆(𝐶) = 0 (see Problem 7.12) we have 𝜆([0, 1] ⧵
𝐶) = 1 so that 𝐹 ′ exists a.e. and satisfies 𝐹 ′ = 0 a.e.

(v) We have 𝐼𝓁𝑛 = (𝑎𝓁, 𝑏𝓁) (we suppress the dependence of 𝑎𝓁, 𝑏𝓁 on 𝑛 with, because of our
ordering of the middle-thirds sets (see the problem):

𝑎1 < 𝑏1 < 𝑎2 <⋯ < 𝑎2𝑛−1 < 𝑏2𝑛−1

and
2𝑛−1
∑

𝓁=1

[

𝐹 (𝑏𝓁) − 𝐹 (𝑎𝓁)
]

= 𝐹 (𝑏2𝑛−1) − 𝐹 (𝑎1) ←←←←←←←←←←←←←←←←←←←←→𝑛→∞
𝐹 (1) − 𝐹 (0) = 1

while (with the convention that 𝑎0 ∶= 0)
2𝑛−1
∑

𝓁=1
(𝑎𝓁 − 𝑏𝓁−1) ←←←←←←←←←←←←←←←←←←←←→𝑛→∞

0.

This leads to a contradiction since, because of the first equality, the sum
2𝑛−1
∑

𝓁=1

[

𝐹 (𝑎𝓁) − 𝐹 (𝑏𝓁−1)
]

will never become small.
■■
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21 Riesz representation theorems.

Solutions to Problems 21.1–21.7

Problem 21.1 Solution:

(i) Let 𝑓 ∈ 𝐿𝑝(𝜇) and 𝑔 ∈ 𝐿𝑞(𝜇) such that ‖𝑔‖𝑞 ⩽ 1. Hölder’s inequality (13.5) gives
‖𝑓 ⋅ 𝑔‖1 ⩽ ‖𝑓‖𝑝‖𝑔‖𝑞 ⩽ ‖𝑓‖𝑝.

Therefore
‖𝑓‖𝑝 ⩾ sup

{

∫ 𝑓𝑔 𝑑𝜇 ∶ 𝑔 ∈ 𝐿𝑞(𝜇), ‖𝑔‖𝑞 ⩽ 1
}

.

For the converse inequality ‘⩽’ we use 𝑔 ∶= sgn(𝑓 ) ⋅ |𝑓 |𝑝−1. Since 𝑞 = 𝑝
𝑝−1 , we have

|𝑔|𝑞 = |𝑓 |(𝑝−1)𝑞 = |𝑓 |𝑝 ∈ 𝐿1(𝜇),

and so 𝑔 ∈ 𝐿𝑞(𝜇) and ‖𝑔‖𝑞 = ‖𝑓‖𝑝∕𝑞𝑝 . Setting 𝑔 ∶= 𝑔∕‖𝑔‖𝑞 ∈ 𝐿𝑞(𝜇) we find ‖𝑔‖𝑞 ⩽ 1
as well as

∫ 𝑓𝑔 𝑑𝜇 = 1
‖𝑔‖𝑞 ∫

|𝑓 |𝑝 𝑑𝜇 = 1
‖𝑓‖𝑝∕𝑞𝑝

‖𝑓‖𝑝𝑝 = ‖𝑓‖(𝑝(1−1∕𝑞)𝑝 = ‖𝑓‖𝑝.

In the last stepe we use 1
𝑝
+ 1

𝑞
= 1.

(ii) Let  ⊂ 𝐿𝑞(𝜇) be a dense subset. Since  ⊂ 𝐿𝑞(𝜇) we obviously have
‖𝑓‖𝑝 ⩾ sup

{

∫ 𝑓𝑔 𝑑𝜇 ∶ 𝑔 ∈ , ‖𝑔‖𝑞 ⩽ 1
}

.

Converesly, let 𝜖 > 0. Because of (i) there is some 𝑔 ∈ 𝐿𝑞(𝜇), ‖𝑔‖𝑞 ⩽ 1 such that

∫ 𝑓𝑔 𝑑𝜇 ⩾ ‖𝑓‖𝑝 − 𝜖.

Since  is dense, there is some ℎ ∈  with ‖𝑔 − ℎ‖𝑞 ⩽ 𝜖. The Hölder inequality now
shows

∫ 𝑓ℎ 𝑑𝜇 = ∫ 𝑓 (ℎ − 𝑔) 𝑑𝜇 + ∫ 𝑓𝑔 𝑑𝜇

⩾ −‖𝑓‖𝑝‖ℎ − 𝑔‖𝑞 + ∫ 𝑓𝑔 𝑑𝜇

⩾ −‖𝑓‖𝑝𝜖 + ∫ 𝑓𝑔 𝑑𝜇

⩾ −‖𝑓‖𝑝𝜖 + ‖𝑓‖𝑝 − 𝜖

= ‖𝑓‖𝑝(1 − 𝜖) − 𝜖.

Letting 𝜖 → 0 proves the claim.
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(iii) If 𝑓𝑔 ∈ 𝐿1(𝜇) for all 𝑔 ∈ 𝐿𝑞(𝜇), then 𝐼𝑓 (𝑔) ∶= ∫ |𝑓 |𝑔 𝑑𝜇 is a positive linear functional
on 𝐿𝑞(𝜇). From Theorem 21.5 we know that there exists a unique 𝑓 ∈ 𝐿𝑞(𝜇) such that

𝐼𝑓 (𝑔) = ∫ 𝑓𝑔 𝑑𝜇 ∀𝑔 ∈ 𝐿𝑞(𝜇).

Therefore, 𝑓 = 𝑓 ∈ 𝐿𝑞(𝜇).
■■

Problem 21.2 Solution:

(i) We use a classical diagonal argument (as in the proof of Theorem 21.18). Let (𝑔𝑛)𝑛∈N
denote an enumeration of 𝑞. Hölder’s inequality (13.5) tells us

|

|

|

|

∫ 𝑢𝑛𝑔𝑖 𝑑𝜇
|

|

|

|

⩽ ‖𝑢𝑛‖𝑝‖𝑔𝑖‖𝑞 ⩽
(

sup
𝑛∈N

‖𝑢𝑛‖𝑝

)

‖𝑔𝑖‖𝑞

for all 𝑖, 𝑛 ∈ N. If 𝑖 = 1, the sequence (∫ 𝑢𝑛𝑔1 𝑑𝜇)𝑛∈N is bounded. Therefore, the
Bolzano–Weierstraß theorem shows the existence of a subsequence (𝑢1𝑛)𝑛∈N such that
the limit

lim
𝑛→∞∫ 𝑢1𝑛𝑔1 𝑑𝜇

exists. We pick recursively subsequences (𝑢𝑖+1𝑛 )𝑛∈N ⊂ (𝑢𝑖𝑛)𝑛∈N such that the limits

lim
𝑛→∞∫ 𝑢𝑖+1𝑛 𝑔𝑖+1 𝑑𝜇

exist. Because of the recursive thinning, we see that

lim
𝑛→∞∫ 𝑢𝑖𝑛𝑔𝑘 𝑑𝜇

exists for all 𝑘 = 1, 2,… , 𝑖. Thus, for the diagonal sequence 𝑣𝑛 ∶= 𝑢𝑛𝑛 the limits
lim𝑛→∞ ∫ 𝑣𝑛𝑔𝑖 𝑑𝜇 exist for each 𝑖 ∈ N.

(ii) Let 𝑔 ∈ 𝐿𝑞(𝜇) and (𝑢𝑛(𝑖))𝑖∈N be the diagonal sequence constructed in (i). Since R is
complete, it is enough to show that (∫ 𝑢𝑛(𝑖)𝑔 𝑑𝜇

)

𝑖∈N is a Cauchy sequence. Fix 𝜖 > 0.
By assumption, 𝑞 is dense in𝐿𝑞(𝜇), i.e. there exists some ℎ ∈ 𝑞 such that ‖𝑔−ℎ‖𝑞 ⩽
𝜖. Part (i) shows that we can take 𝑁 ∈ N with

|

|

|

|

∫ 𝑢𝑛(𝑖)ℎ 𝑑𝜇 − ∫ 𝑢𝑛(𝑘)ℎ 𝑑𝜇
|

|

|

|

⩽ 𝜖 ∀𝑖, 𝑘 ⩾ 𝑁. (⋆)

Hölder’s inequality and the triangle inequality show
|

|

|

|

∫ 𝑢𝑛(𝑖)𝑔 𝑑𝜇 − ∫ 𝑢𝑛(𝑘)𝑔 𝑑𝜇
|

|

|

|

=
|

|

|

|

∫ (𝑢𝑛(𝑖) − 𝑢𝑛(𝑘))(𝑔 − ℎ) 𝑑𝜇 + ∫ (𝑢𝑛(𝑖) − 𝑢𝑛(𝑘))ℎ 𝑑𝜇
|

|

|

|

⩽
|

|

|

|

∫ (𝑢𝑛(𝑖) − 𝑢𝑛(𝑘))(𝑔 − ℎ) 𝑑𝜇
|

|

|

|

+
|

|

|

|

∫ (𝑢𝑛(𝑖) − 𝑢𝑛(𝑘))ℎ 𝑑𝜇
|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
⩽𝜖 b/o (⋆)
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⩽ ‖𝑢𝑛(𝑖) − 𝑢𝑛(𝑘)‖𝑝‖𝑔 − ℎ‖𝑞 + 𝜖

⩽ (‖𝑢𝑛(𝑖)‖𝑝 + ‖𝑢𝑛(𝑘)‖𝑝)‖𝑔 − ℎ‖𝑞 + 𝜖

⩽ 2 sup
𝑛∈N

‖𝑢𝑛‖𝑝‖𝑔 − ℎ‖𝑞 + 𝜖

⩽
(

2 sup
𝑛∈N

‖𝑢𝑛‖𝑝 + 1
)

𝜖

for any 𝑖, 𝑘 ⩾ 𝑁 . This proves that (∫ 𝑢𝑛(𝑖)𝑔 𝑑𝜇
)

𝑖∈N is Cauchy.
(iii) Without loss of generality we may assume that the limits

𝐼(𝑔) ∶= lim
𝑖→∞∫ 𝑢+𝑛(𝑖)𝑔 𝑑𝜇, and 𝐽 (𝑔) ∶= lim

𝑖→∞∫ 𝑢−𝑛(𝑖)𝑔 𝑑𝜇

exist for all 𝑔 ∈ 𝐿𝑞(𝜇). Indeed: From (i),(ii) we see that there is a subsequence such
that 𝐼(𝑔) exists for all 𝑔 ∈ 𝐿𝑞(𝜇). Thinning out this subsequence once again, we see
that 𝐽 (𝑔) exists for all 𝑔 ∈ 𝐿𝑞(𝜇). Since 𝐼 and 𝐽 are positive linear functionals on
𝐿𝑞(𝜇), Theorem 21.5 proves that there are unique functions 𝑣,𝑤 ∈ 𝐿𝑞(𝜇), 𝑣,𝑤 ⩾ 0
representing these functionals:

𝐼(𝑔) = ∫ 𝑣𝑔 𝑑𝜇 and 𝐽 (𝑔) = ∫ 𝑤𝑔 𝑑𝜇.

Therefore,
lim
𝑖→∞∫ 𝑢𝑛(𝑖)𝑔 𝑑𝜇 = lim

𝑖→∞∫ 𝑢+𝑛(𝑖)𝑔 𝑑𝜇 − lim
𝑖→∞∫ 𝑢−𝑛(𝑖)𝑔 𝑑𝜇

= ∫ (𝑣 −𝑤)𝑔 𝑑𝜇.

The claim follows if we use 𝑢 ∶= 𝑣 −𝑤 ∈ 𝐿𝑞(𝜇).
■■

Problem 21.3 Solution:

(i) By Problem 19.7(i) or 21.4(a), 𝜇𝑘 is positive semidefinite, i.e. for any choice of 𝑚 ∈ N,
𝜆1,… , 𝜆𝑚 ∈ C and 𝜉1,… , 𝜉𝑚 ∈ R𝑛 we have

𝑚
∑

𝑖,𝑘=1
𝜇𝑘(𝜉𝑖 − 𝜉𝑘)𝜆𝑖𝜆̄𝑘 ⩾ 0.

Since lim𝑖→∞ 𝜇𝑖(𝜉) = 𝜙(𝜉), we see
𝑚
∑

𝑖,𝑘=1
𝜙(𝜉𝑖 − 𝜉𝑘)𝜆𝑖𝜆̄𝑘 ⩾ 0.

Since 𝜇𝑖(−𝜉) = 𝜇𝑖(𝜉), this also holds for the limit
𝜙(−𝜉) = lim

𝑖→∞
𝜇𝑖(−𝜉) = lim

𝑖→∞
𝜇𝑖(𝜉) = 𝜙(𝜉) ∀𝜉 ∈ R𝑛.

This shows that 𝜙 is positive semidefinite. If 𝑚 = 1 resp. 𝑚 = 2, we see that the matrices
(

𝜙(0)
)

and
(

𝜙(0) 𝜙(−𝜉)
𝜙(𝜉) 𝜙(0)

)
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are positve hermitian for all 𝜉 ∈ R𝑛. Since determinants of positive hermitian matrices
are positive, we find 𝜙(0) ⩾ 0 and

0 ⩽ 𝜙(0)2 − 𝜙(𝜉)𝜙(−𝜉) = 𝜙(0)2 − 𝜙(𝜉)𝜙(𝜉) = 𝜙(0)2 − |𝜙(𝜉)|2.

(ii) First of all we show that the limit exists. Pick 𝑢 ∈ 𝐶∞
𝑐 (R𝑛). Because of Theorem 19.23,

−1𝑢 ∈ (R𝑛) and we can use Plancherel’s theorem (Theorem 19.12), to get

∫ 𝑢 𝑑𝜇𝑖 = ∫  (−1𝑢) 𝑑𝜇𝑖 = ∫ −1𝑢(𝜉)𝜇𝑖(𝜉) 𝑑𝜉.

Since |𝜇𝑖(𝜉)| ⩽ 𝜇𝑖(0) → 𝜙(0) is uniformly bounded, we can use dominated convergence
and find that

Λ(𝑢) ∶= lim
𝑖→∞∫ 𝑢 𝑑𝜇𝑖 = ∫ −1𝑢(𝜉)𝜙(𝜉) 𝑑𝜉

is well-defined. The linearity of Λ follows from the linearity of the integral Moreover, if
𝑢 ⩾ 0, then

Λ𝑢 = lim
𝑖→∞∫ 𝑢 𝑑𝜇𝑖 ⩾ 0.

(iii) The continuity of Λ follows from

|Λ𝑢| ⩽ lim sup
𝑖→∞ ∫ |𝑢| 𝑑𝜇𝑖 ⩽ ‖𝑢‖∞ lim sup

𝑖→∞
𝜇𝑖(R𝑛)
⏟⏟⏟
(2𝜋)𝑛𝜇𝑖(0)

= (2𝜋)𝑛𝜙(0)‖𝑢‖∞.

Since𝐶∞
𝑐 (R𝑛) is uniformly dense in𝐶𝑐(R𝑛), (see Problem 15.13, the proof resembles the

argument of Theorem 15.11), we can extend Λ to a positive linear functional on 𝐶𝑐(R𝑛):
For 𝑢 ∈ 𝐶𝑐(R𝑛) we take (𝑢𝑖)𝑖∈N ⊂ 𝐶∞

𝑐 (R𝑛), such that ‖𝑢𝑖 − 𝑢‖∞ → 0. Since

|Λ(𝑢𝑖) − Λ(𝑢𝑘)| = |Λ(𝑢𝑖 − 𝑢𝑘)| ⩽ (2𝜋)𝑛𝜙(0)‖𝑢𝑖 − 𝑢𝑘‖∞,

we conclude that (Λ𝑢𝑖)𝑖∈N is a Cauchy sequence in R. Therefore, the limit Λ𝑢 ∶=
lim𝑖→∞ Λ𝑢𝑖 exists and defines a positive linear functional on 𝐶𝑐(R𝑛). By Riesz’s rep-
resentation theorem, Theorem 21.8, there exists a unique regular measure representing
the functional Λ

Λ𝑢 = ∫ 𝑢 𝑑𝜇 ∀𝑢 ∈ 𝐶𝑐(R𝑛).

(iv) Let 𝜖 > 0. Since 𝜙 is continuous at 𝜉 = 0, there is some 𝛿 > 0 such that

|𝜙(𝜉) − 𝜙(0)| < 𝜖 ∀|𝜉| ⩽ 𝛿.

Because of Lévy’s truncation inequality, Problem 19.6,

𝜇𝑖(R𝑛 ⧵ [−𝑅,𝑅]𝑛) ⩽ 2(𝑅𝜋)𝑛 ∫[−1∕𝑅,1∕𝑅]𝑛
(𝜇𝑖(0) − Re𝜇𝑖(𝜉)) 𝑑𝜉

(note that 𝜇𝑖(𝜉) = (2𝜋)𝑛𝜇𝑖(−𝜉)). With the dominated convergence theorem we get

lim sup
𝑖→∞

𝜇𝑖(R𝑛 ⧵ [−𝑅,𝑅]𝑛) ⩽ 2(𝑅𝜋)𝑛 ∫[−1∕𝑅,1∕𝑅]𝑛
(𝜙(0) − Re𝜙(𝜉)) 𝑑𝜉
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⩽ 2(2𝜋)𝑛𝜖

for 𝑅 ⩾ 1
𝛿
. In particular we find for 𝑖 ⩾ 𝑛0(𝜖), 𝜇𝑖(R𝑛 ⧵ [−𝑅,𝑅]𝑛) ⩽ 3(2𝜋)𝑛𝜖. In order to

get 𝜇𝑖(R𝑛 ⧵ [−𝑅,𝑅]𝑛) ⩽ 3(2𝜋)𝑛𝜖 for 𝑖 = 1,… , 𝑛0(𝜖), we can increase 𝑅, if needed.
(v) Let (𝜒𝑘)𝑘∈N ⊂ 𝐶𝑐(R𝑛) be a sequence of functions such that 0 ⩽ 𝜒𝑘 ⩽ 1 and 𝜒𝑘 ↑ 1R𝑛

(use, e.g. Urysohn functions, cf. page 239, or construct the 𝜒𝑘 directly). Because of (iii)
we have

∫ 𝜒𝑘 𝑑𝜇 = Λ(𝜒𝑘) ⩽ (2𝜋)𝑛𝜙(0).

The monotone convergence theorem shows that 𝜇 is a finite measure:
𝜇(R𝑛) = sup

𝑘∈N∫ 𝜒𝑘 𝑑𝜇 ⩽ (2𝜋)𝑛𝜙(0).

Moreover, 𝑀 ∶= sup𝑖∈N 𝜇𝑖(R𝑛) < ∞ since 𝜇𝑖(R𝑛) = (2𝜋)𝑛𝜇𝑖(0) → 𝜙(0). It remains to
show that 𝜇𝑖 converges weakly to 𝜇. First of all,

∫ 𝑢 𝑑𝜇𝑖 ←←←←←←←←←←←←←←←←←←←→𝑖→∞ ∫ 𝑢 𝑑𝜇 ∀𝑢 ∈ 𝐶𝑐(R𝑛). (⋆)
Let 𝑢 ∈ 𝐶𝑐(R𝑛). Since 𝐶∞

𝑐 (R𝑛) is dense in 𝐶𝑐(R𝑛), there is a sequence (𝑓𝑘)𝑘∈N ⊂
𝐶∞
𝑐 (R𝑛) such that ‖𝑓𝑘 − 𝑢‖∞ → 0. Thus,

|

|

|

|

∫ 𝑢 𝑑𝜇𝑖 − ∫ 𝑢 𝑑𝜇
|

|

|

|

⩽
|

|

|

|

∫ (𝑢 − 𝑓𝑘) 𝑑𝜇𝑖
|

|

|

|

+
|

|

|

|

∫ 𝑓𝑘 𝑑𝜇𝑖 − ∫ 𝑓𝑘 𝑑𝜇
|

|

|

|

+
|

|

|

|

∫ (𝑓𝑘 − 𝑢) 𝑑𝜇
|

|

|

|

⩽ ‖𝑢 − 𝑓𝑘‖∞𝜇𝑖(R𝑛) +
|

|

|

|

∫ 𝑓𝑘 𝑑𝜇𝑖 − ∫ 𝑓𝑘 𝑑𝜇
|

|

|

|

+ ‖𝑓𝑘 − 𝑢‖∞𝜇(R𝑛)

⩽ ‖𝑢 − 𝑓𝑘‖∞(𝑀 + 𝜇(R𝑛)) +
|

|

|

|

∫ 𝑓𝑘 𝑑𝜇𝑖 − ∫ 𝑓𝑘 𝑑𝜇
|

|

|

|

(ii)
←←←←←←←←←←←←←←←←←←←→
𝑖→∞

‖𝑢 − 𝑓𝑘‖∞(𝑀 + 𝜇(R𝑛)) ←←←←←←←←←←←←←←←←←←←←→
𝑘→∞

0.

Assume that 𝑓 ∈ 𝐶𝑏(R𝑛). For 𝜖 > 0, Party (iv) shows that there is some 𝑅 > 0 such that
with 𝐾 ∶= [−𝑅,𝑅]𝑛

𝜇𝑖(𝐾𝑐
𝑛 ) = 𝜇𝑖(R𝑛 ⧵𝐾) ⩽ 𝜖.

Without loss of generality we may assume that 𝜇(R𝑛 ⧵ 𝐾) ⩽ 𝜖. Pick 𝜒 ∈ 𝐶𝑐(R𝑛),
0 ⩽ 𝜒 ⩽ 1 and 𝜒|𝐾 = 1. Then

|

|

|

|

∫ 𝑓 𝑑𝜇𝑖 − ∫ 𝑓 𝑑𝜇
|

|

|

|

⩽
|

|

|

|

∫ 𝑓𝜒 𝑑𝜇𝑖 − ∫ 𝑓𝜒 𝑑𝜇
|

|

|

|

+
|

|

|

|

∫ (1 − 𝜒)𝑓 𝑑𝜇𝑖 + ∫ (1 − 𝜒)𝑓 𝑑𝜇
|

|

|

|

⩽
|

|

|

|

∫ 𝑓𝜒 𝑑𝜇𝑖 − ∫ 𝑓𝜒 𝑑𝜇
|

|

|

|

+ ‖𝑓‖∞

(

∫ 1𝐾𝑐 𝑑𝜇𝑖 + ∫ 1𝐾𝑐 𝑑𝜇
)

⩽
|

|

|

|

∫ 𝑓𝜒 𝑑𝜇𝑖 − ∫ 𝑓𝜒 𝑑𝜇
|

|

|

|

+ 2‖𝑓‖∞𝜖.

Since 𝑓 ⋅ 𝜒 ∈ 𝐶𝑐(R𝑛), the first term on the right vanishes as 𝑖→ ∞, cf. (iii). So,
lim sup
𝑖→∞

|

|

|

|

∫ 𝑓 𝑑𝜇𝑖 − ∫ 𝑓 𝑑𝜇
|

|

|

|

⩽ 2‖𝑓‖∞𝜖 ←←←←←←←←←←←←←←←←←→𝜖→0
0.
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(vi) Let (𝜇𝑘)𝑘∈N be a weakly convergent sequence of finite measures. Define 𝑓 (𝑥) ∶= 𝑒−𝑖𝑥⋅𝜉 ,
𝜉 ∈ R𝑛, we get

𝜇𝑘(𝜉) =
1

(2𝜋)𝑛 ∫
𝑒−𝑖𝑥⋅𝜉 𝑑𝜇𝑘(𝑥) ←←←←←←←←←←←←←←←←←←←←→𝑘→∞

1
(2𝜋)𝑛 ∫

𝑒−𝑖𝑥⋅𝜉 𝜇(𝑑𝑥) = 𝜇(𝜉),

i.e. the Fourier transforms converge pointwise. From part (iv) we know that the sequence
(𝜇𝑘)𝑘∈N is tight. For 𝜖 > 0 there is some 𝑅 > 0 such that 𝜇𝑘(R𝑛 ⧵ 𝐾) ⩽ 𝜖 for 𝐾 ∶=
[−𝑅,𝑅]𝑛. Without loss of generality we can enlarge 𝑅 to make sure that 𝜇(R𝑛 ⧵𝐾) ⩽ 𝜖,
too. Because of the (uniform) continuity of the function R ∋ 𝑟 → 𝑒𝑖𝑟 on compact sets,
there is some 𝛿 > 0 such that

|𝑒𝑖(𝜉−𝜂)⋅𝑥 − 1| ⩽ 𝜖 ∀|𝜉 − 𝜂| < 𝛿, 𝑥 ∈ 𝐾.

If 𝑘 ∈ N, 𝜉, 𝜂 ∈ R𝑛 with |𝜉 − 𝜂| < 𝛿, then we see

|𝜇𝑘(𝜉) − 𝜇𝑘(𝜂)| ⩽
1

(2𝜋)𝑛 ∫
|𝑒𝑖𝜉⋅𝑥 − 𝑒𝑖𝜂⋅𝑥|𝜇𝑘(𝑑𝑥) =

1
(2𝜋)𝑛 ∫

|𝑒𝑖(𝜉−𝜂)⋅𝑥 − 1|𝜇𝑘(𝑑𝑥)

= 1
(2𝜋)𝑛 ∫𝐾

|𝑒𝑖(𝜉−𝜂)⋅𝑥 − 1|
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

⩽𝜖

𝜇𝑘(𝑑𝑥) +
1

(2𝜋)𝑛 ∫𝐾𝑐
|𝑒𝑖(𝜉−𝜂)⋅𝑥 − 1|
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

⩽2

𝜇𝑘(𝑑𝑥)

⩽
𝜇𝑘(R𝑛)
(2𝜋)𝑛

𝜖 + 2
(2𝜋)𝑛

𝜇𝑖(𝐾𝑐)

⩽ 1
(2𝜋)𝑛

(𝑀 + 2)𝜖

where 𝑀 ∶= sup𝑘∈N 𝜇𝑘(R𝑛) < ∞. This proves the equicontinuity of the sequence
(𝜇𝑘)𝑘∈N.

(vii) Let 𝜉 ∈ R𝑛 and 𝜖 > 0. Use equicontinuity of the sequence (𝜇𝑘)𝑘∈N to pick some 𝛿 > 0.
Since 𝜇 is continuous, we can ensure that 𝛿 is such that

|𝜇(𝜉) − 𝜇(𝜂)| ⩽ 𝜖 ∀|𝜉 − 𝜂| ⩽ 𝛿.

This entails for all 𝜂 ∈ R𝑛 satisfying |𝜂 − 𝜉| ⩽ 𝛿:

|𝜇𝑘(𝜂) − 𝜇(𝜂)| ⩽ |𝜇𝑘(𝜂) − 𝜇𝑘(𝜉)|
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

⩽𝜖

+|𝜇𝑘(𝜉) − 𝜇(𝜉)| + |𝜇(𝜉) − 𝜇(𝜂)|
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

⩽𝜖

⇐⇒ sup
𝜂∈𝐵𝛿(𝜉)

|𝜇𝑘(𝜂) − 𝜇(𝜂)| ⩽ 2𝜖 + |𝜇𝑘(𝜉) − 𝜇(𝜉)| ←←←←←←←←←←←←←←←←←←←←→𝑘→∞
2𝜖 ←←←←←←←←←←←←←←←←←→

𝜖→0
0.

Here we use that 𝜇𝑘 converges pointwise to 𝜇, cf. (vi). The calculation shows that 𝜇𝑘 con-
verges locally uniformly to 𝜇. Since locally uniform convergence is the same as uniform
convergence on compact sets, we are done.

■■

Problem 21.4 Solution:
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(i) Since 𝜇 is a finite measure, the continuity of 𝜇 follows directly from the continuity
lemma, Theorem 12.4 (cf. also 19.3). In order to show positive definiteness, pick 𝑚 ∈
N, 𝜉1,… , 𝜉𝑚 ∈ R𝑛 and 𝜆1,… , 𝜆𝑚 ∈ C. We get

𝑚
∑

𝑗,𝑘=1
𝜙(𝜉𝑗 − 𝜉𝑘)𝜆𝑗 𝜆̄𝑘 =

1
(2𝜋)𝑛

𝑚
∑

𝑗,𝑘=1
𝜆𝑗 𝜆̄𝑘 ∫ 𝑒−𝑖𝑥⋅(𝜉𝑗−𝜉𝑘) 𝜇(𝑑𝑥)

= 1
(2𝜋)𝑛

𝑚
∑

𝑗,𝑘=1
𝜆𝑗 𝜆̄𝑘 ∫ 𝑒−𝑖𝑥⋅𝜉𝑗𝑒−𝑖𝑥⋅𝜉𝑘 𝜇(𝑑𝑥)

= 1
(2𝜋)𝑛 ∫

( 𝑚
∑

𝑗=1
𝜆𝑗𝑒

−𝑖𝑥⋅𝜉𝑗

)( 𝑚
∑

𝑘=1
𝜆𝑘𝑒−𝑖𝑥⋅𝜉𝑘

)

𝜇(𝑑𝑥)

= 1
(2𝜋)𝑛 ∫

|

|

|

|

|

|

𝑚
∑

𝑗=1
𝜆𝑗𝑒

−𝑖𝑥⋅𝜉𝑗
|

|

|

|

|

|

2

𝜇(𝑑𝑥) ⩾ 0.

(ii) For𝑚 = 1 and 𝜉 = 0 the definition of positive definiteness implies that the matrix (𝜙(0))
is positive definite; in particular, 𝜙(0) ⩾ 0.
If we have for a matrix (𝑎𝑖𝑘) that ∑𝑖𝑘 𝑎𝑖𝑘𝜆𝑖𝜆̄𝑗 ⩾ 0, then

0 ⩽
∑

𝑖𝑘
𝑎𝑖𝑘𝜆𝑖𝜆̄𝑘 =

∑

𝑖𝑘
𝑎𝑖𝑘𝜆𝑖𝜆̄𝑘 =

∑

𝑖𝑘
𝑎𝑖𝑘𝜆̄𝑖𝜆𝑘 =

∑

𝑘𝑖
𝑎𝑘𝑖𝜆̄𝑘𝜆𝑖

which means that 𝑎𝑖𝑘 = 𝑎𝑘𝑖. Apply this to the matrix 𝑎𝑖𝑘 = 𝜙(𝜉𝑖 − 𝜉𝑘) with 𝑚 = 2 and
𝜉1 = 𝜉 and 𝜉2 = 0 to infer that 𝜙(𝜉) = 𝜙(−𝜉). Moreover, the matrix

(

𝜙(0) 𝜙(−𝜉)
𝜙(𝜉) 𝜙(0)

)

is positive semidefinite; in particular its determinant is positive:

0 ⩽ 𝜙(0)2 − 𝜙(−𝜉)𝜙(𝜉).

Since 𝜙(−𝜉) = 𝜙(𝜉), we get the inequality as claimed.
(iii) Because of |𝜙(𝜉)| ⩽ 𝜙(0) we see that

|

|

|

|

∬ 𝜙(𝜉 − 𝜂)
(

𝑒𝑖𝑥⋅𝜉𝑒−2𝜖|𝜉|
2
)

(

𝑒𝑖𝑥⋅𝜂𝑒−2𝜖|𝜂|2
)

𝑑𝜉 𝑑𝜂
|

|

|

|

⩽ |𝜙(0)|∬

(

𝑒−2𝜖|𝜉|
2
𝑒−2𝜖|𝜂|

2
)

𝑑𝜉 𝑑𝜂 < ∞,

i.e. 𝜈𝜖 is well-defined. Let us show that 𝜈𝜖 ⩾ 0. For this we cover R𝑛 with countably
many disjoint cubes (𝐼𝑘𝑖 )𝑖∈N with side-length 1∕𝑘 and we pick any 𝜉𝑘𝑖 ∈ 𝐼𝑘𝑖 . Using the
dominated convergence theorem and the positive definiteness of the function 𝜙 we get

𝜈𝜖(𝑥) = lim
𝑘→∞

∑

𝑚,𝑗∈N
∫𝐼𝑘𝑚 ∫𝐼𝑘𝑗

𝜙(𝜉𝑘𝑚 − 𝜉𝑘𝑗 )
(

𝑒𝑖𝑥⋅𝜉
𝑘
𝑗 𝑒−2𝜖|𝜉

𝑘
𝑗 |

2)(

𝑒𝑖𝑥⋅𝜉𝑘𝑚𝑒−2𝜖|𝜉𝑘𝑚|2
)

𝑑𝜉 𝑑𝜂

= lim
𝑘→∞

∑

𝑚,𝑗∈N
𝜙(𝜉𝑘𝑗 − 𝜉

𝑘
𝑚)

(

𝑘−𝑛𝑒𝑖𝑥⋅𝜉
𝑘
𝑗 𝑒−2𝜖|𝜉

𝑘
𝑗 |

2)(

𝑘−𝑛𝑒𝑖𝑥⋅𝜉
𝑘
𝑗 𝑒−2𝜖|𝜉

𝑘
𝑗 |

2
)

253



R.L. Schilling: Measures, Integrals & Martingales

⩾ 0.

Because of the parallelogram identity

2|𝜉|2 + 2|𝜂|2 = |𝜉 − 𝜂|2 + |𝜉 + 𝜂|2

we obtain

𝜈𝜖(𝑥) = ∬

(

𝑒𝑖𝑥⋅𝜉
(

𝑒𝑖𝑥⋅𝜂𝑒−2𝜖|𝜂|2−2𝜖|𝜉|2
)

)

𝑑𝜉 𝑑𝜂

= ∬

(

𝑒𝑖𝑥⋅(𝜉−𝜂)𝑒−|𝜉−𝜂|
2−|𝜉+𝜂|2

)

𝑑𝜉 𝑑𝜂.

Changing variables according to
(

𝑡
𝑠

)

∶=

(

𝜉 − 𝜂
𝜉 + 𝜂

)

=

(

id𝑛 − id𝑛
id𝑛 id𝑛

)(

𝜉
𝜂

)

=∶ 𝐴

(

𝜉
𝜂

)

leads to

𝜈𝜖(𝑥) =
1

|det 𝐴| ∬
𝜙(𝑡)𝑒𝑖𝑥⋅𝑡𝑒−𝜖(|𝑡|2+|𝑠|2) 𝑑𝑡 𝑑𝑠

= 1
𝑐 ∫

𝜙(𝑡)𝑒−𝜖|𝑡|2𝑒𝑖𝑥⋅𝑡 𝑑𝑡

= 1
𝑐 ∫

𝜙𝜖(𝑡)𝑒𝑖𝑥⋅𝑡 𝑑𝑡. (⋆)

(iv) Define
𝑔𝑡(𝑥) ∶=

1
(2𝜋𝑡)𝑛∕2

exp
(

− |𝑥|2

2𝑡

)

.

Applying Theorem 19.12 for the finite measure 𝜇(𝑑𝑥) ∶= 𝑒−𝑡|𝑥|2 𝑑𝑥 yields

∫ 𝜈𝜖(𝑥)𝑒
− 𝑡

2 |𝑥|
2
𝑑𝑥

(⋆)
= 1
𝑐 ∫

−1(𝜙𝜖)(𝑥)𝑒
− 𝑡

2 |𝑥|
2
𝑑𝑥 = 1

𝑐 ∫
𝜙𝜖(𝜉)−1(𝑒−

𝑡
2 |⋅|

2
)(𝜉) 𝑑𝜉

for all 𝑡 > 0 (observe: 𝜙𝜖 ∈ 𝐿1(R𝑛)). Example 19.2(iii) shows (𝑔𝑡)(𝑥) = (2𝜋)−𝑛 exp(−𝑡|𝑥|2∕2).
Therefore, −1(𝑒−

𝑡
2 |⋅|

2
)(𝜉) = (2𝜋)𝑛𝑔𝑡(𝜉). Since |𝜙(𝜉)| ⩽ 𝜙(0) and ∫ 𝑔𝑡(𝑥) 𝑑𝑥 = 1 we

thus get

∫ 𝜈𝜖(𝑥)𝑒
− 𝑡

2 |𝑥|
2
𝑑𝑥 = (2𝜋)𝑛

𝑐 ∫ 𝜙𝜖(𝜉)𝑔𝑡(𝜉) 𝑑𝜉 ⩽
(2𝜋)𝑛

𝑐
𝜙(0).

Fatou’s lemma (Theorem 9.11) finally shows

∫ 𝜈𝜖(𝑥) 𝑑𝑥 = ∫ lim
𝑘→∞

𝜈𝜖(𝑥)𝑒
− 1

2𝑘 |𝑥|
2
𝑑𝑥

⩽ lim inf
𝑘→∞ ∫ 𝜈𝜖(𝑥)𝑒

− 1
2𝑘 |𝑥|

2
𝑑𝑥

⩽ (2𝜋)𝑛

𝑐
𝜙(0).

Since 𝜈𝜖 ⩾ 0, see (iii), this means that 𝜈𝜖 ∈ 𝐿1(R𝑛).
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(v) Parts (iii) and (iv) show that 𝜇𝜖 = 𝜙𝜖 for the finite measure 𝜇𝜖(𝑑𝑥) ∶= 𝑐𝜈𝜖(𝑥) 𝑑𝑥. Since
𝜙𝜖 → 𝜙, Lévy’s continuity theorem (Problem 21.3) shows that there exists a measure
𝜇 which is the weak limit of the family 𝜇𝜖 as 𝜖 → 0 and 𝜇 = 𝜙.

■■

Problem 21.5 Solution:

(i) Since uniform convergence preserves continuity, we see that every 𝑢 ∈ 𝐶𝑐(𝑋) is con-
tinuous. By construction, the set {|𝑢| ⩾ 𝜖} is compact since there is some 𝑢𝜖 ∈ 𝐶𝑐(𝑋)
such that ‖𝑢 − 𝑢𝜖‖∞ < 𝜖. This means that 𝑢 vanishes at infinity. In particular 𝐶𝑐(𝑋) ⊂
𝐶∞(𝑋).
Conversely, if 𝑢 ∈ 𝐶∞(𝑋) and 𝜖 > 0, there is some compact set 𝐾𝜖 such that |𝑢| ⩽ 𝜖
outside of𝐾𝜖. Now we use Urysohn’s lemma and construct a function 𝜒𝜖 ∈ 𝐶𝑐(𝑋) such
that 1𝐾𝜖 ⩽ 𝜒𝜖 ⩽ 1. Then we get 𝑢𝜖 ∶= 𝜒𝜖𝑢 ∈ 𝐶𝑐(𝑋) as well as

|𝑢 − 𝑢𝜖| = (1 − 𝜒𝜖)|𝑢| ⩽ 𝜖

uniformly for all 𝑥.
(ii) It is obvious that 𝐶∞(𝑋) is a vector space and that ‖∙‖∞ is a norm in this space. The

completeness follows from part (i) since 𝐶∞(𝑋) = 𝐶𝑐(𝑋) = 𝐶𝑐(𝑋).
(iii) Let 𝑢 ∈ 𝐶∞(𝑋) and 𝜖 > 0. Urysohn’s lemma shows that there is a 𝜒 ∈ 𝐶𝑐(𝑋),

0 ⩽ 𝜒 ⩽ 1, such that |𝑢| ⩽ 𝜖 on the set {𝜒 < 1} = {𝜒 = 1}𝑐 . Therefore,
|

|

|

|

∫ 𝑢 𝑑𝜇𝑛 − ∫ 𝑢 𝑑𝜇
|

|

|

|

⩽
|

|

|

|

∫ 𝑢𝜒 𝑑𝜇𝑛 − ∫ 𝑢𝜒 𝑑𝜇
|

|

|

|

+
|

|

|

|

∫ 𝑢(1 − 𝜒) 𝑑𝜇𝑛 − ∫ 𝑢(1 − 𝜒) 𝑑𝜇
|

|

|

|

⩽
|

|

|

|

∫ 𝑢𝜒 𝑑𝜇𝑛 − ∫ 𝑢𝜒 𝑑𝜇
|

|

|

|

+ 𝜖
[

𝜇𝑛(𝑋) + 𝜇(𝑋)
]

21.16
⩽

|

|

|

|

∫ 𝑢𝜒 𝑑𝜇𝑛 − ∫ 𝑢𝜒 𝑑𝜇
|

|

|

|

+ 2𝜖 sup
𝑚∈N

𝜇𝑚(𝑋).

Since 𝑢𝜒 ∈ 𝐶𝑐(𝑋), we find as 𝑛→ ∞

lim sup
𝑛→∞

|

|

|

|

∫ 𝑢 𝑑𝜇𝑛 − ∫ 𝑢 𝑑𝜇
|

|

|

|

⩽ 2𝜖 sup
𝑚∈N

𝜇𝑚(𝑋) ←←←←←←←←←←←←←←←←←→
𝜖→0

0.

■■

Problem 21.6 Solution:

(i) First we consider 𝑢 ∈ 𝐶∞
𝑐 (R𝑛). According to Theorem 19.23, −1𝑢 ∈ (R𝑛), and

Plancherel’s theorem (Theorem 19.12) gives

∫ 𝑢 𝑑𝜇𝑖 = ∫  (−1𝑢) 𝑑𝜇𝑖 = ∫ −1𝑢(𝜉)𝜇𝑖(𝜉) 𝑑𝜉.
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Since |𝜇𝑖(𝜉)| ⩽ 𝜇𝑖(0) → 𝜙(0) is uniformly bounded, we can use the dominated conver-
gence theorem to see

Λ(𝑢) ∶= lim
𝑖→∞∫ 𝑢 𝑑𝜇𝑖 = ∫ −1𝑢(𝜉)𝜙(𝜉) 𝑑𝜉

i.e. Λ(𝑢) is well-defined. Moreover,

𝜇𝑖(R𝑛) = (2𝜋)𝑛𝜇𝑖(0) ←←←←←←←←←←←←←←←←←←←→𝑖→∞
(2𝜋)𝑛𝜙(0),

i.e. 𝑀 ∶= sup𝑖 𝜇𝑖(R𝑛) < ∞. Assume now that 𝑢 ∈ 𝐶𝑐(𝑋). Since 𝐶∞
𝑐 (R𝑛) is dense in

𝐶𝑐(R𝑛) (with respect to uniform convergence, cf. Problem 15.13), there is a sequence
(𝑢𝑘)𝑘∈N ⊂ 𝐶∞

𝑐 (R𝑛) such that ‖𝑢𝑘 − 𝑢‖∞ → 0. Thus,
|

|

|

|

∫ 𝑢 𝑑𝜇𝑖 − ∫ 𝑢 𝑑𝜇𝑗
|

|

|

|

⩽
|

|

|

|

∫ (𝑢 − 𝑢𝑘) 𝑑𝜇𝑖
|

|

|

|

+
|

|

|

|

∫ (𝑢 − 𝑢𝑘) 𝑑𝜇𝑗
|

|

|

|

+
|

|

|

|

∫ 𝑢𝑘 𝑑𝜇𝑖 − ∫ 𝑢𝑘 𝑑𝜇𝑗
|

|

|

|

⩽ ‖𝑢 − 𝑢𝑘‖∞
(

𝜇𝑖(R𝑛) + 𝜇𝑗(R𝑛)
)

+
|

|

|

|

∫ 𝑢𝑘 𝑑𝜇𝑖 − ∫ 𝑢𝑘 𝑑𝜇𝑗
|

|

|

|

⩽ 2‖𝑢 − 𝑢𝑘‖∞𝑀 +
|

|

|

|

∫ 𝑢𝑘 𝑑𝜇𝑖 − ∫ 𝑢𝑘 𝑑𝜇𝑗
|

|

|

|

←←←←←←←←←←←←←←←←←←←←←←←←→
𝑖,𝑗→∞

2‖𝑢 − 𝑢𝑘‖∞𝑀 ←←←←←←←←←←←←←←←←←←←←→
𝑘→∞

0.

This shows that ( ∫ 𝑢 𝑑𝜇𝑖
)

𝑖∈N is a Cauchy sequence in R. Thus, the limit Λ(𝑢) ∶=
lim𝑖→∞ ∫ 𝑢 𝑑𝜇𝑖 exists. Since convergent sequences are bounded, we see

sup
𝑖∈N

|

|

|

|

∫ 𝑢 𝑑𝜇𝑖
|

|

|

|

<∞.

Since 𝑢 ∈ 𝐶𝑐(R𝑛) ⇐⇒ |𝑢| ∈ 𝐶𝑐(R𝑛), we get

sup
𝑛∈N∫ |𝑢| 𝑑𝜇𝑖 <∞ ∀𝑢 ∈ 𝐶𝑐(R𝑛),

i.e. the sequence (𝜇𝑖)𝑖∈N is vaguely bounded. According to Theorem 21.18, (𝜇𝑖)𝑖∈N has
a vaguely convergent subsequence 𝜇𝑛(𝑖) → 𝜇.

(ii) We can use part (i) for any subsequence of (𝜇𝑖)𝑖∈N. We will show the the subsequential
limits do not depend on the subsequence. Pick any two subsequences (𝜇𝑛(𝑖))𝑖∈N and
(𝜇𝑚(𝑖))𝑖∈N of (𝜇𝑖)𝑛∈N and assume that 𝜇𝑛(𝑖)

v
←←←←←←←←←←→ 𝜇, 𝜇𝑚(𝑖)

v
←←←←←←←←←←→ 𝜈. By definition, we find

for all 𝑢 ∈ 𝐶𝑐(R𝑛)

lim
𝑖→∞∫ 𝑢 𝑑𝜇𝑛(𝑖) = ∫ 𝑢 𝑑𝜇,

lim
𝑖→∞∫ 𝑢 𝑑𝜇𝑚(𝑖) = ∫ 𝑢 𝑑𝜈.

On the other hand, we have seen in (i) that Λ(𝑢) = lim𝑖→∞ ∫ 𝑢 𝑑𝜇𝑖. Thus,

∫ 𝑢 𝑑𝜇 = Λ(𝑢) = ∫ 𝑢 𝑑𝜈.
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Since this holds for all 𝑢 ∈ 𝐶𝑐(R𝑛), we can use the regularity of the measures 𝜇 and
𝜈 to conclude that 𝜇 = 𝜈. Since the limit does not depend on the subsequence, we
already have vague convergence of the full sequence (𝜇𝑖)𝑖∈N. (Compare this with the
following subsequence principle: A sequence (𝑎𝑖)𝑖∈N ⊂ R converges if, and only if,
every subsequence of (𝑎𝑖)𝑖∈N has a convergent subsequence, and all subsequential limits
coincide.)

(iii) In view of Theorem 21.17 it is enough to show that the sequence (𝜇𝑖)𝑖∈N is tight
Fix 𝜖 > 0. Since 𝜙 is continuous at 𝜉 = 0, there is some 𝛿 > 0 such that

|𝜙(𝜉) − 𝜙(0)| < 𝜖 ∀|𝜉| ⩽ 𝛿.

From Lévy’s truncation inequality, Problem 19.6, we get

𝜇𝑖(R𝑛 ⧵ [−𝑅,𝑅]𝑛) ⩽ 2(𝑅𝜋)𝑛 ∫[−1∕𝑅,1∕𝑅]𝑛
(𝜇𝑖(0) − Re𝜇𝑖(𝜉)) 𝑑𝜉

(observe, that 𝜇𝑖(𝜉) = (2𝜋)𝑛𝜇𝑖(−𝜉)). Now we can use dominated convergence to get

lim sup
𝑖→∞

𝜇𝑖(R𝑛 ⧵ [−𝑅,𝑅]𝑛) ⩽ 2(𝑅𝜋)𝑛 ∫[−1∕𝑅,1∕𝑅]𝑛
(𝜙(0) − Re𝜙(𝜉)) 𝑑𝜉

⩽ 2(2𝜋)𝑛𝜖

for all 𝑅 ⩾ 1
𝛿
. In particular, we find 𝜇𝑖(R𝑛 ⧵ [−𝑅,𝑅]𝑛) ⩽ 3(2𝜋)𝑛𝜖 for 𝑖 ⩾ 𝑛0(𝜖). In

order to ensure 𝜇𝑖(R𝑛 ⧵ [−𝑅,𝑅]𝑛) ⩽ 3(2𝜋)𝑛𝜖 for 𝑖 = 1,… , 𝑛0(𝜖), we can enlarge 𝑅, if
need be.

■■

Problem 21.7 Solution: Since

∫𝐵
𝑢 𝑑𝜇𝑛 = ∫𝐵∩supp 𝑢

𝑢 𝑑𝜇𝑛

we can assume, without loss of generality, that𝐵 is contained in a compact set. Denote by𝐾 ∶= 𝐵
the closure of 𝐵 and by 𝑈 ∶= 𝐵◦ the open interior of 𝐵. Moreover, we can assume that 𝑢 ⩾ 0 –
otherwise we consider 𝑢± separately.
According to Urysohn’s lemma (Lemma B.2 or (21.6) & (21.7)), there are sequences (𝑤𝑘)𝑘∈N ⊂
𝐶𝑐(𝑋), (𝑣𝑘)𝑘∈N ⊂ 𝐶𝑐(𝑋), 0 ⩽ 𝑣𝑘 ⩽ 1, 0 ⩽ 𝑤𝑘 ⩽ 1, with 𝑤𝑘 ↑ 1𝑈 and 𝑣𝑘 ↓ 1𝐾 . By assumption
𝜇𝑛

v
←←←←←←←←←←→ 𝜇 and so

∫𝐵
𝑢 𝑑𝜇𝑛 ⩽ ∫𝐾

𝑢 𝑑𝜇𝑛 ⩽ ∫ 𝑢 ⋅ 𝑣𝑘 𝑑𝜇𝑛 ←←←←←←←←←←←←←←←←←←←←→𝑛→∞ ∫ 𝑢 ⋅ 𝑣𝑘 𝑑𝜇.

Beppo Levi’s theorem implies

lim sup
𝑛→∞ ∫𝐵

𝑢 𝑑𝜇𝑛 ⩽ inf
𝑘∈N∫ 𝑢 ⋅ 𝑣𝑘 𝑑𝜇 = ∫𝐾

𝑢 𝑑𝜇.
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Similarly, we get from

∫𝐵
𝑢 𝑑𝜇𝑛 ⩾ ∫𝑈

𝑢 𝑑𝜇𝑛 ⩾ ∫ 𝑢 ⋅𝑤𝑘 𝑑𝜇𝑛 ←←←←←←←←←←←←←←←←←←←←→𝑛→∞ ∫ 𝑢 ⋅𝑤𝑘 𝑑𝜇.

and the monotone convergence theorem

lim inf
𝑛→∞ ∫𝐵

𝑢 𝑑𝜇𝑛 ⩾ sup
𝑘∈N∫ 𝑢 ⋅𝑤𝑘 𝑑𝜇 = ∫𝑈

𝑢 𝑑𝜇.

Finally, since 𝜇(𝐾 ⧵ 𝑈 ) = 𝜇(𝜕𝐵) = 0, we see that

lim sup
𝑛→∞ ∫𝐵

𝑢 𝑑𝜇𝑛 ⩽ ∫𝐾
𝑢 𝑑𝜇 = ∫𝑈

𝑢 𝑑𝜇 ⩽ lim inf
𝑛→∞ ∫𝐵

𝑢 𝑑𝜇𝑛.

■■
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22 Uniform integrability and Vitali’s

convergence theorem.

Solutions to Problems 22.1–22.17

Problem 22.1 Solution: First, observe that

lim
𝑗
𝑢𝑗(𝑥) = 0 ⇐⇒ lim

𝑗
|𝑢𝑗(𝑥)| = 0.

Thus,

𝑥 ∈ {lim
𝑗
𝑢𝑗 = 0} ⇐⇒ ∀ 𝜖 > 0 ∃𝑁𝜖 ∈ N ∀ 𝑗 ⩾ 𝑁𝜖 ∶ |𝑢𝑗(𝑥)| ⩽ 𝜖

⇐⇒ ∀ 𝜖 > 0 ∃𝑁𝜖 ∈ N ∶ sup
𝑗⩾𝑁𝜖

|𝑢𝑗(𝑥)| ⩽ 𝜖

⇐⇒ ∀ 𝜖 > 0 ∃𝑁𝜖 ∈ N ∶ 𝑥 ∈ { sup
𝑗⩾𝑁𝜖

|𝑢𝑗| ⩽ 𝜖}

⇐⇒ ∀ 𝜖 > 0 ∶ 𝑥 ∈
⋃

𝑁∈N
{sup
𝑗⩾𝑁

|𝑢𝑗| ⩽ 𝜖}

⇐⇒ ∀ 𝑘 ∈ N ∶ 𝑥 ∈
⋃

𝑁∈N
{sup
𝑗⩾𝑁

|𝑢𝑗| ⩽ 1∕𝑘}

⇐⇒ 𝑥 ∈
⋂

𝑘∈N

⋃

𝑁∈N
{sup
𝑗⩾𝑁

|𝑢𝑗| ⩽ 1∕𝑘}.

Equivalently,

{lim
𝑗
𝑢𝑗 = 0}𝑐 =

⋃

𝑘∈N

⋂

𝑁∈N
{sup
𝑗⩾𝑁

|𝑢𝑗| > 1∕𝑘}.

By assumption and the continuity of measures,

𝜇
(

⋂

𝑁∈N
{sup
𝑗⩾𝑁

|𝑢𝑗| > 1∕𝑘}
)

= lim
𝑁
𝜇
(

{sup
𝑗⩾𝑁

|𝑢𝑗| > 1∕𝑘}
)

= 0

and, since countable unions of null sets are again null sets, we conclude that

{lim
𝑗
𝑢𝑗 = 0} has full measure.

■■

Problem 22.2 Solution: Note that

𝑥 ∈
{

sup
𝑗⩾𝑘

|𝑢𝑗| > 𝜖
}

⇐⇒ sup
𝑗⩾𝑘

|𝑢𝑗(𝑥)| > 𝜖
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⇐⇒ ∃ 𝑗 ⩾ 𝑘 ∶ |𝑢𝑗(𝑥)| > 𝜖

⇐⇒ 𝑥 ∈
⋃

𝑗⩾𝑘
{|𝑢𝑗| > 𝜖}

and since
⋃

𝑗⩾𝑘
{|𝑢𝑗| > 𝜖} ↓

⋂

𝑘∈N

⋃

𝑗⩾𝑘
{|𝑢𝑗| > 𝜖}

def
= lim sup

𝑗→∞
{|𝑢𝑗| > 𝜖}

we can use the continuity of measures to get

lim
𝑘
𝜇
(

sup
𝑗⩾𝑘

|𝑢𝑗| > 𝜖
)

= lim
𝑘
𝜇
(

⋃

𝑗⩾𝑘
{|𝑢𝑗| > 𝜖}

)

= 𝜇
(

⋂

𝑘∈N

⋃

𝑗⩾𝑘
{|𝑢𝑗| > 𝜖}

)

.

This, and the result of Problem 22.1 show that either of the following two equivalent conditions

lim
𝑘→∞

𝜇
(

sup
𝑗⩾𝑘

|𝑢𝑗| ⩾ 𝜖
)

= 0 ∀ 𝜖 > 0;

𝜇
(

lim sup
𝑗→∞

{|𝑢𝑗| ⩾ 𝜖}
)

= 0 ∀ 𝜖 > 0;

ensure the almost everywhere convergence of lim𝑗 𝑢𝑗(𝑥) = 0.
■■

Problem 22.3 Solution:

• Assume first that 𝑢𝑗 → 𝑢 in 𝜇-measure, that is,

∀ 𝜖 > 0, ∀𝐴 ∈ 𝒜 , 𝜇(𝐴) <∞ ∶ lim
𝑗
𝜇
(

{|𝑢𝑗 − 𝑢| > 𝜖} ∩ 𝐴
)

= 0.

Since

|𝑢𝑗 − 𝑢𝑘| ⩽ |𝑢𝑗 − 𝑢| + |𝑢 − 𝑢𝑘| ∀𝑗, 𝑘 ∈ N

we see that

{|𝑢𝑗 − 𝑢𝑘| > 2𝜖} ⊂ {|𝑢𝑗 − 𝑢| > 𝜖} ∪ {|𝑢 − 𝑢𝑘| > 𝜖}

(since, otherwise |𝑢𝑗 −𝑢𝑘| ⩽ 𝜖+ 𝜖 = 2𝜖). Thus, we get for every measurable set 𝐴with finite
𝜇-measure that

𝜇
(

{|𝑢𝑗 − 𝑢𝑘| > 2𝜖} ∩ 𝐴
)

⩽ 𝜇
[

({|𝑢𝑗 − 𝑢| > 𝜖} ∩ 𝐴) ∪ ({|𝑢𝑘 − 𝑢| > 𝜖} ∩ 𝐴)
]

⩽ 𝜇
[

{|𝑢𝑗 − 𝑢| > 𝜖} ∩ 𝐴
]

+ 𝜇
[

{|𝑢𝑘 − 𝑢| > 𝜖} ∩ 𝐴
]

and each of these terms tend to infinity as 𝑗, 𝑘→ ∞.
• Assume now that |𝑢𝑗 − 𝑢𝑘| → 0 in 𝜇-measure as 𝑗, 𝑘 → ∞. Let (𝐴𝓁)𝓁 be an exhausting

sequence such that 𝐴𝓁 ↑ 𝑋 and 𝜇(𝐴𝑗) <∞.
The problem is to identify the limiting function.
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Fix 𝓁. By assumption, we can choose 𝑁𝑗 ∈ N, 𝑗 ∈ N, such that

∀𝑚, 𝑛 ⩾ 𝑁𝑗 ∶ 𝜇
(

{|𝑢𝑚 − 𝑢𝑛| > 2−𝑗} ∩ 𝐴𝓁
)

< 2−𝑗 .

(Note that𝑁𝑗 may depend on 𝓁, but we suppress this dependency as 𝓁 is fixed.) By enlarging
𝑁𝑗 , if needed, we can always assume that

𝑁1 < 𝑁2 <⋯ < 𝑁𝑗 < 𝑁𝑗+1 → ∞.

Consequently, there is an exceptional set 𝐸𝑗 ⊂ 𝐴𝓁 with 𝜇(𝐸𝑗 ∩ 𝐴𝓁) < 2−𝑗 such that

|𝑢𝑁𝑗+1
(𝑥) − 𝑢𝑁𝑗

(𝑥)| ⩽ 2−𝑗 ∀ 𝑥 ∈ 𝐴𝓁 ⧵ 𝐸𝑗

and, if 𝐸∗
𝑖 ∶=

⋃

𝑗⩾𝑖𝐸𝑗 we have 𝜇(𝐸𝑖 ∩ 𝐴𝓁) ⩽ 2 ⋅ 2−𝑖 as well as

|𝑢𝑁𝑗+1
(𝑥) − 𝑢𝑁𝑗

(𝑥)| ⩽ 2−𝑗 ∀ 𝑗 ⩾ 𝑖, ∀ 𝑥 ∈ 𝐴𝓁 ⧵ 𝐸∗
𝑖 .

This means that
∑

𝑗
(𝑢𝑁𝑗+1

− 𝑢𝑁𝑗
) converges uniformly for 𝑥 ∈ 𝐴𝓁 ⧵ 𝐸∗

𝑖

so that lim𝑗 𝑢𝑁𝑗
exists uniformly on𝐴𝓁 ⧵𝐸∗

𝑖 for all 𝑖. Since 𝜇(𝐸∗
𝑖 ∩𝐴𝓁) < 2 ⋅2−𝑖 we conclude

that

lim
𝑗
𝑢𝑁𝑗
1𝐴𝓁

= 𝑢(𝓁)1𝐴𝓁
exists almost everywhere

for some 𝑢(𝓁). Since, however, a.e. limits are unique (up to a null set, that is) we know that
𝑢(𝓁) = 𝑢(𝑚) a.e. on𝐴𝓁∩𝐴𝑚 so that there is a (up to null sets) unique limit function 𝑢 satisfying

lim
𝑗
𝑢𝑁𝑗

= 𝑢 exists a.e., hence in measure by Lemma 22.4. (*)

Thus, we have found a candidate for the limit of our Cauchy sequence. In fact, since

|𝑢𝑘 − 𝑢| ⩽ |𝑢𝑘 − 𝑢𝑁𝑗
| + |𝑢𝑁𝑗

− 𝑢|

we have

𝜇({|𝑢𝑘 − 𝑢| > 𝜖} ∩ 𝐴𝓁)

⩽ 𝜇({|𝑢𝑘 − 𝑢𝑁𝑗
| > 𝜖} ∩ 𝐴𝓁) + 𝜇({|𝑢𝑁𝑗

− 𝑢| > 𝜖} ∩ 𝐴𝓁)

and the first expression on the right-hand side tends to zero (as 𝑘,𝑁(𝑗) → ∞) because of the
assumption, while the second term tends to zero (as 𝑁(𝑗) → ∞) because of (*))

■■

Problem 22.4 Solution:
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(i) This sequence converges in measure to 𝑓 ≡ 0 since for 𝜖 ∈ (0, 1)

𝜆(|𝑓𝑛,𝑗| > 𝜖) = 𝜆[(𝑗 − 1)∕𝑛, 𝑗∕𝑛] = 1
𝑛
←←←←←←←←←←←←←←←←←←←←→
𝑛→∞

0.

This means, however, that potential a.e. and 𝑝-limits must be 𝑓 ≡ 0, too. Since for
every 𝑥

lim inf 𝑓𝑛,𝑗(𝑥) = 0 <∞ = lim sup 𝑓𝑛,𝑗

the sequence cannot converge at any point.
Also the 𝑝-limit (if 𝑝 ⩾ 1) does not exist, since

∫ |𝑓𝑛,𝑗|
𝑝 𝑑𝜆 = 𝑛𝑝𝜆[(𝑗 − 1)∕𝑛, 𝑗∕𝑛] = 𝑛𝑝−1.

(ii) As in (i) we see that 𝑔𝑛
𝜇
←←←←←←←←←←←→ 𝑔 ≡ 0. Similarly,

∫ |𝑔𝑛|
𝑝 𝑑𝜇 = 𝑛𝑝𝜆(0, 1∕𝑛) = 𝑛𝑝−1

so that the 𝑝-limit does not exist. The pointwise limit, however, exists since

lim
𝑛→∞

𝑛1(0,𝑛)(𝑥) = 0.

for every 𝑥 ∈ (0, 1).
(iii) The shape of 𝑔𝑛 is that of a triangle with base [0, 1∕𝑛]. Thus, for every 𝜖 > 0,

𝜆(|ℎ𝑛| > 𝜖) ⩽ 𝜆[0, 1∕𝑛] = 1
𝑛

which shows that ℎ𝑛
𝜇
←←←←←←←←←←←→ ℎ ≡ 0. This must be, if the respective limits exist, also the

limiting function for a.e. and 𝑝-convergence. Since

∫ |ℎ𝑛|
𝑝 𝑑𝜆 = 𝑎𝑝𝑛

1
2 𝜆[0, 1∕𝑛] =

𝑎𝑝𝑛
2𝑛

we have 𝑝-convergence if, and only if, the sequence 𝑎𝑝𝑛∕𝑛 tends to zero as 𝑛→ ∞.
We have, however, always a.e. convergence since the support of the function ℎ𝑛 is
[0, 1∕𝑛] and this shrinks to {0} which is a null set. Thus,

lim
𝑛
𝑎𝑛(1 − 𝑛𝑥)+ = 0

except, possibly, at 𝑥 = 0.
■■

Problem 22.5 Solution: We claim that
(i) 𝑎𝑢𝑗 + 𝑏𝑤𝑗 → 𝑎𝑢 + 𝑏𝑤;

(ii) max(𝑢𝑗 , 𝑤𝑗) → max(𝑢,𝑤);
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(iii) min(𝑢𝑗 , 𝑤𝑗) → min(𝑢,𝑤);
(iv) |𝑢𝑗| → |𝑢|.

Note that

|𝑎𝑢𝑗 + 𝑏𝑤𝑗 − 𝑎𝑢 − 𝑏𝑤| ⩽ |𝑎||𝑢𝑗 − 𝑢| + |𝑏||𝑤𝑗 −𝑤|

so that

{|𝑎𝑢𝑗 + 𝑏𝑤𝑗 − 𝑎𝑢 − 𝑏𝑤| > 2𝜖} ⊂ {|𝑢𝑗 − 𝑢| > 𝜖∕|𝑎|} ∪ {|𝑤𝑗 −𝑤| > 𝜖∕|𝑏|}.

This proves the first limit.
Since, by the lower triangle inequality,

||𝑢𝑗| − |𝑢|| ⩽ |𝑢𝑗 − 𝑢|

we get

{||𝑢𝑗| − |𝑢|| > 𝜖} ⊂ {|𝑢𝑗 − 𝑢| > 𝜖}

and |𝑢𝑗| → |𝑢| follows.
Finally, since

max 𝑢𝑗 , 𝑤𝑗 =
1
2

(

𝑢𝑗 +𝑤𝑗 + |𝑢𝑗 −𝑤𝑗|
)

we get max 𝑢𝑗 , 𝑤𝑗 → max 𝑢,𝑤 by using rules (i) and (iv) several times. The minimum is treated
similarly.

■■

Problem 22.6 Solution: The hint is somewhat misleading since this construction is not always pos-
sible (or sensible). Just imagine R with the counting measure. Then 𝑋𝜎𝑓 would be all of R...
What I had in mind when giving this hint was a construction along the following lines:
Consider Lebesgue measure 𝜆 in R and define 𝑓 ∶= 1𝐹 +∞1𝐹 𝑐 where 𝐹 = [−1, 1] (or any other
set of finite Lebesgue measure). Then 𝜇 ∶= 𝑓 ⋅ 𝜆 is a not 𝜎-finite measure. Moreover, Take any
sequence 𝑢𝑛

𝜆
←←←←←←←←←←→ 𝑢 converging in 𝜆-measure. Then

𝜇({|𝑢𝑛 − 𝑢| > 𝜖} ∩ 𝐴) = 𝜆({|𝑢𝑛 − 𝑢| > 𝜖} ∩ 𝐴)

since all sets 𝐴 with 𝜇(𝐴) <∞ are contained in 𝐹 and 𝜆(𝐹 ) = 𝜇(𝐹 ) <∞. Thus, 𝑢𝑛
𝜇
←←←←←←←←←←←→ 𝑢.

However, changing 𝑢 arbitrarily on 1𝐹 𝑐 also yields a limit point in 𝜇-measure since, as mentioned
above, all sets of finite 𝜇-measure are within 𝐹 .
This pathology cannot happen in a 𝜎-finite measure space, cf. Lemma 22.6.

■■

Problem 22.7 Solution:
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(i) Fix 𝜖 > 0. Then

∫ |𝑢 − 𝑢𝑗| 𝑑𝜇 = ∫𝐴
|𝑢 − 𝑢𝑗| 𝑑𝜇

= ∫𝐴∩{|𝑢−𝑢𝑗 |⩽𝜖}
|𝑢 − 𝑢𝑗| 𝑑𝜇 + ∫𝐴∩{|𝑢−𝑢𝑗 |>𝜖}

|𝑢 − 𝑢𝑗| 𝑑𝜇

⩽ ∫𝐴∩{|𝑢−𝑢𝑗 |⩽𝜖}
𝜖 𝑑𝜇 + ∫𝐴∩{|𝑢−𝑢𝑗 |>𝜖}

(|𝑢| + |𝑢𝑗|) 𝑑𝜇

⩽ 𝜖𝜇(𝐴) + 2𝐶 𝜇
(

𝐴 ∩ {|𝑢 − 𝑢𝑗| > 𝜖}
)

←←←←←←←←←←←←←←←←←←←←→
𝑗→∞

𝜖𝜇(𝐴)

←←←←←←←←←←←←←←←←←→
𝜖→0

0.

(ii) Note that 𝑢𝑗 converges almost everywhere and in 𝜆-measure to 𝑢 ≡ 0. However,

∫ |𝑢𝑗| 𝑑𝜆 = 𝜆[𝑗, 𝑗 + 1] = 1 ≠ 0

so that the limit—if it exists—cannot be 𝑢 ≡ 0. Since this is, however, the canonical
candidate, we conclude that there is no 1 convergence.

(iii) The limit depends on the set 𝐴 which is fixed. This means that we are, essentially,
dealing with a finite measure space.

■■

Problem 22.8 Solution: A pseudo-metric is symmetric (𝑑2) and satisfies the triangle inequality (𝑑3).
(i) First we note that 𝜌𝜇(𝜉, 𝜂) ∈ [0, 1] is well-defined. That it is symmetric (𝑑2) is obvi-

ous. For the triangle inequality we observe that for three random variables 𝜉, 𝜂, 𝜁 and
numbers 𝜖, 𝛿 > 0 we have

|𝜉 − 𝜁 | ⩽ |𝜉 − 𝜂| + |𝜂 − 𝜁 |

implying that
{|𝜉 − 𝜁 | > 𝜖 + 𝛿} ⊂ {|𝜉 − 𝜂| > 𝜖} ∪ {|𝜂 − 𝜁 | > 𝛿}

so that
P(|𝜉 − 𝜁 | > 𝜖 + 𝛿) ⩽ P(|𝜉 − 𝜂| > 𝜖) + P(|𝜂 − 𝜁 | > 𝛿).

If 𝜖 > 𝜌P(𝜉, 𝜂) and 𝛿 > 𝜌P(𝜂, 𝜁) we find
P(|𝜉 − 𝜁 | > 𝜖 + 𝛿) ⩽ P(|𝜉 − 𝜂| > 𝜖) + P(|𝜂 − 𝜁 | > 𝛿) ⩽ 𝜖 + 𝛿

which means that
𝜌P(𝜉, 𝜁) ⩽ 𝜖 + 𝛿.

Passing to the infimum of all possible 𝛿- and 𝜖-values we get
𝜌P(𝜉, 𝜁) ⩽ 𝜌P(𝜉, 𝜂) + 𝜌P(𝜂, 𝜁).
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(ii) Assume first that 𝜌P(𝜉𝑗 , 𝜉) ←←←←←←←←←←←←←←←←←←←←→𝑗→∞
0. Then

𝜌P(𝜉𝑗 , 𝜉) ←←←←←←←←←←←←←←←←←←←←→𝑗→∞
0 ⇐⇒ ∃ (𝜖𝑗)𝑗 ⊂ R+ ∶ P(|𝜉 − 𝜉𝑗| > 𝜖𝑗) ⩽ 𝜖𝑗

⇐⇒ ∀ 𝜖 > 𝜖𝑗 ∶ P(|𝜉 − 𝜉𝑗| > 𝜖) ⩽ 𝜖𝑗 .

Thus, for given 𝜖 > 0 we pick 𝑁 = 𝑁(𝜖) such that 𝜖 > 𝜖𝑗 for all 𝑗 ⩾ 𝑁 (possible as
𝜖𝑗 → 0). Then we find

∀ 𝜖 > 0 ∃𝑁(𝜖) ∈ N ∀ 𝑗 ⩾ 𝑁(𝜖) ∶ P(|𝜉 − 𝜉𝑗| > 𝜖) ⩽ 𝜖𝑗 ;

this means, however, that P(|𝜉 − 𝜉𝑗| > 𝜖) ←←←←←←←←←←←←←←←←←←←←→𝑗→∞
0 for any choice of 𝜖 > 0.

Conversely, assume that 𝜉𝑗
P
←←←←←←←←←←←←→ 0. Then

∀ 𝜖 > 0 ∶ lim
𝑗
P(|𝜉 − 𝜉𝑗| > 𝜖) = 0

⇐⇒ ∀ 𝜖, 𝛿 > 0 ∃𝑁(𝜖, 𝛿) ∀ 𝑗 ⩾ 𝑁(𝜖, 𝛿) ∶ P(|𝜉 − 𝜉𝑗| > 𝜖) < 𝛿

⇐⇒ ∀ 𝜖 > 0 ∃𝑁(𝜖) ∀ 𝑗 ⩾ 𝑁(𝜖) ∶ P(|𝜉 − 𝜉𝑗| > 𝜖) < 𝜖

⇐⇒ ∀ 𝜖 > 0 ∃𝑁(𝜖) ∀ 𝑗 ⩾ 𝑁(𝜖) ∶ 𝜌P(𝜉, 𝜉𝑗) ⩽ 𝜖

⇐⇒ lim
𝑗
𝜌P(𝜉, 𝜉𝑗) = 0.

(iii) We have

𝜌(𝜉𝑗 , 𝜉𝑘) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑗,𝑘→∞
0

(ii)
⇐⇒ 𝜉𝑗 − 𝜉𝑘

P
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑗,𝑘→∞

0

P22.3
⇐⇒ ∃ 𝜉 ∶ 𝜉𝑘

P
←←←←←←←←←←←←←←←←←←←←→
𝑘→∞

𝜉

(ii)
⇐⇒ ∃ 𝜉 ∶ 𝜌(𝜉, 𝜉𝑘) ←←←←←←←←←←←←←←←←←←←←←←←←←→𝑘→∞

0

(iv) Note that for 𝑥, 𝑦 > 0

𝑥 + 𝑦
1 + 𝑥 + 𝑦

= 𝑥
1 + 𝑥 + 𝑦

+ 𝑦
1 + 𝑥 + 𝑦

⩽ 𝑥
1 + 𝑥

+ 𝑦
1 + 𝑦

and

(𝑥 + 𝑦) ∧ 1 =
⎧

⎪

⎨

⎪

⎩

𝑥 + 𝑦 = (𝑥 ∧ 1) + (𝑦 ∧ 1) if 𝑥 + 𝑦 ⩽ 1;

1 ⩽ (𝑥 ∧ 1) + (𝑦 ∧ 1) if 𝑥 + 𝑦 ⩾ 1.

This means that both 𝑔P and 𝑑P satisfy the triangle inequality, that is (𝑑3). Symmetry,
i.e. (𝑑2), is obvious.
Moreover, since for all 𝑥 ⩾ 0

𝑥
1 + 𝑥

⩽ 𝑥 ∧ 1 ⩽ 2 𝑥
1 + 𝑥

265



R.L. Schilling: Measures, Integrals & Martingales

(consider the cases 𝑥 ⩽ 1 and 𝑥 ⩾ 1 separately), we have

𝑔P(𝜉, 𝜂) ⩽ 𝑑P(𝜉, 𝜂) ⩽ 2𝑔P(𝜉, 𝜂)

which shows that 𝑔P and 𝑑P have the same Cauchy sequences. Moreover, for all 𝜖 ⩽ 1,

P(|𝜉 − 𝜂| > 𝜖) = P(|𝜉 − 𝜂| ∧ 1 > 𝜖)

⩽ 1
𝜖 ∫

|𝜉 − 𝜂| ∧ 1 𝑑P

= 1
𝜖
𝑑P(𝜉, 𝜂)

so that (because of (iii)) any 𝑑P Cauchy sequence is a 𝜌P Cauchy sequence. And since
for all 𝜖 ⩽ 1 also

𝑑P(𝜉, 𝜂) = ∫
|𝜉−𝜂|>𝜖

|𝜉 − 𝜂| ∧ 1 𝑑P + ∫
|𝜉−𝜂|⩽𝜖

|𝜉 − 𝜂| ∧ 1 𝑑P

⩽ ∫
|𝜉−𝜂|>𝜖

1 𝑑P + ∫
|𝜉−𝜂|⩽𝜖

𝜖 𝑑P

⩽ P(|𝜉 − 𝜂| > 𝜖) + 𝜖,

all 𝜌P Cauchy sequences are 𝑑P Cauchy sequences, too.
■■

Problem 22.9 Solution:

(i) Fix 𝜖 > 0. We have

∫ |𝑢𝑛 − 𝑢| ∧ 1𝐴 𝑑𝜇 = ∫{|𝑢𝑛−𝑢|⩽𝜖}
|𝑢𝑛 − 𝑢| ∧ 1𝐴 𝑑𝜇 + ∫{|𝑢𝑛−𝑢|>𝜖}

|𝑢𝑛 − 𝑢| ∧ 1𝐴 𝑑𝜇

⩽ 𝜖𝜇(𝐴) + 𝜇({|𝑢𝑛 − 𝑢| > 𝜖} ∩ 𝐴).

Letting first 𝑛→ ∞ and then 𝜖 → 0 yields

lim sup
𝑛 ∫ |𝑢𝑛 − 𝑢| ∧ 1𝐴 𝑑𝜇 ⩽ 𝜖𝜇(𝐴) ←←←←←←←←←←←←←←←←←→

𝜖→0
0.

(ii) WLOG we show that (𝑢𝑛)𝑛 contains an a.e. convergent subsequence. Let (𝐴𝑘)𝑘 be as in
the hint and fix 𝑖. By (i) we know that |𝑢 − 𝑢𝑛| ∧ 1𝐴𝑖 → 0 in 𝐿1. By Corollary 13.8 we
see that there is a subsequence 𝑢(𝑖)𝑛 such that |𝑢 − 𝑢(𝑖)𝑛 | ∧ 1𝐴𝑖 → 0 almost everywhere.
Now take repeatedly subsequences as 𝑖 ⇝ 𝑖 + 1 ⇝ 𝑖 + 2 ⇝ … etc. and then take the
diagonal sequence. This will furnish a subsequence (𝑢′′𝑛 )𝑛 ⊂ (𝑢𝑛)𝑛 which converges a.e.
to 𝑢 on ⋃

𝑖𝐴𝑖 = 𝑋.
(iii) We are now in the setting of Corollary 13.8: |𝑢𝑛|, |𝑢| ⩽ 𝑤 for some𝑤 ∈ 𝑝(𝜇) and 𝑢𝑛

𝜇
←←←←←←→

𝑢. Thus, every subsequence (𝑢′𝑛)𝑛 ⊂ (𝑢𝑛)𝑛 converges in measure to the same limit 𝑢 and
by (ii) there is some (𝑢′′𝑛 )𝑛 ⊂ (𝑢′𝑛)𝑛 such that 𝑢′′𝑛

a.e.
←←←←←←←←←←←←←→ 𝑢. Now we can use the dominated

convergence theorem (Theorem 12.2 or Theorem 13.9) to show that lim𝑛 ‖𝑢′′𝑛 −𝑢‖𝑝 = 0.
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Assume now that 𝑢𝑛 does not converge to 𝑢 in 𝐿𝑝. This means that lim sup𝑛 ‖𝑢𝑛−𝑢‖𝑝 >
0, i.e. there is some subsequence such that lim inf𝑛 ‖𝑢′𝑛 − 𝑢‖𝑝 > 0. On the other hand,
there is some (𝑢′′𝑛 )𝑛 ⊂ (𝑢′𝑛)𝑛 such that

0 = lim
𝑛

‖𝑢′′𝑛 − 𝑢‖𝑝 ⩾ lim inf
𝑛

‖𝑢′𝑛 − 𝑢‖𝑝 > 0

and this is a contradiction.
■■

Problem 22.10 Solution: Note that the sets 𝐴𝑗 are of finite 𝜇-measure. Observe that the functions
𝑓𝑗 ∶= 𝑢1𝐴𝑗

• converge in 𝜇-measure to 𝑓 ≡ 0:

𝜇({|𝑓𝑗| > 𝜖} ∩ 𝐴𝑗) ⩽ 𝜇(𝐴𝑗) ←←←←←←←←←←←←←←←←←←←←→𝑗→∞
0.

• are uniformly integrable:

sup
𝑗 ∫{|𝑓𝑗 |>|𝑢|}

|𝑓𝑗| 𝑑𝜇 = 0

since |𝑓𝑗| = |𝑢1𝐴𝑗 | ⩽ |𝑢| and |𝑢| is integrable.
Therefore, Vitali’s Theorem shows that 𝑓𝑗 → 0 in 1 so that ∫ 𝑓𝑗 𝑑𝜇 = ∫𝐴𝑗 𝑢 𝑑𝜇 → 0.

■■

Problem 22.11 Solution:

(i) Trivial. More interesting is the assertion that
A sequence (𝑥𝑛)𝑛 ⊂ R converges to 0 if, and only if, every subsequence (𝑥𝑛𝑘)𝑘 contains
some sub-subsequence (𝑥𝑛𝑘)𝑘 which converges to 0.
Necessity is again trivial. Sufficiency: assume that (𝑥𝑛)𝑛 does not converge to 0. Then
the sequence (min{|𝑥𝑛|, 1})𝑛 is bounded and still does not converge to 0. Since this
sequence is bounded, it contains a convergent subsequence (𝑥𝑛𝑘)𝑘 with some limit 𝛼 ≠ 0.
But then (𝑥𝑛𝑘)𝑘 cannot contain a sub-subsequence (𝑥𝑛𝑘)𝑘 which is a null sequence.

(ii) If 𝑢𝑛
𝜇
←←←←←←←←←←←→ 𝑢, then every subsequence 𝑢𝑛𝑘

𝜇
←←←←←←←←←←←→ 𝑢. Thus, using the argument from the proof

of Problem 22.3 we can extract a sub-subsequence (𝑢̃𝑛𝑘)𝑘 ⊂ (𝑢𝑛𝑘)𝑘 such that

lim
𝑘
𝑢̃𝑛𝑘(𝑥)1𝐴(𝑥))𝑢(𝑥)1𝐴(𝑥) almost everywhere. (*)

Note that (unless we are in a 𝜎-finite measure space) the exceptional set may depend on
the testing set 𝐴.
Conversely, assume that every subsequence (𝑢𝑛𝑘)𝑘 ⊂ (𝑢𝑛)𝑛 has a sub-subsequence (𝑢̃𝑛𝑘)𝑘
satisfying (*). Because of Lemma 22.4 we have

lim
𝑘
𝜇
(

{|𝑢̃𝑛𝑘 − 𝑢| > 𝜖} ∩ 𝐴
)

= 0.
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Assume now that 𝑢𝑛 does not converge in 𝜇-measure on 𝐴 to 𝑢. Then

𝑥𝑛 ∶= 𝜇({|𝑢𝑛 − 𝑢| > 𝜖} ∩ 𝐴) ↛ 0.

Since the whole sequence (𝑥𝑛)𝑛 is bounded (by 𝜇(𝐴)) there exists some subsequence
(𝑥𝑛𝑘)𝑘 given by (𝑢𝑛𝑘)𝑘 such that

𝑥𝑛𝑘 = 𝜇({|𝑢𝑛𝑘 − 𝑢| > 𝜖} ∩ 𝐴) → 𝛼 ≠ 0.

This contradicts, however, the fact that 𝑥𝑛𝑘 has itself a subsequence converging to zero.
(iii) Fix some set 𝐴 of finite 𝜇-measure. All conclusions below take place relative to resp.

on this set only.
If 𝑢𝑛

𝜇
←←←←←←←←←←←→ 𝑢we have for every subsequence (𝑢𝑛𝑘)𝑘 a sub-subsequence (𝑢̃𝑛𝑘)𝑘 with 𝑢̃𝑛𝑘 → 𝑢

a.e. Since Φ is continuous, we get Φ◦𝑢̃𝑛𝑘 → Φ◦𝑢 a.e.
This means, however, that every subsequence (Φ◦𝑢𝑛𝑘)𝑘 of (Φ◦𝑢𝑛)𝑛 has a sub-subsequence
(Φ◦𝑢̃𝑛𝑘)𝑘 which converges a.e. to Φ◦𝑢. Thus, part (ii) says that Φ◦𝑢𝑛

𝜇
←←←←←←←←←←←→ Φ◦𝑢.

■■

Problem 22.12 Solution: Since  and  are uniformly integrable, we find for any given 𝜖 > 0
functions 𝑓𝜖, 𝑔𝜖 ∈ 1

+ such that

sup
𝑓∈ ∫{|𝑓 |>𝑓𝜖}

|𝑓 | 𝑑𝜇 ⩽ 𝜖 and sup
𝑔∈ ∫{|𝑔|>𝑔𝜖}

|𝑔| 𝑑𝜇 ⩽ 𝜖.

We will use this notation throughout.
(i) Since 𝑓 ∶= |𝑓1| +⋯ + |𝑓𝑛| ∈ 1

+ we find that

∫{|𝑓𝑗 |>𝑓}
|𝑓𝑗| 𝑑𝜇 = ∫∅

|𝑓𝑗| 𝑑𝜇 = 0

uniformly for all 1 ⩽ 𝑗 ⩽ 𝑛. This proves uniform integrability.
(ii) Instead of {𝑓1,… , 𝑓𝑁} (which is uniformly integrable because of (i)) we show that

 ∪  is uniformly integrable.
Set ℎ𝜖 ∶= 𝑓𝜖 + 𝑔𝜖. Then ℎ𝜖 ∈ 1

+ and

{|𝑤| ⩾ 𝑓𝜖 + 𝑔𝜖} ⊂ {|𝑤| ⩾ 𝑓𝜖} ∩ {|𝑤| ⩾ 𝑔𝜖}

which means that we have

∫{|𝑤|>ℎ𝜖}
|𝑤| 𝑑𝜇 ⩽

⎧

⎪

⎨

⎪

⎩

∫{|𝑤|>𝑓𝜖} |𝑤| 𝑑𝜇 ⩽ 𝜖 if 𝑤 ∈ 

∫{|𝑤|>𝑔𝜖} |𝑤| 𝑑𝜇 ⩽ 𝜖 if 𝑤 ∈ .

Since this is uniform for all 𝑤 ∈  ∪ , the claim follows.
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(iii) Set ℎ𝜖 ∶= 𝑓𝜖 + 𝑔𝜖 ∈ 1
+. Since |𝑓 + 𝑔| ⩽ |𝑓 | + |𝑔| we have

{|𝑓 + 𝑔| > ℎ𝜖} ⊂ {|𝑓 | > ℎ𝜖} ∪ {|𝑔| > ℎ𝜖}

=
[

{|𝑓 | > ℎ𝜖} ∩ {|𝑔| > ℎ𝜖}
]

∪
[

{|𝑓 | > ℎ𝜖} ∩ {|𝑔| ⩽ ℎ𝜖}
]

∪
[

{|𝑓 | ⩽ ℎ𝜖} ∩ {|𝑔| > ℎ𝜖}
]

which implies that

∫
{|𝑓+𝑔|>ℎ𝜖}

|𝑓 + 𝑔| 𝑑𝜇

⩽ ∫
{|𝑓 |>ℎ𝜖}
∩{|𝑔|>ℎ𝜖}

(

|𝑓 | + |𝑔|
)

𝑑𝜇 + ∫
{|𝑓 |>ℎ𝜖}
∩{|𝑔|⩽ℎ𝜖}

|𝑓 | ∨ |𝑔| 𝑑𝜇 + ∫
{|𝑓 |⩽ℎ𝜖}
∩{|𝑔|>ℎ𝜖}

|𝑓 | ∨ |𝑔| 𝑑𝜇

= ∫
{|𝑓 |>ℎ𝜖}
∩{|𝑔|>ℎ𝜖}

|𝑓 | 𝑑𝜇 + ∫
{|𝑓 |>ℎ𝜖}
∩{|𝑔|>ℎ𝜖}

|𝑔| 𝑑𝜇 + ∫
{|𝑓 |>ℎ𝜖}
∩{|𝑔|⩽ℎ𝜖}

|𝑓 | 𝑑𝜇 + ∫
{|𝑓 |⩽ℎ𝜖}
∩{|𝑔|>ℎ𝜖}

|𝑔| 𝑑𝜇

⩽ ∫
{|𝑓 |>ℎ𝜖}

|𝑓 | 𝑑𝜇 + ∫
{|𝑔|>ℎ𝜖}

|𝑔| 𝑑𝜇 + ∫
{|𝑓 |>ℎ𝜖}

|𝑓 | 𝑑𝜇 + ∫
{|𝑔|>ℎ𝜖}

|𝑔| 𝑑𝜇

⩽ ∫
{|𝑓 |>𝑓𝜖}

|𝑓 | 𝑑𝜇 + ∫
{|𝑔|>𝑔𝜖}

|𝑔| 𝑑𝜇 + ∫
{|𝑓 |>𝑓𝜖}

|𝑓 | 𝑑𝜇 + ∫
{|𝑔|>𝑔𝜖}

|𝑔| 𝑑𝜇

⩽ 4𝜖

uniformly for all 𝑓 ∈  and 𝑔 ∈ .
(iv) This follows from (iii) if we set

• 𝑡 ⇝  ,
• (1 − 𝑡) ⇝ ,
• 𝑡𝑓𝜖 ⇝ 𝑓𝜖,
• (1 − 𝑡)𝑓𝜖 ⇝ 𝑔𝜖,

and observe that the calculation is uniform for all 𝑡 ∈ [0, 1].
(v) Without loss of generality we can assume that  is convex, i.e. coincides with its convex

hull.
Let 𝑢 be an element of the 1-closure of (the convex hull of)  . Then there is a sequence

(𝑓𝑗)𝑗 ⊂  ∶ lim
𝑗
‖𝑢 − 𝑓𝑗‖1 = 0.

We have, because of |𝑢| ⩽ |𝑢 − 𝑓𝑗| + |𝑓𝑗|,

{|𝑢| > 𝑓𝜖} ⊂ {|𝑢 − 𝑓𝑗| > 𝑓𝜖} ∪ {|𝑓𝑗| > 𝑓𝜖}

=
[

{|𝑢 − 𝑓𝑗| > 𝑓𝜖} ∩ {|𝑓𝑗| > 𝑓𝜖}
]

∪
[

{|𝑢 − 𝑓𝑗| > 𝑓𝜖} ∩ {|𝑓𝑗| ⩽ 𝑓𝜖}
]
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∪
[

{|𝑢 − 𝑓𝑗| ⩽ 𝑓𝜖} ∩ {|𝑓𝑗| > 𝑓𝜖}
]

that

∫
{|𝑢|>𝑓𝜖}

|𝑢| 𝑑𝜇

⩽ ∫
{|𝑢−𝑓𝑗 |>𝑓𝜖}
∩{|𝑓𝑗 |>𝑓𝜖}

|𝑢| 𝑑𝜇 + ∫
{|𝑢−𝑓𝑗 |>𝑓𝜖}
∩{|𝑓𝑗 |⩽𝑓𝜖}

|𝑢| 𝑑𝜇 + ∫
{|𝑢−𝑓𝑗 |⩽𝑓𝜖}
∩{|𝑓𝑗 |>𝑓𝜖}

|𝑢| 𝑑𝜇

⩽ ∫
{|𝑢−𝑓𝑗 |>𝑓𝜖}
∩{|𝑓𝑗 |>𝑓𝜖}

|𝑢 − 𝑓𝑗| 𝑑𝜇 + ∫
{|𝑢−𝑓𝑗 |>𝑓𝜖}
∩{|𝑓𝑗 |>𝑓𝜖}

|𝑓𝑗| 𝑑𝜇

+ ∫
{|𝑢−𝑓𝑗 |>𝑓𝜖}
∩{|𝑓𝑗 |⩽𝑓𝜖}

|𝑢 − 𝑓𝑗| ∨ |𝑓𝑗| 𝑑𝜇 + ∫
{|𝑢−𝑓𝑗 |⩽𝑓𝜖}
∩{|𝑓𝑗 |>𝑓𝜖}

|𝑢 − 𝑓𝑗| ∨ |𝑓𝑗| 𝑑𝜇

⩽ ‖𝑢 − 𝑓𝑗‖1 + ∫
{|𝑓𝑗 |>𝑓𝜖}

|𝑓𝑗| 𝑑𝜇 + ‖𝑢 − 𝑓𝑗‖1 + ∫
{|𝑓𝑗 |>𝑓𝜖}

|𝑓𝑗| 𝑑𝜇

⩽ 2 ‖𝑢 − 𝑓𝑗‖1 + 2𝜖

←←←←←←←←←←←←←←←←←←←←→
𝑗→∞

2𝜖.

Since this holds uniformly for all such 𝑢, we are done.
■■

Problem 22.13 Solution: By assumption,

∀ 𝜖 > 0 ∃𝑤𝜖 ∈ 1
+ ∶ sup

𝑓∈ ∫{|𝑓 |>𝑤𝜖}
|𝑓 | 𝑑𝜇 ⩽ 𝜖.

Now observe that

∫{sup1⩽𝑗⩽𝑘 |𝑓𝑗 |>𝑤𝜖}
sup
1⩽𝑗⩽𝑘

|𝑓𝑗| 𝑑𝜇

⩽
𝑘
∑

𝓁=1
∫{sup1⩽𝑗⩽𝑘 |𝑓𝑗 |>𝑤𝜖}∩{|𝑓𝓁|=sup1⩽𝑗⩽𝑘 |𝑓𝑗 |}

|𝑓𝓁| 𝑑𝜇

⩽
𝑘
∑

𝓁=1
∫{|𝑓𝓁|>𝑤𝜖}

|𝑓𝓁| 𝑑𝜇

⩽
𝑘
∑

𝓁=1
𝜖

= 𝑘 𝜖.

Therefore,

∫ sup
1⩽𝑗⩽𝑘

|𝑓𝑗| 𝑑𝜇

⩽ ∫{sup1⩽𝑗⩽𝑘 |𝑓𝑗 |⩽𝑤𝜖}
sup
1⩽𝑗⩽𝑘

|𝑓𝑗| 𝑑𝜇 + ∫{sup1⩽𝑗⩽𝑘 |𝑓𝑗 |>𝑤𝜖}
sup
1⩽𝑗⩽𝑘

|𝑓𝑗| 𝑑𝜇

270



Solution Manual. Last update 20th June 2025

⩽ ∫ 𝑤𝜖 𝑑𝜇 + 𝑘𝜖

and we get

lim
𝑘→∞

1
𝑘 ∫ sup

1⩽𝑗⩽𝑘
|𝑓𝑗| 𝑑𝜇 ⩽ lim

𝑘→∞
1
𝑘 ∫ 𝑤𝜖 𝑑𝜇 + 𝜖 = 𝜖

which proves our claim as 𝜖 > 0 was arbitrary.
■■

Problem 22.14 Solution: Since the function 𝑢 ≡ 𝑅,𝑅 > 0, is integrable w.r.t. the probability measure
P, we get

∫{|𝑢𝑗 |>𝑅}
|𝑢𝑗| 𝑑P ⩽ ∫{|𝑢𝑗 |>𝑅}

|𝑢𝑗|
|𝑢𝑗|𝑝−1

𝑅𝑝−1
𝑑P

= 1
𝑅𝑝−1 ∫{|𝑢𝑗 |>𝑅}

|𝑢𝑗|
𝑝 𝑑P

⩽ 1
𝑅𝑝−1 ∫

|𝑢𝑗|
𝑝 𝑑P

⩽ 1
𝑅𝑝−1

sup
𝑘 ∫ |𝑢𝑘|

𝑝 𝑑P

= 1
𝑅𝑝−1

sup
𝑘

‖𝑢𝑘‖
𝑝
𝑝

which converges to zero as 𝑅→ ∞. This proves uniform integrability.
Counterexample:

Vitali’s theorem implies that a counterexample should satisfy

𝑢𝑗
P

←←←←←←←←←←←←←←←←←←←←→
𝑗→∞

𝑢, ‖𝑢𝑗‖1 = 1, 𝑢𝑗 does not converge in 1.

Consider, for example, the probability space ((0, 1),ℬ(0, 1), 𝑑𝑥) and the sequence

𝑢𝑗 ∶= 𝑗 ⋅ 1(0,1∕𝑗).

Then 𝑢𝑗 → 0 pointwise (everywhere!), hence in measure. This is also the expected 1 limit, if it
exists. Moreover,

‖𝑢𝑗‖1 = ∫ 𝑢𝑗 𝑑𝑥 = 1

which means that 𝑢𝑗 cannot converge in 1 to the expected limit 𝑢 ≡ 0, i.e. it does not converge in
1.
Vitali’s theorem shows now that (𝑢𝑗)𝑗 cannot be uniformly integrable.
We can verify this fact also directly: for 𝑅 > 0 and all 𝑗 > 𝑅 we get

∫{|𝑢𝑗 |>𝑅}
|𝑢𝑗| 𝑑𝑥 = ∫ 𝑢𝑗 𝑑𝑥 = 1
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which proves
sup
𝑗 ∫{|𝑢𝑗 |>𝑅}

|𝑢𝑗| 𝑑𝑥 = 1 ∀𝑅 > 0

and (𝑢𝑗)𝑗 cannot be uniformly integrable (in view of the equivalent characterizations of uniform
integrability on finite measure spaces, cf. Theorem 22.9)

■■

Problem 22.15 Solution: We have
∞
∑

𝑗=𝑘
𝑗 𝜇(𝑗 < |𝑓 | ⩽ 𝑗 + 1) =

∞
∑

𝑗=𝑘
∫{𝑗<|𝑓 |⩽𝑗+1}

𝑗 𝑑𝜇

⩽
∞
∑

𝑗=𝑘
∫{𝑗<|𝑓 |⩽𝑗+1}

|𝑓 | 𝑑𝜇

= ∫{|𝑓 |>𝑘}
|𝑓 | 𝑑𝜇,

and, since 2𝑗 ⩾ 𝑗 + 1 for all 𝑗 ∈∈ N, also

2
∞
∑

𝑗=𝑘
𝑗 𝜇(𝑗 < |𝑓 | ⩽ 𝑗 + 1) =

∞
∑

𝑗=𝑘
2𝑗 𝜇(𝑗 < |𝑓 | ⩽ 𝑗 + 1)

=
∞
∑

𝑗=𝑘
∫{𝑗<|𝑓 |⩽𝑗+1}

2𝑗 𝑑𝜇

⩾
∞
∑

𝑗=𝑘
∫{𝑗<|𝑓 |⩽𝑗+1}

|𝑓 | 𝑑𝜇

= ∫{|𝑓 |>𝑘}
|𝑓 | 𝑑𝜇.

This shows that

∫{|𝑓 |>𝑘}
|𝑓 | 𝑑𝜇 ⩽ 2

∞
∑

𝑗=𝑘
𝑗 𝜇(𝑗 < |𝑓 | ⩽ 𝑗 + 1) ⩽ 2∫{|𝑓 |>𝑘}

|𝑓 | 𝑑𝜇

and this implies

sup
𝑓∈ ∫{|𝑓 |>𝑘}

|𝑓 | 𝑑𝜇 ≃ sup
𝑓∈

∞
∑

𝑗=𝑘
𝑗 𝜇(𝑗 < |𝑓 | ⩽ 𝑗 + 1).

This proves the claim (since we are in a finite measure space where 𝑢 ≡ 𝑘 is an integrable function!)
■■

Problem 22.16 Solution: Fix 𝜖 > 0. By assumption there is some 𝑤 = 𝑤𝜖 ∈ 1
+ such that

sup
𝑖 ∫{|𝑓𝑖|>𝑤}

|𝑓𝑖| 𝑑𝜇 ⩽ 𝜖.

Since |𝑢𝑖| ⩽ |𝑓𝑖| we infer that {|𝑢𝑖| > 𝑤} ⊂ {|𝑓𝑖| > 𝑤}, and so

∫{|𝑢𝑖|>𝑤}
|𝑢𝑖| 𝑑𝜇 ⩽ ∫{|𝑓𝑖|>𝑤}

|𝑓𝑖| 𝑑𝜇 ⩽ 𝜖 uniformly for all 𝑖 ∈ 𝐼 .

■■
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Problem 22.17 Solution: Let 𝑔 ∈ 1
+(𝜇). Then

0 ⩽ ∫ (|𝑢| − 𝑔 ∧ |𝑢|) 𝑑𝜇 = ∫{|𝑢|⩾𝑔}
(|𝑢| − 𝑔) 𝑑𝜇 ⩽ ∫{|𝑢|⩾𝑔}

|𝑢| 𝑑𝜇.

This implies that uniform integrability of the family  implies that the condition of Problem 22.17
holds. On the other hand,

∫{|𝑢|⩾𝑔}
|𝑢| 𝑑𝜇 = ∫{|𝑢|⩾𝑔}

(2|𝑢| − |𝑢|) 𝑑𝜇

⩽ ∫{|𝑢|⩾𝑔}
(2|𝑢| − 𝑔) 𝑑𝜇

⩽ ∫{2|𝑢|⩾𝑔}
(2|𝑢| − 𝑔) 𝑑𝜇

= 2∫{|𝑢|⩾ 1
2 𝑔}

(

|𝑢| − 1
2 𝑔

)

𝑑𝜇

= 2∫{|𝑢|⩾ 1
2 𝑔}

(

|𝑢| −
[1
2 𝑔

]

∧ |𝑢|
)

𝑑𝜇

and since 𝑔 ∈ 1 if, and only if, 1
2 𝑔 ∈ 1, we see that the condition given in Problem 22.17 entails

uniform integrability.

In finite measure spaces this conditions is simpler: constants are integrable functions in finite
measure spaces; thus we can replace the condition given in Problem 22.17 by

lim
𝑅→∞

sup
𝑢∈ ∫ (|𝑢| − 𝑅 ∧ |𝑢|) 𝑑𝜇 = 0.

■■
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23 Martingales.

Solutions to Problems 23.1–23.16

Problem 23.1 Solution: Since 𝒜0 = {∅, 𝑋} an 𝒜0-measurable function 𝑢 must satisfy {𝑢 = 𝑠} = ∅
or = 𝑋, i.e. all 𝒜0-measurable functions are constants.
So if (𝑢𝑗)𝑗∈N0

is a martingale, 𝑢0 is a constant and we can calculate its value because of the mar-
tingale property:

∫𝑋
𝑢0 𝑑𝜇 = ∫𝑋

𝑢1 𝑑𝜇 ⇐⇒ 𝑢0 = 𝜇(𝑋)−1 ∫𝑋
𝑢1 𝑑𝜇. (*)

Conversely, since 𝒜0 = {∅, 𝑋} and since

∫∅
𝑢0 𝑑𝜇 = ∫∅

𝑢1 𝑑𝜇

always holds, it is clear that the calculation and choice in (*) is necessary and sufficient for the
claim.

■■

Problem 23.2 Solution: We consider only the martingale case, the other two cases are similar.
(a) Since ℬ𝑗 ⊂ 𝒜𝑗 we get

∫𝐴
𝑢𝑗 𝑑𝜇 = ∫𝐴

𝑢𝑗+1 𝑑𝜇 ∀𝐴 ∈ 𝒜𝑗

⇐⇒ ∫𝐵
𝑢𝑗 𝑑𝜇 = ∫𝐵

𝑢𝑗+1 𝑑𝜇 ∀𝐵 ∈ ℬ𝑗

showing that (𝑢𝑗 ,ℬ𝑗)𝑗 is a martingale.
(b) It is clear that the above implication cannot hold if we enlarge 𝒜𝑗 to become 𝒞𝑗 . Just consider

the following ‘extreme’ case (to get a counterexample): 𝒞𝑗 = 𝒜 for all 𝑗. Any martingale
(𝑢𝑗 ,𝒞 )𝑗 must satisfy,

∫𝐴
𝑢𝑗 𝑑𝜇 = ∫𝐴

𝑢𝑗+1 𝑑𝜇 ∀𝐴 ∈ 𝒜 .

Considering the sets 𝐴 ∶= {𝑢𝑗 < 𝑢𝑗+1} ∈ 𝒜 and 𝐴′ ∶= {𝑢𝑗 > 𝑢𝑗+1} ∈ 𝒜 we conclude that

0 = ∫{𝑢𝑗>𝑢𝑗+1}
(𝑢𝑗 − 𝑢𝑗+1) 𝑑𝜇 ⇐⇒ 𝜇({𝑢𝑗 > 𝑢𝑗+1}) = 0

and, similarly 𝜇({𝑢𝑗 < 𝑢𝑗+1}) = 0 so that 𝑢𝑗 = 𝑢𝑗+1 almost everywhere and for all 𝑗. This
means that, if we start with a non-constant martingale (𝑢𝑗 ,𝒜𝑗)𝑗 , then this can never be a
martingale w.r.t. the filtration (𝒞𝑗)𝑗 .
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■■

Problem 23.3 Solution: For the notation etc. we refer to Problem 4.15. Since the completion 𝒜 𝑗 is
given by

𝒜 𝑗 = 𝜎(𝒜𝑗 ,𝒩 ), 𝒩 ∶=
{

𝑀 ⊂ 𝑋 ∶ ∃𝑁 ∈ 𝒜 , 𝑁 ⊃ 𝑀, 𝜇(𝑁) = 0
}

we find that for all 𝐴∗
𝑗 ∈ 𝒜 ∗

𝑗 there exists some 𝐴𝑗 ∈ 𝒜𝑗 such that

𝐴∗
𝑗 ⧵ 𝐴𝑗 ∪ 𝐴𝑗 ⧵ 𝐴

∗
𝑗 ∈ 𝒩 .

Writing 𝜇̄ for the unique extension of 𝜇 onto 𝒜 (and thus onto 𝒜 𝑗 for all 𝑗) we get for 𝐴∗
𝑗 , 𝐴𝑗 as

above
|

|

|

|

|

|

∫𝐴∗
𝑗

𝑢𝑗 𝑑𝜇̄ − ∫𝐴𝑗
𝑢𝑗 𝑑𝜇

|

|

|

|

|

|

=
|

|

|

|

|

|

∫𝐴∗
𝑗

𝑢𝑗 𝑑𝜇̄ − ∫𝐴𝑗
𝑢𝑗 𝑑𝜇̄

|

|

|

|

|

|

=
|

|

|

|

∫ (1𝐴∗
𝑗
− 1𝐴𝑗 )𝑢𝑗 𝑑𝜇̄

|

|

|

|

⩽ ∫
|

|

|

1𝐴∗
𝑗
− 1𝐴𝑗

|

|

|

𝑢𝑗 𝑑𝜇̄

= ∫ 1𝐴∗
𝑗 ⧵𝐴𝑗∪𝐴𝑗⧵𝐴

∗
𝑗
𝑢𝑗 𝑑𝜇̄

⩽ ∫ 1𝑁𝑢𝑗 𝑑𝜇 = 0

for a suitable 𝜇-null-set 𝑁 ⊃ 𝐴∗
𝑗 ⧵ 𝐴𝑗 ∪ 𝐴𝑗 ⧵ 𝐴

∗
𝑗 . This proves that

∫𝐴∗
𝑗

𝑢𝑗 𝑑𝜇̄ = ∫𝐴𝑗
𝑢𝑗 𝑑𝜇

and we see easily from this that (𝑢𝑗 ,𝒜 ∗
𝑗 )𝑗 is again a (sub-, super-)martingale if (𝑢𝑗 ,𝒜𝑗)𝑗 is a (sub-,

super-)martingale.
■■

Problem 23.4 Solution: To see that the condition is sufficient, set 𝑘 = 𝑗 + 1. For the necessity,
assume that 𝑘 = 𝑗 + 𝑚. Since 𝒜𝑗 ⊂ 𝒜𝑗+1 ⊂ ⋯ ⊂ 𝒜𝑗+𝑚 = 𝒜𝑘 we get from the submartingale
property

∫𝐴
𝑢𝑗 𝑑𝜇 ⩽ ∫𝐴

𝑢𝑗+1 𝑑𝜇 ⩽ ∫𝐴
𝑢𝑗+2 𝑑𝜇 ⩽ ⋯ ⩽ ∫𝐴

𝑢𝑗+𝑚 𝑑𝜇 = ∫𝐴
𝑢𝑘 𝑑𝜇.

For supermartingales resp. martingales the conditions obviously read:

∫𝐴
𝑢𝑗 𝑑𝜇 ⩾ ∫𝐴

𝑢𝑘 𝑑𝜇 ∀ 𝑗 < 𝑘, ∀𝐴 ∈ 𝒜𝑗

resp.

∫𝐴
𝑢𝑗 𝑑𝜇 = ∫𝐴

𝑢𝑘 𝑑𝜇 ∀ 𝑗 < 𝑘, ∀𝐴 ∈ 𝒜𝑗 .

■■
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Problem 23.5 Solution: We have 𝒮𝑗 = {𝐴 ∈ 𝒜𝑗 ∶ 𝜇(𝐴) < ∞} and we have to check conditions
(S1)–(S3) for a semiring, cf. page 39. Indeed

∅ ∈ 𝒜𝑗 , 𝜇(∅) = 0 ⇐⇒ ∅ ∈ 𝒮𝑗 ⇐⇒ (𝑆1);

and

𝐴,𝐵 ∈ 𝒮𝑗 ⇐⇒ 𝐴 ∩ 𝐵 ∈ 𝒜𝑗 , 𝜇(𝐴 ∩ 𝐵) ⩽ 𝜇(𝐴) <∞

⇐⇒ 𝐴 ∩ 𝐵 ∈ 𝒮𝑗 ⇐⇒ (𝑆2);

and

𝐴,𝐵 ∈ 𝒮𝑗 ⇐⇒ 𝐴 ⧵ 𝐵 ∈ 𝒜𝑗 , 𝜇(𝐴 ⧵ 𝐵) ⩽ 𝜇(𝐴) <∞

⇐⇒ 𝐴 ⧵ 𝐵 ∈ 𝒮𝑗 ⇐⇒ (𝑆3).

Since 𝒮𝑗 ⊂ 𝒜𝑗 also 𝜎(𝒮𝑗) ⊂ 𝒜𝑗 . On the other hand, if 𝐴 ∈ 𝒜𝑗 with 𝜇(𝐴) = ∞ we can, because
of 𝜎-finiteness find a sequence (𝐴𝑘)𝑘 ⊂ 𝒜0 ⊂ 𝒜𝑗 such that 𝜇(𝐴𝑘) < ∞ and 𝐴𝑘 ↑ 𝑋. Thus,
𝐴𝑘 ∩ 𝐴 ∈ 𝒮𝑗 for all 𝑘 and 𝐴 =

⋃

𝑘(𝐴𝑘 ∩ 𝐴). This shows that 𝒜𝑗 ⊂ 𝜎(𝒮𝑗).
The rest of the problem is identical to remark 23.2(i) when combined with Lemma 16.6.

■■

Problem 23.6 Solution: Using Lemma 17.2 we can approximate 𝑢𝑗 ∈ 2(𝒜𝑗) by simple functions in
(𝒜𝑗), i.e. with functions of the form 𝑓𝓁

𝑗 =
∑

𝑚 𝑐
𝓁,𝑚
𝑗 1𝐴𝓁,𝑚

𝑗
(the sum is a finite sum!) where 𝑐𝓁𝑗 ∈ R

and 𝐴𝓁
𝑗 ∈ 𝒜𝑗 . Using the Cauchy–Schwarz inequality we also see that

∫ (𝑓𝓁
𝑗 − 𝑢𝑗)𝑢𝑗 𝑑𝜇 ⩽ ‖𝑓𝓁

𝑗 − 𝑢𝑗‖𝐿2 ⋅ ‖𝑢𝑗‖𝐿2
𝓁→∞
←←←←←←←←←←←←←←←←←←←←←←←→
𝑗 fixed 0.

Using the martingale property we find for 𝑗 ⩽ 𝑘:

∫ 1𝐴𝓁,𝑚
𝑗
𝑢𝑘 𝑑𝜇 = ∫ 1𝐴𝓁,𝑚

𝑗
𝑢𝑗 𝑑𝜇 ∀𝓁, 𝑚

and therefore

∫ 𝑓𝓁
𝑗 𝑢𝑘 𝑑𝜇 = ∫ 𝑓𝓁

𝑗 𝑢𝑗 𝑑𝜇 ∀𝓁

and since the limit 𝓁 → ∞ exists

∫ 𝑢𝑗𝑢𝑘 𝑑𝜇 = lim
𝓁 ∫ 𝑓𝓁

𝑗 𝑢𝑘 𝑑𝜇 = lim
𝓁 ∫ 𝑓𝓁

𝑗 𝑢𝑗 𝑑𝜇 = ∫ 𝑢2𝑗 𝑑𝜇.

■■

Problem 23.7 Solution: Since the 𝑓𝑗’s are bounded, it is clear that (𝑓 ∙ 𝑢)𝑘 is integrable. Now take
𝐴 ∈ 𝒜𝑘. Then

∫𝐴
(𝑓 ∙ 𝑢)𝑘+1 𝑑𝜇 = ∫𝐴

𝑘+1
∑

𝑗=1
𝑓𝑗−1(𝑢𝑗 − 𝑢𝑗−1) 𝑑𝜇
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= ∫𝐴
(𝑓 ∙ 𝑢)𝑘 + 𝑓𝑘(𝑢𝑘+1 − 𝑢𝑘) 𝑑𝜇

= ∫𝐴
(𝑓 ∙ 𝑢)𝑘 𝑑𝜇 + ∫ (1𝐴 ⋅ 𝑓𝑘)(𝑢𝑘+1 − 𝑢𝑘) 𝑑𝜇

Using Remark 23.2(iii) we find

∫ (1𝐴 ⋅ 𝑓𝑘)(𝑢𝑘+1 − 𝑢𝑘) 𝑑𝜇 = ∫ 1𝐴 ⋅ 𝑓𝑘𝑢𝑘+1 𝑑𝜇 − ∫ 1𝐴 ⋅ 𝑓𝑘𝑢𝑘 𝑑𝜇

= ∫ 1𝐴 ⋅ 𝑓𝑘𝑢𝑘 𝑑𝜇 − ∫ 1𝐴 ⋅ 𝑓𝑘𝑢𝑘 𝑑𝜇

= 0

and we conclude that

∫𝐴
(𝑓 ∙ 𝑢)𝑘+1 𝑑𝜇 = ∫𝐴

(𝑓 ∙ 𝑢)𝑘 𝑑𝜇 ∀𝐴 ∈ 𝒜𝑘.

■■

Problem 23.8 Solution:

(i) Note that

𝑆2
𝑛+1 − 𝑆

2
𝑛 = (𝑆𝑛 + 𝜉𝑛+1)2 − 𝑆2

𝑛 = 𝜉2𝑛+1 + 𝜉𝑛+1𝑆𝑛.

If 𝐴 ∈ 𝒜𝑛, then 1𝐴𝑆𝑛 is independent of 𝜉𝑛+1 and we find, therefore,

∫𝐴
(𝑆2

𝑛+1 − 𝑆
2
𝑛 ) 𝑑P = ∫𝐴

𝜉2𝑛+1 𝑑P + ∫𝐴
𝜉𝑛+1𝑆𝑛 𝑑P

⩾ ∫𝐴
𝜉𝑛+1𝑆𝑛 𝑑P

= ∫ 𝜉𝑛+1(1𝐴𝑆𝑛) 𝑑P

= ∫ 𝜉𝑛+1 𝑑P

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=0

∫ 1𝐴𝑆𝑛 𝑑P

= 0.

(ii) Observe, first of all, that due to independence

∫ 𝑆2
𝑛 𝑑P =

𝑛
∑

𝑗=1
∫ 𝜉2𝑗 𝑑P +

∑

𝑗≠𝑘
∫ 𝜉𝑗𝜉𝑘 𝑑P

= 𝑛∫ 𝜉21 𝑑P +
∑

𝑗≠𝑘
∫ 𝜉𝑗 𝑑P

⏟⏞⏟⏞⏟
=0

∫ 𝜉𝑘 𝑑P

= 𝑛∫ 𝜉21 𝑑P
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so that 𝜅 ∶= ∫ 𝜉21 𝑑P is a reasonable candidate for the assertion. Using the calculation of
part (i) of this problem we see

[𝑆2
𝑛+1 − 𝜅(𝑛 + 1)] − [𝑆2

𝑛 − 𝜅𝑛] = 𝜉2𝑛+1 + 𝜉𝑛+1𝑆𝑛 − 𝜅

and integrating over ∫𝐴… 𝑑P for any 𝐴 ∈ 𝒜𝑛 gives, just as in (i), because of independence
of 1𝐴 and 𝜉𝑛+1 resp. 1𝐴𝑆𝑛 and 𝜉𝑛+1

∫𝐴

(

[𝑆2
𝑛+1 − 𝜅(𝑛 + 1)] − [𝑆2

𝑛 − 𝜅𝑛]
)

𝑑P

= ∫ 1𝐴 ⋅ 𝜉2𝑛+1 𝑑P + ∫ 𝜉𝑛+1 𝑑P∫ 1𝐴 ⋅ 𝑆𝑛 𝑑P − 𝜅 ∫𝐴
𝑑P

= P(𝐴)∫ 𝜉2𝑛+1 𝑑P − 𝜅 ∫𝐴
𝑑P

= 0

since 𝜉1 and 𝜉𝑛+1 are identically distributed implying that 𝜅 = ∫ 𝜉2𝑛+1 𝑑P = ∫ 𝜉21 𝑑P.
■■

Problem 23.9 Solution: As in Problem 23.8 we find

𝑀𝑛+1 −𝑀𝑛 = 𝜉2𝑛+1 + 𝑆𝑛𝜉𝑛+1 − 𝜎
2
𝑛+1.

Integrating over 𝐴 ∈ 𝒜𝑛 yields

∫𝐴
(𝑀𝑛+1 −𝑀𝑛) 𝑑P

= ∫𝐴
𝜉2𝑛+1 𝑑P + ∫𝐴

𝑆𝑛𝜉𝑛+1 𝑑P − 𝜎2𝑛+1 ∫𝐴
𝑑P

= P(𝐴)∫Ω
𝜉2𝑛+1 𝑑P

⏟⏞⏞⏞⏟⏞⏞⏞⏟
= 𝜎2𝑛+1

+∫𝐴
𝑆𝑛 𝑑P∫Ω

𝜉𝑛+1 𝑑P

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=0

−𝜎2𝑛+1P(𝐴)

= 0,

where we use the independence of 1𝐴 and 𝜉𝑛+1 resp. of 1𝐴𝑆𝑛 and 𝜉𝑛+1 and the hint given in the
statement of the problem.

■■

Problem 23.10 Solution: We find that for 𝐴 ∈ 𝒜𝑛

∫𝐴
𝑢𝑛+1 𝑑𝜇 = ∫𝐴

(𝑢𝑛 + 𝑑𝑛+1) 𝑑𝜇 = ∫𝐴
𝑢𝑛 𝑑𝜇 + ∫𝐴

𝑑𝑛+1 𝑑𝜇 = ∫𝐴
𝑢𝑛 𝑑𝜇

which shows that (𝑢𝑛,𝒜𝑛)𝑛 is a martingale, hence (𝑢2𝑛,𝒜𝑛)𝑛 is a submartingale—cf. Example 23.3(vi).
Now

∫ 𝑢2𝑛 𝑑𝜇 =
∑

𝑗 ∫ 𝑑2𝑗 𝑑𝜇 + 2
∑

𝑗<𝑘
∫ 𝑑𝑗𝑑𝑘 𝑑𝜇
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but, just as in Problem 23.6, we can approximate 𝑑𝑗 by 𝒜𝑗-measurable simple functions (𝑓𝓁
𝑗 )𝓁∈N

which shows, since ∫𝐴 𝑑𝑘 𝑑𝜇 = 0 for any 𝐴 ∈ 𝒜𝑗 and 𝑘 > 𝑗:

∫ 𝑑𝑗𝑑𝑘 𝑑𝜇 = lim
𝓁 ∫ 𝑓𝓁

𝑗 𝑑𝑘 𝑑𝜇 = 0.

■■

Problem 23.11 Solution: For 𝐴 ∈ 𝒜𝑛 we find

∫𝐴

[(

1 − 𝑝
𝑝

)𝑆𝑛+1
−
(

1 − 𝑝
𝑝

)𝑆𝑛]

𝑑P

= ∫𝐴

(

1 − 𝑝
𝑝

)𝑆𝑛[(1 − 𝑝
𝑝

)𝜉𝑛+1
− 1

]

𝑑P

= ∫𝐴

(

1 − 𝑝
𝑝

)𝑆𝑛
𝑑P ⋅ ∫Ω

[(

1 − 𝑝
𝑝

)𝜉𝑛+1
− 1

]

𝑑P

where we use that 1𝐴
( 1−𝑝

𝑝

)𝑆𝑛 and ( 1−𝑝
𝑝

)𝜉𝑛+1 − 1 are independent, see formulae (23.6) and (23.7).
But since 𝜉𝑛+1 is a Bernoulli random variable we find

∫Ω

[(

1 − 𝑝
𝑝

)𝜉𝑛+1
− 1

]

𝑑P

=
[(

1 − 𝑝
𝑝

)1
− 1

]

⋅ 𝑝 +
[(

1 − 𝑝
𝑝

)−1
− 1

]

⋅ (1 − 𝑝)

= [1 − 2𝑝] + [2𝑝 − 1]

= 0.

The integrability conditions for martingales are obviously satisfied.
■■

Problem 23.12 Solution: A solution in a more general context can be found in Example 25.4 on page
297 of the textbook.

■■

Problem 23.13 Solution: By definition, a supermartingale satisfies

∫𝐴
𝑢𝑗 𝑑𝜇 ⩾ ∫𝐴

𝑢𝑗+1 𝑑𝜇 ∀𝑗 ∈ N, 𝐴 ∈ 𝒜𝑗 .

If we take 𝐴 = 𝑋 and if 𝑢𝑘 = 0, then this becomes

0 = ∫𝑋
𝑢𝑘 𝑑𝜇 ⩾ ∫𝑋

𝑢𝑘+1 𝑑𝜇 ⩾ 0

and since, by assumption, 𝑢𝑘+1 ⩾ 0, we conclude that 𝑢𝑘+1 = 0.
■■
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Problem 23.14 Solution: By definition,
𝐴 ∈ 𝒜𝜏 ⇐⇒ 𝐴 ∈ 𝒜 and ∀ 𝑗 ∶ 𝐴 ∩ {𝜏 ⩽ 𝑗} ∈ 𝒜𝑗 .

Thus,
• ∅ ∈ 𝒜𝜏 is obvious;
• if 𝐴 ∈ 𝒜𝜏 , then

𝐴𝑐 ∩ {𝜏 ⩽ 𝑗} = {𝜏 ⩽ 𝑗} ⧵ 𝐴 = {𝜏 ⩽ 𝑗}
⏟⏟⏟

∈𝒜𝑗

⧵ (𝐴 ∩ {𝜏 ⩽ 𝑗})
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

∈𝒜𝑗

∈ 𝒜𝑗

thus 𝐴𝑐 ∈ 𝒜𝜏 .
• if 𝐴𝓁 ∈ 𝒜𝜏 , 𝓁 ∈ N, then

[

⋃

𝓁

𝐴𝓁

]

∩ {𝜏 ⩽ 𝑗} =
⋃

𝓁

[

𝐴𝓁 ∩ {𝜏 ⩽ 𝑗}
]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
∈𝒜𝑗

∈ 𝒜𝑗

thus ⋃𝐴𝓁 ∈ 𝒜𝜏 .
■■

Problem 23.15 Solution: By definition, 𝜏 is a stopping time if
∀ 𝑛 ∈ N0 ∶ {𝜏 ⩽ 𝑛} ∈ 𝒜𝑛.

Thus, if 𝜏 is a stopping time, we find for 𝑛 ⩾ 1

{𝜏 < 𝑛} = {𝜏 ⩽ 𝑛 − 1} ∈ 𝒜𝑛−1 ⊂ 𝒜𝑛

and, therefore, for all 𝑛 ∈ N0

{𝜏 = 𝑛} = {𝜏 ⩽ 𝑛} ⧵ {𝜏 < 𝑛} ∈ 𝒜𝑛.

Conversely, if {𝜏 = 𝑛} ∈ 𝒜𝑛 for all 𝑛, we get
{𝜏 ⩽ 𝑘} = {𝜏 = 0} ∪ {𝜏 = 1} ∪⋯ ∪ {𝜏 = 𝑘} ∈ 𝒜0 ∪⋯ ∪𝒜𝑘 ⊂ 𝒜𝑘.

■■

Problem 23.16 Solution: Since 𝜎 ∧ 𝜏 ⩽ 𝜎 and 𝜎 ∧ 𝜏 ⩽ 𝜏, we find from Lemma 23.6 that
ℱ𝜎∧𝜏 ⊂ ℱ𝜎 ∩ℱ𝜏 .

Conversely, if 𝐴 ∈ ℱ𝜎 ∩ℱ𝜏 we know that
𝐴 ∩ {𝜎 ⩽ 𝑗} ∈ ℱ𝑗 and 𝐴 ∩ {𝜏 ⩽ 𝑗} ∈ ℱ𝑗 ∀ 𝑗 ∈ N0.

Thus,
𝐴 ∩ {𝜎 ∧ 𝜏 ⩽ 𝑗} = 𝐴 ∩

(

{𝜎 ⩽ 𝑗} ∪ {𝜏 ⩽ 𝑗}
)

∈ ℱ𝑗

and we get 𝐴 ∈ ℱ𝜎∧𝜏 .
■■
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24 Martingale convergence theorems.

Solutions to Problems 24.1–24.9

Problem 24.1 Solution: We have 𝜏0 = 0 which is clearly a stopping time and since

𝜎1 ∶= inf{𝑗 > 0 ∶ 𝑢𝑗 ⩽ 𝑎} ∧𝑁 (inf ∅ = +∞)

it is clear that

{𝜎1 > 𝓁} = {𝑢1 > 𝑎} ∩⋯ ∩ {𝑢𝓁 > 𝑎} ∈ 𝒜𝓁.

The claim follows by induction once we have shown that 𝜎𝑘 and 𝜏𝑘 are stopping times for a generic
value of 𝑘. Since the structure of their definitions are similar, we show this for 𝜎𝑘 only.
By induction assumption, let 𝜏0, 𝜎1, 𝜏1,… , 𝜎𝑘−1, 𝜏𝑘−1 be stopping times. By definition,

𝜎𝑘 ∶= inf{𝑗 > 𝜏𝑘−1 ∶ 𝑢𝑗 ⩽ 𝑎} ∧𝑁 (inf ∅ = +∞)

and we find for 𝓁 ∈ N and 𝓁 < 𝑁

{𝜎𝑘 > 𝓁} = {𝜏𝑘−1 > 𝓁} ∪
(

{𝜏𝑘−1 ⩽ 𝓁} ∩ {𝑢𝜏𝑘−1+1 > 𝑎} ∩⋯ ∩ {𝑢𝓁−1 > 𝑎} ∩ {𝑢𝓁 > 𝑎}
)

∈ 𝒜𝓁

while, by definition we get for 𝓁 = 𝑁

{𝜎𝑘 > 𝑁} = ∅ ∈ 𝒜𝑁 .

■■

Problem 24.2 Solution: Theorem 24.7 becomes for supermartingales: Let (𝑢𝓁)𝓁∈−N be a backwards
supermartingale and assume that 𝜇|𝒜−∞

is 𝜎-finite. Then lim𝑗→∞ 𝑢−𝑗 = 𝑢−∞ ∈ (−∞,∞] exists a.e.
Moreover, 𝐿1-lim𝑗→∞ 𝑢−𝑗 = 𝑢−∞ if, and only if, sup𝑗 ∫ 𝑢−𝑗 𝑑𝜇 < ∞; in this case (𝑢𝓁,𝒜𝓁)𝓁∈−N is
a supermartingale and 𝑢−∞ is finitely-valued.

Using this theorem the claim follows immediately from the supermartingale property:

−∞ < ∫𝐴
𝑢−1 𝑑𝜇 ⩽ ∫𝐴

𝑢−𝑗 𝑑𝜇 ⩽ ∫𝐴
𝑢−∞ 𝑑𝜇 <∞ ∀ 𝑗 ∈ N, 𝐴 ∈ 𝒜−∞

and, in particular, for 𝐴 = 𝑋 ∈ 𝒜−∞.
■■
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Problem 24.3 Solution: Corollary 24.3 shows pointwise a.e. convergence. Using Fatou’s lemma we
get

0 = lim
𝑗→∞∫ 𝑢𝑗 𝑑𝜇 = lim inf

𝑗→∞ ∫ 𝑢𝑗 𝑑𝜇

⩾ ∫ lim inf
𝑗→∞

𝑢𝑗 𝑑𝜇

= ∫ 𝑢∞ 𝑑𝜇 ⩾ 0

so that 𝑢∞ = 0 a.e.
Moreover, since ∫ 𝑢𝑗 𝑑𝜇 ←←←←←←←←←←←←←←←←←←←←→

𝑗→∞
0 = ∫ 𝑢∞ 𝑑𝜇, Theorem 24.6 shows that 𝑢𝑗 → 𝑢∞ in 𝐿1-sense.

■■

Problem 24.4 Solution: From 𝐿1-lim𝑗→∞ 𝑢𝑗 = 𝑓 we conclude that sup𝑗 ∫ |𝑢𝑗| 𝑑𝜇 < ∞ and we get
that lim𝑗→∞ 𝑢𝑗 exists a.e. Since 𝐿1-convergence also implies a.e. convergence of a subsequence,
the limiting functions must be the same.

■■

Problem 24.5 Solution: The quickest solution uses the famous Chung-Fuchs result that a simple
random walk (this is just 𝑆𝑗 ∶= 𝜉1 +⋯ + 𝜉𝑗 with 𝜉𝑘 iid Bernoulli 𝑝 = 𝑞 = 1

2 ) does not converge
and that −∞ = lim inf 𝑗 𝑆𝑗 < lim sup𝑗 𝑆𝑗 = ∞ a.e. Knowing this we are led to

𝑃 (𝑢𝑗 converges) = 𝑃 (𝜉0 + 1 = 0) = 1
2
.

It remains to show that 𝑢𝑗 is a martingale. For 𝐴 ∈ 𝜎(𝜉1,… , 𝜉𝑗) we get

∫𝐴
𝑢𝑗+1 𝑑𝑃 = ∫𝐴

(𝜉0 + 1)(𝜉1 +⋯ + 𝜉𝑗 + 𝜉𝑗+1) 𝑑𝑃

= ∫𝐴
(𝜉0 + 1)(𝜉1 +⋯ + 𝜉𝑗) 𝑑𝑃 + ∫𝐴

(𝜉0 + 1)𝜉𝑗+1 𝑑𝑃

= ∫𝐴
𝑢𝑗 𝑑𝑃 + ∫𝐴

(𝜉0 + 1) 𝑑𝑃 ∫Ω
𝜉𝑗+1 𝑑𝑃

= ∫𝐴
𝑢𝑗 𝑑𝑃

where the last step follows because of independence.
If you do not know the Chung-Fuchs result, you could argue as follows: assume that for some finite
random variable 𝑆 the limit 𝑆𝑗(𝜔) → 𝑆(𝜔) takes place on a set 𝐴 ⊂ Ω. Since the 𝜉𝑗’s are iid, we
have

𝜉2 + 𝜉3 +⋯ → 𝑆

and
𝜉1 + 𝜉2 +⋯ → 𝑆

which means that 𝑆 and 𝑆 + 𝜉1 have the same probability distribution. But this entails that 𝑆 is
necessarily ±∞, i.e., 𝑆𝑗 cannot have a finite limit.

■■
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Problem 24.6 Solution:

(i) Cf. the construction in Scholium 23.4.
(ii) Note that 𝑛2 − (𝑛 − 1)2 − 1 = 2𝑛 − 2 is even.

The function 𝑓 ∶ R2𝑛−2 → R, 𝑓 (𝑥1,… , 𝑥2𝑛−2) = 𝑥1 +⋯ + 𝑥𝑛2−(𝑛−1)2 is clearly Borel
measurable, i.e. the function

𝑓 (𝜉(𝑛−1)2+2,… , 𝜉𝑛2) = 𝜉(𝑛−1)2+2 +⋯ + 𝜉𝑛2

is 𝒜𝑛-measurable and so is the set 𝐴𝑛.
Moreover, 𝑥 ∈ 𝐴𝑛 if, and only if, exactly half of 𝜉(𝑛−1)2+2,… , 𝜉𝑛2 are +1 and the other
half is −1. Thus,

𝜆(𝐴𝑛) =
(

2𝑛 − 2
𝑛 − 1

)(

1
2

)𝑛−1(1
2

)𝑛−1
=
(

2𝑛 − 2
𝑛 − 1

)(

1
2

)2𝑛−2

Using Stirling’s formula, we get
1
22𝑘

(

2𝑘
𝑘

)

= (2𝑘)!
𝑘! 𝑘!

∼
√

2𝜋2𝑘(2𝑘)2𝑘𝑒𝑘𝑒𝑘

22𝑘
√

2𝜋𝑘
√

2𝜋𝑘𝑘𝑘𝑘𝑘𝑒2𝑘

= 1
√

𝑘𝜋
←←←←←←←←←←←←←←←←←←←←→
𝑘→∞

0.

Setting 𝑘 = 𝑛 − 1 this shows both
lim
𝑛
𝜆(𝐴𝑛) = 0 and ∑

𝑛
𝜆(𝐴𝑛) ∼

∑

𝑛

1
√

𝑛
= ∞.

Finally, lim sup𝑛 1𝐴𝑛 = 1lim sup𝑛 𝐴𝑛 = 1 a.e. while, by Fatou’s lemma

0 ⩽ ∫ lim inf
𝑛

1𝐴𝑛 𝑑𝜆 ⩽ lim inf
𝑛 ∫ 1𝐴𝑛 𝑑𝜆 = lim inf

𝑛
𝜆(𝐴𝑛) = 0,

i.e., lim inf𝑛 1𝐴𝑛 = 0 a.e. This means that 1𝐴𝑛 does not have a limit as 𝑛→ ∞.
(iii) For 𝐴 ∈ 𝒜𝑛 we have because of independence

∫𝐴
𝑀𝑛+1 𝑑𝜆

= ∫𝐴
𝑀𝑛(1 + 𝜉𝑛2+1) 𝑑𝜆 + ∫𝐴

1𝐴𝑛𝜉𝑛2+1 𝑑𝜆

= ∫𝐴
𝑀𝑛 𝑑𝜆∫[0,1]

(1 + 𝜉𝑛2+1) 𝑑𝜆 + ∫𝐴
1𝐴𝑛 𝑑𝜆∫[0,1]

𝜉𝑛2+1 𝑑𝜆

= ∫𝐴
𝑀𝑛 𝑑𝜆.

(iv) We have
{𝑀𝑛+1 ≠ 0}

= {𝑀𝑛+1 ≠ 0, 𝜉𝑛2+1 = −1} ∪ {𝑀𝑛+1 ≠ 0, 𝜉𝑛2+1 = +1}

⊂ 𝐴𝑛 ∪ {𝑀𝑛 ≠ 0, 𝜉𝑛2+1 = +1}.
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(v) By definition,

𝑀𝑛+1 −𝑀𝑛 =𝑀𝑛𝜉𝑛2+1 + 1𝐴𝑛𝜉𝑛2+1 = (𝑀𝑛 + 1𝐴𝑛)𝜉𝑛2+1

so that

|𝑀𝑛+1 −𝑀𝑛| = |𝑀𝑛 + 1𝐴𝑛| ⋅ |𝜉𝑛2+1| = |𝑀𝑛 + 1𝐴𝑛|.

This shows that for 𝑥 ∈ {lim𝑛𝑀𝑛 exists} the limit lim𝑛 1𝐴𝑛(𝑥) exists. But, because of
(ii), the latter is a null set, so that the pointwise limit of 𝑀𝑛 cannot exist.
On the other hand, using the inequality (iv), shows

𝜆(𝑀𝑛+1 ≠ 0) ⩽ 1
2𝜆(𝑀𝑛 ≠ 0) + 𝜆(𝐴𝑛)

and iterating this gives

𝜆(𝑀𝑛+𝑘 ≠ 0) ⩽ 1
2𝑘𝜆(𝑀𝑛 ≠ 0) + 𝜆(𝐴𝑛) +⋯ 𝜆(𝐴𝑛+𝑘−1)

⩽ 1
2𝑘 + 𝜆(𝐴𝑛) +⋯ 𝜆(𝐴𝑛+𝑘−1).

Letting first 𝑛→ ∞ and then 𝑘→ ∞ yields

lim sup
𝑗

𝜆(𝑀𝑗 ≠ 0) = 0

so that lim𝑗 𝜆(𝑀𝑗 = 0) = 0.
■■

Problem 24.7 Solution: Note that for 𝐴 ∈
{

{1}, {2},… , {𝑛}, {𝑛 + 1, 𝑛 + 2,…}
} we have

∫𝐴
𝜉𝑛+1 𝑑𝑃 = ∫𝐴

(𝑛 + 2)1[𝑛+2,∞)∩N 𝑑𝑃

=
⎧

⎪

⎨

⎪

⎩

0 if 𝐴 is a singleton

∫[𝑛+1,∞)∩N
(𝑛 + 2)1[𝑛+2,∞)∩N 𝑑𝑃 else

and in the second case we have

∫[𝑛+1,∞)∩N
(𝑛 + 2)1[𝑛+2,∞)∩N 𝑑𝑃 = ∫[𝑛+2,∞)∩N

(𝑛 + 2) 𝑑𝑃

= (𝑛 + 2)
∞
∑

𝑗=𝑛+2
𝑃 ({𝑗})

= (𝑛 + 2)
∞
∑

𝑗=𝑛+2

(

1
𝑗
− 1
𝑗 + 1

)

= 1,

The same calculation shows

∫𝐴
𝜉𝑛 𝑑𝑃 = ∫𝐴

(𝑛 + 1)1[𝑛+1,∞)∩N 𝑑𝑃
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=
⎧

⎪

⎨

⎪

⎩

0 if 𝐴 is a singleton

∫[𝑛+1,∞)∩N
(𝑛 + 1)1[𝑛+1,∞)∩N 𝑑𝑃 = 1 else

so that

∫𝐴
𝜉𝑛+1 𝑑𝑃 = ∫𝐴

𝜉𝑛 𝑑𝑃

for all 𝐴 from a generator of the 𝜎-algebra which contains an exhausting sequence. This shows,
by Remark 23.2(i) that (𝜉𝑛)𝑛 is indeed a martingale.
The second calculation from above also shows that ∫ 𝜉𝑛 𝑑𝑃 = 1 while

sup
𝑛
𝜉𝑛 = ∞ and lim

𝑛
𝜉𝑛 = 0

are obvious.
■■

Problem 24.8 Solution:

(i) Using Problem 23.6 we get

∫ (𝑢𝑗 − 𝑢𝑗−1)2 𝑑𝜇 = ∫ 𝑢2𝑗 𝑑𝜇 − 2∫ 𝑢𝑗𝑢𝑗−1 𝑑𝜇 + ∫ 𝑢2𝑗−1 𝑑𝜇

= ∫ 𝑢2𝑗 𝑑𝜇 − 2∫ 𝑢2𝑗−1 𝑑𝜇 + ∫ 𝑢2𝑗−1 𝑑𝜇

= ∫ 𝑢2𝑗 𝑑𝜇 − ∫ 𝑢2𝑗−1 𝑑𝜇

which means that

∫ 𝑢2𝑁 𝑑𝜇 =
𝑁
∑

𝑗=1
∫ (𝑢𝑗 − 𝑢𝑗−1)2 𝑑𝜇

and the claim follows.
(ii) Because of Example 23.3(vi), 𝑝 = 2, we conclude that (𝑢2𝑗 )𝑗 is a submartingale which,

due to 𝐿2-boundedness, satisfies the assumptions of Theorem 24.2 on submartingale
convergence. This means that lim𝑗 𝑢2𝑗 = 𝑢2 exists a.e. This is, alas, not good enough to
get 𝑢𝑗 → 𝑢 a.e., it only shows that |𝑢𝑗| → |𝑢| a.e.
The following trick helps: let (𝐴𝑘)𝑘 ⊂ 𝒜0 be an exhausting sequence with 𝐴𝑘 ↑ 𝑋
and 𝜇(𝐴𝑘) < ∞. Then (1𝐴𝑘𝑢𝑗)𝑗 is an 𝐿1-bounded martingale: indeed, if 𝐴 ∈ 𝒜𝑛 then
𝐴 ∩ 𝐴𝑘 ∈ 𝒜𝑛 and it is clear that

∫𝐴
1𝐴𝑘𝑢𝑛 𝑑𝜇 = ∫𝐴∩𝐴𝑘

𝑢𝑛 𝑑𝜇 = ∫𝐴∩𝐴𝑘
𝑢𝑛+1 𝑑𝜇 = ∫𝐴

1𝐴𝑘𝑢𝑛+1 𝑑𝜇

while, by the Cauchy–Schwarz inequality,

∫ |1𝐴𝑘𝑢𝑛| 𝑑𝜇 ⩽
√

𝜇(𝐴𝑘) ⋅

√

sup
𝑛 ∫ 𝑢2𝑛 𝑑𝜇 ⩽ 𝑐𝑘.
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Thus, we can use Theorem 24.2 and conclude that
1𝐴𝑘𝑢𝑛 ←←←←←←←←←←←←←←←←←←←←→𝑛→∞

1𝐴𝑘𝑢

almost everywhere with, because of almost-everywhere-uniqueness of the limits on
each of the sets 𝐴𝑘, a single function 𝑢. This shows 𝑢𝑛 → 𝑢 a.e.

(iii) Following the hint and using the arguments of part (i) we find

∫ (𝑢𝑗+𝑘 − 𝑢𝑗)2 𝑑𝜇 = ∫ (𝑢2𝑗+𝑘 − 𝑢
2
𝑗 ) 𝑑𝜇

=
𝑗+𝑘
∑

𝓁=𝑗+1
∫ (𝑢2𝓁 − 𝑢2𝓁−1) 𝑑𝜇

=
𝑗+𝑘
∑

𝓁=𝑗+1
∫ (𝑢𝓁 − 𝑢𝓁−1)2 𝑑𝜇.

Now we use Fatou’s lemma and the result of part (ii) to get

∫ lim inf
𝑗

(𝑢 − 𝑢𝑗)2 𝑑𝜇 ⩽ lim inf
𝑗 ∫ (𝑢 − 𝑢𝑗)2 𝑑𝜇

⩽ lim sup
𝑗 ∫ (𝑢 − 𝑢𝑗)2 𝑑𝜇

⩽ lim sup
𝑗

∞
∑

𝓁=𝑗+1
∫ (𝑢𝓁 − 𝑢𝓁−1)2 𝑑𝜇

= 0

since, by 𝐿2-boundedness, ∑∞
𝑘=1 ∫ (𝑢𝑘 − 𝑢𝑘−1)

2 𝑑𝜇 <∞.
(iv) Since 𝜇(𝜉) < ∞, constants are integrable and we find using the Cauchy–Schwarz and

Markov inequalities

∫
|𝑢𝑘|>𝑅

|𝑢𝑘| 𝑑𝜇 ⩽
√

𝜇(|𝑢𝑘| > 𝑅) ⋅

√

∫ 𝑢2𝑘 𝑑𝜇

⩽ 1
𝑅

√

∫ 𝑢2𝑘 𝑑𝜇 ⋅

√

∫ 𝑢2𝑘 𝑑𝜇

⩽ 1
𝑅

sup
𝑘 ∫ 𝑢2𝑘 𝑑𝜇

from which we get uniform integrability; the claim follows now from parts (i)–(iii) and
Theorem 24.6.

■■

Problem 24.9 Solution:

(i) Note that ∫ 𝜖𝑗 𝑑𝑃 = 0 and ∫ 𝜖2𝑗 𝑑𝑃 = 1. Moreover, 𝜉𝑛 ∶=
∑𝑛
𝑗=1 𝜖𝑗𝑦𝑗 is a martingale

w.r.t. the filtration 𝒜𝑛 ∶= 𝜎(𝜖1,… , 𝜖𝑛) and

∫ 𝜉2𝑛 𝑑𝑃 =
𝑛
∑

𝑗=1
𝑦2𝑗 .
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Problem 24.8 now shows that ∑∞
𝑗=1 𝑦

2
𝑗 < ∞ means that the martingale (𝜉𝑛)𝑛 is 𝐿2-

bounded, i.e. 𝜉𝑛 converges a.e. The converse follows from part (iii).
(ii) This follows with the same arguments as in part (i) with 𝒜𝑛 = 𝜎(𝜉1,… , 𝜉𝑛).

(iii) We show that 𝑆2
𝑛 − 𝐴𝑛 is a martingale. Now for 𝐴 ∈ 𝒜𝑛

∫𝐴
𝑀𝑛+1 𝑑𝑃 = ∫𝐴

(𝑆2
𝑛+1 − 𝐴𝑛+1) 𝑑𝑃

= ∫𝐴
(𝑆2

𝑛 + 2𝜉𝑛+1𝑆𝑛 + 𝜉2𝑛+1 − 𝐴𝑛 − 𝜎
2
𝑛+1) 𝑑𝑃

= ∫𝐴
(𝑆2

𝑛 − 𝐴𝑛) 𝑑𝑃 + ∫𝐴
(2𝜉𝑛+1𝑆𝑛 + 𝜉2𝑛+1 − 𝜎

2
𝑛+1) 𝑑𝑃

= ∫𝐴
𝑀𝑛 𝑑𝑃 + ∫𝐴

(2𝜉𝑛+1𝑆𝑛 + 𝜉2𝑛+1 − 𝜎
2
𝑛+1) 𝑑𝑃

But, because of independence,

∫𝐴
(2𝜉𝑛+1𝑆𝑛 + 𝜉2𝑛+1 − 𝜎

2
𝑛+1) 𝑑𝑃

= ∫𝐴
2𝜉𝑛+1 𝑑𝑃 ∫Ω

𝑆𝑛 𝑑𝑃 + 𝑃 (𝐴)∫ 𝜉2𝑛+1 𝑑𝑃 − 𝑃 (𝐴)𝜎2𝑛+1

= 0 + 𝑃 (𝐴)𝜎2𝑛+1 − 𝑃 (𝐴)𝜎
2
𝑛+1

= 0.

and the claim is established.
Now define

𝜏 ∶= 𝜏𝜅 ∶= inf{𝑗 ∶ |𝑀𝑗| > 𝜅}.

By optional sampling, (𝑀𝑛∧𝜏𝜅 )𝑛 is again a martingale and we have

|𝑀𝑛∧𝜏 | =𝑀𝑛1{𝑛<𝜏} + |𝑀𝜏 |1{𝑛⩾𝜏}

⩽ 𝜅1{𝑛<𝜏} + |𝑀𝜏 |1{𝑛⩾𝜏}

⩽ 𝜅1{𝑛<𝜏} + |𝑀𝜏 −𝑀𝜏−1|1{𝑛⩾𝜏} + |𝑀𝜏−1|1{𝑛⩾𝜏}

= 𝜅1{𝑛<𝜏} + |𝜉𝜏 |1{𝑛⩾𝜏} + |𝑀𝜏−1|1{𝑛⩾𝜏}

⩽ 𝜅1{𝑛<𝜏} + |𝜉𝜏 |1{𝑛⩾𝜏} + 𝜅1{𝑛⩾𝜏}
⩽ 𝜅 + 𝐶

where we use, for the estimate of 𝑀𝜏−1, the definition of 𝜏 for the last estimate. Since
(𝑀𝑛∧𝜏)𝑛 is a martingale, this gives

∫ (𝑆2
𝑛∧𝜏 − 𝐴𝑛∧𝜏) 𝑑𝑃 = ∫ (𝑆2

0 − 𝐴0) 𝑑𝑃 = 0

so that

∫ 𝐴𝑛∧𝜏 𝑑𝑃 = ∫ 𝑆2
𝑛∧𝜏 𝑑𝑃 ⩽ (𝜅 + 𝐶)2
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uniformly in 𝑛.
Thus, by Beppo Levi’s theorem,

∫ 𝐴𝜏 𝑑𝑃 ⩽ (𝜅 + 𝐶)2 <∞

which means that 𝐴𝜏 < ∞ almost surely. But since ∑

𝑗 𝜉𝑗 converges almost surely,
𝑃 (𝜏 = ∞) = 1 for sufficiently large 𝜅, and we are done.

■■

290



25 Martingales in action.

Solutions to Problems 25.1–25.15

Problem 25.1 Solution: This problem is intimately linked with problem 25.7.
Without loss of generality we assume that 𝜇 and 𝜈 are finite measures, the case for 𝜎-finite 𝜇 and
arbitrary 𝜈 is exactly as in the proof of Theorem 25.2.
Let (𝐴𝑖)𝑖 be as described in the problem and define the finite 𝜎-algebras 𝒜𝑛 ∶= 𝜎(𝐴1,… , 𝐴𝑛).
Using the hint we can achieve that

𝒜𝑛 = 𝜎
(

𝐶𝑛1 ,… , 𝐶𝑛𝓁(𝑛)
)

with mutually disjoint 𝐶𝑘𝑖 ’s and 𝓁(𝑛) ⩽ 2𝑛 +1 and ⨃

𝑖 𝐶
𝑛
𝑖 = 𝑋. Then the construction of Example

25.4 yields a countably-indexed martingale since the 𝜎-algebras 𝒜𝑖 are increasing.
This means, that the countable version of the martingale convergence theorem is indeed enough
for the proof.

■■

Problem 25.2 Solution: “⇒”: Assume first that (25.1) holds, i.e. that 𝜈 ≪ 𝜇. If 𝜇(𝐴▵𝐵) = 0 for
some 𝐴,𝐵 ∈ 𝒜 we get 𝜈(𝐴▵𝐵) = 0. By definition,

𝜈(𝐴▵𝐵) = 𝜈(𝐴 ⧵ 𝐵) + 𝜈(𝐵 ⧵ 𝐴) = 𝜈(𝐴 ⧵ (𝐴 ∩ 𝐵)) + 𝜈(𝐵 ⧵ (𝐴 ∩ 𝐵)) = 0

so that

𝜈(𝐴 ⧵ (𝐴 ∩ 𝐵)) = 𝜈(𝐵 ⧵ (𝐴 ∩ 𝐵)) = 0.

Assume that 𝜈(𝐴) <∞. Then 𝜈(𝐴 ∩ 𝐵) ⩽ 𝜈(𝐴) <∞ and we see that

𝜈(𝐴) = 𝜈(𝐴 ∩ 𝐵) and 𝜈(𝐵) = 𝜈(𝐴 ∩ 𝐵)

which means that 𝜈(𝐴) = 𝜈(𝐵).
If 𝜈(𝐴) = ∞ the condition 𝜈(𝐴 ⧵ (𝐴 ∩ 𝐵)) = 0 shows that 𝜈(𝐴 ∩ 𝐵) = ∞, otherwise 0 =
𝜈(𝐴 ⧵ (𝐴 ∩ 𝐵)) = 𝜈(𝐴) − 𝜈(𝐴 ∩ 𝐵) = ∞ which is impossible. Again we have 𝜈(𝐴) = ∞ = 𝜈(𝐵).

“⇐”: Assume now that the condition stated in the problem is satisfied. If 𝑁 ∈ 𝒜 is any 𝜇-null
set, we choose 𝐴 ∶= 𝑁 and 𝐵 ∶= ∅ and observe that 𝐴▵𝐵 = 𝑁 . Thus,

𝜇(𝑁) = 𝜇(𝐴▵𝐵) = 0 ⇐⇒ 𝜈(𝐴) = 𝜈(𝐵)
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but this is just 𝜈(𝑁) = 𝜈(𝐴) = 𝜈(∅) = 0. Condition (25.1) follows.
■■

Problem 25.3 Solution: Using simply the Radon–Nikodým theorem, Theorem 25.2, gives

∀ 𝑡 ∃ 𝑝𝑡(𝑥) such that 𝜈𝑡(𝑑𝑥) = 𝑝𝑡(𝑥) ⋅ 𝜇𝑡(𝑑𝑥)

with a measurable function 𝑥 → 𝑝𝑡(𝑥); it is, however, far from being clear that (𝑡, 𝑥) → 𝑝𝑡(𝑥) is
jointly measurable.
A slight variation of the proof of Theorem 25.2 allows us to incorporate parameters provided the
families of measures are measurable w.r.t. these parameters. Following the hint we set (notation
as in the proof of 25.2)

𝑝𝛼(𝑡, 𝑥) ∶=
∑

𝐴∈𝛼

𝜈𝑡(𝐴)
𝜇𝑡(𝐴)

𝐼𝐴(𝑥)

with the agreement that 0
0 ∶= 0 (note that 𝑎

0 with 𝑎 ≠ 0 will not turn up because of the absolute
continuity of the measures!). Since 𝑡 → 𝜇𝑡(𝐴) and 𝑡 → 𝜇𝑡(𝐴) are measurable, the above sum is
measurable so that

(𝑡, 𝑥) → 𝑝(𝑡, 𝑥)

is a jointly measurable function. If we can show that

lim
𝛼
𝑝𝛼(𝑡, 𝑥) = 𝑝(𝑡, 𝑥)

exists (say, in 𝐿1, 𝑡 being fixed) then the limiting function is again jointly measurable.
Using exactly the arguments of the proof of Theorem 25.2 with 𝑡 fixed we can confirm that this
limit exists and defines a jointly measurable function with the property that

𝜈𝑡(𝑑𝑥) = 𝑝(𝑡, 𝑥) ⋅ 𝜈𝑡(𝑑𝑥).

Because of the a.e. uniqueness of the Radon–Nikodým density the functions 𝑝(𝑡, 𝑥) and 𝑝𝑡(𝑥) co-
incide, for every 𝑡 a.e. as functions of 𝑥; without additional assumptions on the nature of the de-
pendence on the parameter, the exceptional set may, though, depend on 𝑡!

■■

Problem 25.4 Solution: 𝜈 ≪ 𝜆 . We show that 𝜆(𝑁) = 0 ⇐⇒ 𝜈(𝑁) = 0. Let 𝑁 ∈ ℬ(R𝑛) be a
Lebesgue null set. Using the invariance of Lebesgue measure under shifts we get

0 = ∫ 𝜆(𝑁)
⏟⏟⏟

=0

𝜈(𝑑𝑦) = ∫ 𝜆(𝑁 − 𝑦) 𝜈(𝑑𝑦)

= ∬ 1𝑁 (𝑥 + 𝑦) 𝜆(𝑑𝑥)𝜈(𝑑𝑦)

Tonelli
= ∬ 1𝑁 (𝑥 + 𝑦) 𝜈(𝑑𝑦)𝜆(𝑑𝑥)
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= ∫ 𝜈(𝑁 − 𝑦) 𝜆(𝑑𝑦).

Therefore, 𝜈(𝑁−𝑦) = 0 for Lebesgue almost every 𝑦, i.e. there is some 𝑥0 such that 𝜈(𝑁+𝑥0) = 0.
Now we use the quasi-invariance to get 𝜈(𝑁) = 𝜈((𝑁 + 𝑥0) − 𝑥0) = 0.
𝜆 ≪ 𝜈 . We show that 𝜈(𝑁) = 0 ⇐⇒ 𝜆(𝑁) = 0. Let 𝑁 ∈ ℬ(R𝑛) be a null set for the measure 𝜈.

Similar to the first part of the proof we get

0 = ∫ 𝜈(𝑁 − 𝑥)
⏟⏞⏞⏟⏞⏞⏟

=0

𝜆(𝑑𝑥) = ∫ 𝜆(𝑁 − 𝑦) 𝜈(𝑑𝑦)

= ∫ 𝜆(𝑁) 𝜈(𝑑𝑦) = 𝜆(𝑁)𝜈(R𝑛).

This shows that 𝜆(𝑁) = 0 (unless 𝜈 is trivial....).
■■

Problem 25.5 Solution: Have a look at the respective solutions for Chapter 20.
■■

Problem 25.6 Solution: We write 𝑢± for the positive resp. negative parts of 𝑢 ∈ 1(𝒜 ), i.e. 𝑢 =
𝑢+ − 𝑢− and 𝑢± ⩾ 0. Fix such a function 𝑢 and define

𝜈±(𝐹 ) ∶= ∫𝐹
𝑢±(𝑥)𝜇(𝑑𝑥), ∀𝐹 ∈ ℱ .

Clearly, 𝜈± are measures on the 𝜎-algebra ℱ . Moreover

∀𝑁 ∈ ℱ , 𝜇(𝑁) = 0 ⇐⇒ 𝜈±(𝑁) = ∫𝑁
𝑢± 𝑑𝜇 = 0

which means that 𝜈± ≪ 𝜇. By the Radon–Nikodým theorem we find (up to null-sets unique)
positive functions 𝑓± ∈ 1(ℱ ) such that

𝜈±(𝐹 ) = ∫𝐹
𝑓± 𝑑𝜇 ∀𝐹 ∈ ℱ .

Thus, 𝑢ℱ ∶= 𝑓+ − 𝑓− ∈ 1(ℱ ) clearly satisfies

∫𝐹
𝑢ℱ 𝑑𝜇 = ∫𝐹

𝑢 𝑑𝜇 ∀𝐹 ∈ ℱ .

To see uniqueness, we assume that 𝑤 ∈ 1(ℱ ) also satisfies

∫𝐹
𝑤𝑑𝜇 = ∫𝐹

𝑢 𝑑𝜇 ∀𝐹 ∈ ℱ .

Since then

∫𝐹
𝑢ℱ 𝑑𝜇 = ∫𝐹

𝑤𝑑𝜇 ∀𝐹 ∈ ℱ .

we can choose 𝑓 ∶= {𝑤 > 𝑢ℱ } and find

0 = ∫{𝑤>𝑢ℱ }
(𝑤 − 𝑢ℱ ) 𝑑𝜇
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which is only possible if 𝜇({𝑤 > 𝑢ℱ }) = 0. Similarly we conclude that 𝜇({𝑤 < 𝑢ℱ }) = 0 from
which we get 𝑤 = 𝑢ℱ almost everywhere.
Reformulation of the submartingale property.
Recall that (𝑢𝑗 ,𝒜𝑗)𝑗 is a submartingale if, for every 𝑗, 𝑢𝑗 ∈ 1(𝒜𝑗) and if

∫𝐴
𝑢𝑗 𝑑𝜇 ⩽ ∫𝐴

𝑢𝑗+1 𝑑𝜇 ∀𝐴 ∈ 𝒜𝑗 , ∀ 𝑗.

We claim that this is equivalent to saying

𝑢𝑗 ⩽ 𝑢𝒜𝑗
𝑗+1 almost everywhere, ∀ 𝑗.

The direction ‘⇒’ is clear. To see ‘⇐’ we fix 𝑗 and observe that, since

∫𝐴
𝑢𝑗 𝑑𝜇 ⩽ ∫𝐴

𝑢𝑗+1 𝑑𝜇 = ∫𝐴
𝑢𝒜𝑗
𝑗+1 𝑑𝜇 ∀𝐴 ∈ 𝒜𝑗 ,

we get, in particular, for 𝐴 ∶= {𝑢𝒜𝑗
𝑗+1 < 𝑢𝑗} ∈ 𝒜𝑗 ,

0 ⩽ ∫{𝑢
𝒜𝑗
𝑗+1<𝑢𝑗}

(𝑢𝒜𝑗
𝑗+1 − 𝑢𝑗) 𝑑𝜇

which is only possible if 𝜇({𝑢𝒜𝑗
𝑗+1 < 𝑢𝑗}) = 0.

■■

Problem 25.7 Solution: Since both 𝜇 and 𝜈 are 𝜎-finite, we can restrict ourselves, using the technique
of the Proof of Theorem 25.2 to the case where 𝜇 and 𝜈 are finite. All we have to do is to pick an
exhaustion (𝐾𝓁)𝓁, 𝐾𝓁 ↑ 𝑋 such that 𝜇(𝐾𝓁), 𝜇(𝐾𝓁) < ∞ and to consider the measures 1𝐾𝓁

𝜇 and
1𝐾𝓁

𝜈 which clearly inherit the absolute continuity from 𝜇 and 𝜈.
Using the Radon–Nikodým theorem (Theorem 25.2) we get that

𝜇𝑗 ≪ 𝜈𝑗 ⇐⇒ 𝜇𝑗 = 𝑢𝑗 ⋅ 𝜈𝑗

with an 𝒜𝑗-measurable positive density 𝑢𝑗 . Moreover, since 𝜇 is a finite measure,

∫𝑋
𝑢𝑗 𝑑𝜈 = ∫𝑋

𝑢𝑗 𝑑𝜈𝑗 = ∫𝑋
𝑑𝜇𝑗 = 𝜇𝑗(𝑋) <∞

so that all the (𝑢𝑗)𝑗 are 𝜈-integrable. Using exactly the same argument as at the beginning of the
proof of Theorem 25.2 (ii)⇒(i), we get that (𝑢𝑗)𝑗 is even uniformly 𝜈-integrable. Finally, (𝑢𝑗)𝑗 is a
martingale (given the measure 𝜈), since for 𝑗, 𝑗 + 1 and 𝐴 ∈ 𝒜𝑗 we have

∫𝐴
𝑢𝑗+1 𝑑𝜈 = ∫𝐴

𝑢𝑗+1 𝑑𝜈𝑗+1

= ∫𝐴
𝑑𝜇𝑗+1 (𝑢𝑗+1 ⋅ 𝜈𝑗+1 = 𝜇𝑗+1)

= ∫𝐴
𝑑𝜇𝑗 (𝐴 ∈ 𝒜𝑗)
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= ∫𝐴
𝑢𝑗 𝑑𝜈𝑗 (𝜇𝑗 = 𝑢𝑗 ⋅ 𝜈𝑗)

= ∫𝐴
𝑢𝑗 𝑑𝜈

and we conclude that 𝑢𝑗 → 𝑢∞ a.e. and in 𝐿1(𝜈) for some limiting function 𝑢∞ which is still 𝐿1(𝜈)
and also 𝒜∞ ∶= 𝜎(

⋃

𝑗∈N𝒜𝑗)-measurable. Since, by assumption, 𝒜∞ = 𝒜 , this argument shows
also that

𝜇 = 𝑢∞ ⋅ 𝜈

and it reveals that

𝑢∞ = 𝑑𝜇
𝑑𝜈

= lim
𝑗

𝑑𝜇𝑗
𝑑𝜈𝑗

.

■■

Problem 25.8 Solution: We can assume that V𝜉𝑗 <∞, otherwise the inequality would be trivial.
Note that the random variables 𝜉𝑗 − E𝜉𝑗 , 𝑗 = 1, 2,… , 𝑛 are still independent and, of course,
centered (= mean-zero). Thus, by Example 23.3(x) we get that

𝑀𝑘 ∶=
𝑘
∑

𝑗=1
(𝜉𝑗 − E𝜉𝑗) is a martingale

and, because of Example 23.3(v), (|𝑀𝑘|)𝑘 is a submartingale. Applying (25.10) in this situation
proves the claimed inequality since

V𝑀𝑛 = E(𝑀2
𝑛 ) (since E𝑀𝑛 = 0)

=
𝑛
∑

𝑗=1
E(𝜉2𝑗 )

where we use, for the last equality, what probabilists call Theorem of Bienaymé for the independent
random variables 𝜉𝑗 :

E(𝑀2
𝑛 ) =

𝑛
∑

𝑗,𝑘=1
E
[

(𝜉𝑗 − E𝜉𝑗)(𝜉𝑘 − E𝜉𝑘)
]

=
𝑛
∑

𝑗=𝑘=1
E
[

(𝜉𝑗 − E𝜉𝑗)2
]

+
∑

𝑗≠𝑘
E
[

(𝜉𝑗 − E𝜉𝑗)
]

E
[

(𝜉𝑘 − E𝜉𝑘)
] (by independence)

=
𝑛
∑

𝑗=𝑘=1
E
[

(𝜉𝑗 − E𝜉𝑗)2
]

=
𝑛
∑

𝑗=1
E
[

𝑀2
𝑗
]

=
𝑛
∑

𝑗=1
V𝑀𝑗 .

■■
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Problem 25.9 Solution:

(i) As in the proof of Theorem 25.12 we find

∫ 𝑢𝑝 𝑑𝜇
(14.9)
= 𝑝∫

∞

0
𝑠𝑝−1 𝜇 ({𝑢 ⩾ 𝑠}) 𝑑𝑠

⩽ 𝑝∫

∞

0
𝑠𝑝−2

(

∫ 1{𝑢⩾𝑠}(𝑥)𝑤(𝑥)𝜇(𝑑𝑥)
)

𝑑𝑠

= 𝑝∫

(

∫

∞

0
1[0,𝑢(𝑥)](𝑠)𝑠𝑝−2 𝑑𝑠

)

𝑤(𝑥)𝜇(𝑑𝑥)

= 𝑝∫
𝑢(𝑥)𝑝−1

𝑝 − 1
𝑤(𝑥)𝜇(𝑑𝑥)

= 𝑝
𝑝 − 1 ∫ 𝑢𝑝−1𝑤𝑑𝜇

Note that this inequality is meant in [0,+∞], i.e. we allow the cases 𝑎 ⩽ +∞ and +∞ ⩽ +∞.
(ii) Pick conjugate numbers 𝑝, 𝑞 ∈ (1,∞), i.e. 𝑞 = 𝑝

𝑝−1 . Then we can rewrite the result of (i) and
then apply Hölder’s inequality to get

‖𝑢‖𝑝𝑝 ⩽
𝑝

𝑝 − 1 ∫ 𝑢𝑝−1𝑤𝑑𝜇

⩽ 𝑝
𝑝 − 1

(

∫ 𝑢(𝑝−1)𝑞 𝑑𝜇
)1∕𝑞(

∫ 𝑤𝑝 𝑑𝜇
)1∕𝑝

= 𝑝
𝑝 − 1

(

∫ 𝑢𝑝 𝑑𝜇
)1−1∕𝑝

‖𝑤‖𝑝

= 𝑝
𝑝 − 1

‖𝑢‖𝑝−1𝑝 ⋅ ‖𝑤‖𝑝

and the claim follows upon dividing both sides by ‖𝑢‖𝑝−1𝑝 . (Here we use the finiteness of this
expression, i.e. the assumption 𝑢 ∈ 𝑝).

■■

Problem 25.10 Solution: Only the first inequality needs proof. Note that
max
1⩽𝑗⩽𝑁 ∫ |𝑢𝑗|

𝑝 𝑑𝜇 ⩽ ∫ max
1⩽𝑗⩽𝑁

|𝑢𝑗|
𝑝 𝑑𝜇 = ∫ 𝑢∗𝑁 𝑑𝜇

from which the claim easily follows.
■■

Problem 25.11 Solution: Let (𝐴𝑘)𝑘 ⊂ 𝒜0 be an exhausting sequence, i.e. 𝐴𝑘 ↑ 𝑋 and 𝜇(𝐴𝑘) < ∞.
Since (𝑢𝑗)𝑗 is 𝐿1-bounded, we know that

sup
𝑗

‖𝑢𝑗‖𝑝 ⩽ 𝑐 <∞

and we find, using Hölder’s inequality with 1
𝑝
+ 1

𝑞
= 1

∫ |1𝐴𝑘𝑢𝑗| 𝑑𝜇 ⩽
(

𝜇(𝐴𝑘)
)1∕𝑞

⋅ ‖𝑢𝑗‖𝑝 ⩽ 𝑐
(

𝜇(𝐴𝑘)
)1∕𝑞
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uniformly for all 𝑗 ∈ N. This means that the martingale (1𝐴𝑘𝑢𝑗)𝑗 (see the solution to Problem
24.8) is 𝐿1-bounded and we get, as in Problem 24.8 that for some unique function 𝑢

lim
𝑗
1𝐴𝑘𝑢𝑗 = 1𝐴𝑘𝑢 ∀ 𝑘

a.e., hence 𝑢𝑗 ←←←←←←←←←←←←←←←←←←←←→𝑗→∞
𝑢 a.e. Using Fatou’s Lemma we get

∫ |𝑢|𝑝 𝑑𝜇 = ∫ lim inf
𝑗

|𝑢𝑗|
𝑝 𝑑𝜇

⩽ lim inf ∫ |𝑢𝑗|
𝑝 𝑑𝜇

⩽ sup
𝑗 ∫ |𝑢𝑗|

𝑝 𝑑𝜇 < ∞

which means that 𝑢 ∈ 𝐿𝑝.
For each 𝑘 ∈ N the martingale (1𝐴𝑘𝑢𝑗)𝑗 is also uniformly integrable: using Hölder’s and Markov’s
inequalities we arrive at

∫{1𝐴𝑘 |𝑢𝑗 |>1𝐴𝑘𝑅}
1𝐴𝑘|𝑢𝑗| 𝑑𝜇 ⩽ ∫{|𝑢𝑗 |>𝑅}

1𝐴𝑘|𝑢𝑗| 𝑑𝜇

⩽
(

𝜇{|𝑢𝑗| > 𝑅}
)1∕𝑞

‖𝑢𝑗‖𝑝

⩽
(

1
𝑅𝑝

‖𝑢𝑗‖
𝑝
𝑝

)1∕𝑞
‖𝑢𝑗‖𝑝

⩽ 𝑐𝑝∕𝑞+1

𝑅𝑝∕𝑞

and the latter tends, uniformly for all 𝑗, to zero as 𝑅 → ∞. Since 1𝐴𝑘 ⋅ 𝑅 is integrable, the claim
follows.
Thus, Theorem 24.6 applies and shows that for 𝑢∞ ∶= 𝑢 and every 𝑘 the family (𝑢𝑗1𝐴𝑘)𝑗∈N∪{∞} is
a martingale. Because of Example 23.3(vi) (|𝑢𝑗|𝑝1𝐴𝑘)𝑗∈N∪{∞} is a submartingale and, therefore,
for all 𝑘 ∈ N

∫ |1𝐴𝑘𝑢𝑗|
𝑝 𝑑𝜇 ⩽ ∫ |1𝐴𝑘𝑢𝑗+1|

𝑝 𝑑𝜇 ⩽ ∫ |1𝐴𝑘𝑢∞|

𝑝 𝑑𝜇 = ∫ |1𝐴𝑘𝑢|
𝑝 𝑑𝜇,

Since, by Fatou’s lemma

∫ |1𝐴𝑘𝑢|
𝑝 𝑑𝜇 = ∫ lim inf

𝑗
|1𝐴𝑘𝑢𝑗|

𝑝 𝑑𝜇 ⩽ lim inf
𝑗 ∫ |1𝐴𝑘𝑢𝑗|

𝑝 𝑑𝜇

we see that

∫ |1𝐴𝑘𝑢|
𝑝 𝑑𝜇 = lim

𝑗 ∫ |1𝐴𝑘𝑢𝑗|
𝑝 𝑑𝜇 = sup

𝑗 ∫ |1𝐴𝑘𝑢𝑗|
𝑝 𝑑𝜇.

Since suprema interchange, we get

∫ |𝑢|𝑝 𝑑𝜇 = sup
𝑘 ∫ |1𝐴𝑘𝑢|

𝑝 𝑑𝜇

= sup
𝑘

sup
𝑗 ∫ |1𝐴𝑘𝑢𝑗|

𝑝 𝑑𝜇
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= sup
𝑗

sup
𝑘 ∫ |1𝐴𝑘𝑢𝑗|

𝑝 𝑑𝜇

= sup
𝑗 ∫ |𝑢𝑗|

𝑝 𝑑𝜇

and Riesz’s convergence theorem, Theorem 13.10, finally proves that 𝑢𝑗 → 𝑢 in 𝐿𝑝.
■■

Problem 25.12 Solution: Since 𝑓𝑘 is a martingale and since

∫ |𝑓𝑘| 𝑑𝜆
𝑛 ⩽

∑

𝑧∈2−𝑘Z𝑛

1
𝜆𝑛(𝑄𝑘(𝑧)) ∫𝑄𝑘(𝑧)

|𝑓 | 𝑑𝜆𝑛 ∫ 1𝑄𝑘(𝑧) 𝑑𝜆
𝑛

=
∑

𝑧∈2−𝑘Z𝑛
∫𝑄𝑘(𝑧)

|𝑓 | 𝑑𝜆𝑛

= ∫ |𝑓 | 𝑑𝜆𝑛 <∞

we get from the martingale convergence theorem 24.2 that

𝑓∞ ∶= lim
𝑘
𝑓𝑘

exists almost everywhere and that 𝑓∞ ∈ 1(ℬ). The above calculation shows, on top of that, that
for any set 𝑄 ∈ 𝒜 [0]

𝑘

∫𝑄
𝑓𝑘 𝑑𝜆

𝑛 = ∫𝑄
𝑓 𝑑𝜆𝑛

and

∫𝑄
|𝑓𝑘| 𝑑𝜆

𝑛 ⩽ ∫𝑄
|𝑓 | 𝑑𝜆𝑛.

This allows us to show that (𝑓𝑘)𝑘∈N is uniformly integrable. Indeed, fix𝑅, take some𝑤 ∈ 𝐿1(𝒜 [0]
1 )

with𝑤 > 0 (you can construct this easily using a convergent series with steps of type 𝑧+[0, 2−1)𝑛,
𝑧 ∈ Z𝑛 and suitable weights), and take 𝑄 = {|𝑓𝑘| > 𝑅𝑤} to get

∫{|𝑓𝑘|>𝑅𝑤}
|𝑓𝑘| 𝑑𝜆

𝑛 ⩽ ∫{|𝑓𝑘|>𝑅𝑤}
|𝑓 | 𝑑𝜆𝑛

= ∫{|𝑓𝑘|>𝑅𝑤}∩{|𝑓 |>𝑅𝑤∕2}
|𝑓 | 𝑑𝜆𝑛 + ∫{|𝑓𝑘|>𝑅𝑤}∩{|𝑓 |⩽𝑅𝑤∕2}

|𝑓 | 𝑑𝜆𝑛

⩽ ∫{|𝑓 |>𝑅𝑤∕2}
|𝑓 | 𝑑𝜆𝑛 + ∫{|𝑓𝑘|>𝑅𝑤⩾2|𝑓 |}

|𝑓 | 𝑑𝜆𝑛

⩽ ∫{|𝑓 |>𝑅𝑤∕2}
|𝑓 | 𝑑𝜆𝑛 + 1

2 ∫{|𝑓𝑘|>𝑅𝑤⩾2|𝑓 |}
|𝑓𝑘| 𝑑𝜆

𝑛

⩽ ∫{|𝑓 |>𝑅𝑤∕2}
|𝑓 | 𝑑𝜆𝑛 + 1

2 ∫{|𝑓𝑘|>𝑅𝑤}
|𝑓𝑘| 𝑑𝜆

𝑛

and this we can re-arrange to become

∫{|𝑓𝑘|>𝑅𝑤}
|𝑓𝑘| 𝑑𝜆

𝑛 ⩽ 2∫{|𝑓 |>𝑅𝑤∕2}
|𝑓 | 𝑑𝜆𝑛.
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The rhS is uniform for all 𝑘, so we can use dominated convergence and let 𝑅→ ∞ to get

lim
𝑅→∞

sup
𝑘 ∫{|𝑓𝑘|>𝑅𝑤}

|𝑓𝑘| 𝑑𝜆
𝑛 ⩽ 2 lim

𝑅→∞∫{|𝑓 |>𝑅𝑤∕2}
|𝑓 | 𝑑𝜆𝑛 = 0.

This shows (Theorem 24.6) that 𝑓𝑘 → 𝑓∞ in 𝐿1 and a.e. In particular, we get for any 𝑘 ∈ N and
𝑄 ∈ 𝒜 [0]

𝑘

∫𝑄
𝑓∞ 𝑑𝜆

𝑛 𝐿
1-limit
= lim

𝑚⩾𝑘,𝑚→∞∫𝑄
𝑓𝑚 𝑑𝜆

𝑛 ∀𝑚 ⩾ 𝑘, def. of 𝑓𝑘= ∫𝑄
𝑓 𝑑𝜆𝑛

Thus, ∫𝑄 𝑓∞ 𝑑𝜆𝑛 = ∫𝑄 𝑓 𝑑𝜆
𝑛 for all 𝑄 ∈

⋃

𝑘𝒜
[0]
𝑘 . This is a ∩-stable system, so the equality also

holds for 𝑄 ∈ 𝜎
(

⋃

𝑘𝒜
[0]
𝑘

)

= ℬ.
Taking𝑄 = {𝑓 > 𝑓∞} and𝑄 = {𝑓 < 𝑓∞} – both are measurable sets since 𝑓, 𝑓∞ are measurable
– shows 𝑓 = 𝑓∞ a.e. Thus, (𝑓𝑘)𝑘∈N∪{∞} is UI.

■■

Problem 25.13 Solution: As one would expect, the derivative at 𝑥 turns out to be 𝑢(𝑥). This is seen
as follows (without loss of generality we can assume that 𝑦 > 𝑥):

|

|

|

|

1
𝑥 − 𝑦

(

∫[𝑎,𝑥]
𝑢(𝑡) 𝑑𝑡 − ∫[𝑎,𝑥]

𝑢(𝑡) 𝑑𝑡
)

− 𝑢(𝑥)
|

|

|

|

=
|

|

|

|

1
𝑥 − 𝑦 ∫[𝑥,𝑦]

(

𝑢(𝑡) − 𝑢(𝑥)
)

𝑑𝑡
|

|

|

|

⩽ 1
|𝑥 − 𝑦| ∫[𝑥,𝑦]

|

|

|

𝑢(𝑡) − 𝑢(𝑥)||
|

𝑑𝑡

⩽ 1
|𝑥 − 𝑦|

|𝑥 − 𝑦| sup
𝑡∈[𝑥,𝑦]

|

|

|

𝑢(𝑡) − 𝑢(𝑥)||
|

= sup
𝑡∈[𝑥,𝑦]

|

|

|

𝑢(𝑡) − 𝑢(𝑥)||
|

and the last expression tends to 0 as |𝑥− 𝑦| → 0 since 𝑢 is uniformly continuous on compact sets.
If 𝑢 is not continuous but merely of class𝐿1, we have to refer to Lebesgue’s differentiation theorem,
Theorem 25.20, in particular formula (25.19) which reads in our case

𝑢(𝑥) = lim
𝑟→0

1
2𝑟 ∫(𝑥−𝑟,𝑥+𝑟)

𝑢(𝑡) 𝑑𝑡

for Lebesgue almost every 𝑥 ∈ (𝑎, 𝑏).
■■

Problem 25.14 Solution: We follow the hint: first we remark that by Lemma 14.14 we know that
𝑓 has at most countably many discontinuities. Since it is monotone, we also know that 𝐹 (𝑡) ∶=
𝑓 (𝑡+) = lim𝑠>𝑡,𝑠→𝑡 𝑓 (𝑠) exists and is finite for every 𝑡 and that {𝑓 ≠ 𝐹 } is at most countable (since
it is contained in the set of discontinuities of 𝑓 ), hence a Lebesgue null set.
If 𝑓 is right-continuous, 𝜇(𝑎, 𝑏] ∶= 𝑓 (𝑏) − 𝑓 (𝑎) extends uniquely to a measure on the Borel-sets
and this measure is locally finite and 𝜎-finite. If we apply Theorem 25.9 to 𝜇 and 𝜆 = 𝜆1 we can
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write 𝜇 = 𝜇◦ + 𝜇⊥ with 𝜇◦ ≪ 𝜆 and 𝜇⊥⊥𝜆. By Corollary 25.22 𝐷𝜇⊥ = 0 a.e. and 𝐷𝜇◦ exists a.e.
and we get a.e.

𝐷𝜇(𝑥) = lim
𝑟→0

𝜇(𝑥 − 𝑟, 𝑥 + 𝑟)
2𝑟

= lim
𝑟→0

𝜇◦(𝑥 − 𝑟, 𝑥 + 𝑟)
2𝑟

+ 0

and we can set 𝑓 ′(𝑥) = 𝐷𝜇(𝑥) which is a.e. defined. Where it is not defined, we put it equal to 0.
Now we get

𝑓 (𝑏) − 𝑓 (𝑎) = 𝜇(𝑎, 𝑏]

⩾ 𝜇(𝑎, 𝑏)

= ∫(𝑎,𝑏)
𝑑𝜇

⩾ ∫(𝑎,𝑏)
𝑑𝜇◦

= ∫(𝑎,𝑏)
𝐷𝜇(𝑥) 𝜆(𝑑𝑥)

= ∫(𝑎,𝑏)
𝑓 ′(𝑥) 𝜆(𝑑𝑥).

The above estimates show that we get equality if 𝑓 is continuous and also absolutely continuous
w.r.t. Lebesgue measure.

■■

Problem 25.15 Solution: Without loss of generality we may assume that 𝑓𝑗(𝑎) = 0, otherwise we
would consider the (still increasing) functions 𝑥 → 𝑓𝑗(𝑥) − 𝑓𝑗(𝑎) resp. their sum 𝑥 → 𝑠(𝑥) − 𝑠(𝑎).
The derivatives are not influenced by this operation. As indicated in the hint call 𝑠𝑛(𝑥) ∶= 𝑓1(𝑥)+
⋯ + 𝑓𝑛(𝑥) the 𝑛th partial sum. Clearly, 𝑠, 𝑠𝑛 are increasing

𝑠𝑛(𝑥 + ℎ) − 𝑠𝑛(𝑥)
ℎ

⩽
𝑠𝑛+1(𝑥 + ℎ) − 𝑠𝑛+1(𝑥)

ℎ
⩽ 𝑠(𝑥 + ℎ) − 𝑠(𝑥)

ℎ
.

and possess, because of Problem 25.14, almost everywhere positive derivatives:

𝑠′𝑛(𝑥) ⩽ 𝑠′𝑛+1(𝑥) ⩽ ⋯ 𝑠′(𝑥), ∀ 𝑥 ∉ 𝐸

Note that the exceptional null-sets depend originally on the function 𝑠𝑛 etc. but we can consider
their (countable!!) union and get thus a universal exceptional null set 𝐸. This shows that the
formally differentiated series

∞
∑

𝑗=1
𝑓 ′
𝑗 (𝑥) converges for all 𝑥 ∉ 𝐸.

Since the sequence of partial sums is increasing, it will be enough to check that

𝑠′(𝑥) − 𝑠′𝑛𝑘(𝑥) ←←←←←←←←←←←←←←←←←←←←→𝑘→∞
0 ∀𝑥 ∉ 𝐸.
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Since, by assumption the sequence 𝑠𝑘(𝑥) → 𝑠(𝑥) we can choose a subsequence 𝑛𝑘 in such a way
that

𝑠(𝑏) − 𝑠𝑛𝑘(𝑏) < 2−𝑘 ∀ 𝑘 ∈ N.

Since

0 ⩽ 𝑠(𝑥) − 𝑠𝑛𝑘(𝑥) ⩽ 𝑠(𝑏) − 𝑠𝑛𝑘(𝑏)

the series
∞
∑

𝑘=1
(𝑠(𝑥) − 𝑠𝑛𝑘(𝑥)) ⩽

∞
∑

𝑘=1
2−𝑘 <∞ ∀ 𝑥 ∈ [𝑎, 𝑏].

By the first part of the present proof, we can differentiate this series term-by-term and get that
∞
∑

𝑘=1
(𝑠′(𝑥) − 𝑠′𝑛𝑘(𝑥)) converges ∀ 𝑥 ∈ (𝑎, 𝑏) ⧵ 𝐸

and, in particular, 𝑠′(𝑥) − 𝑠′𝑛𝑘(𝑥) ←←←←←←←←←←←←←←←←←←←←→𝑘→∞
0 for all 𝑥 ∈ (𝑎, 𝑏) ⧵ 𝐸 which was to be proved.

■■
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26 Abstract Hilbert space.

Solutions to Problems 26.1–26.19

Problem 26.1 Solution: If we set 𝜇 = 𝛿1 +⋯ + 𝛿𝑛, 𝑋 = {1, 2,… , 𝑛}, 𝒜 = 𝒫 (𝑋) or 𝜇 =
∑

𝑗∈N 𝛿𝑗 ,
𝑋 = N, 𝒜 = 𝒫 (𝑋), respectively, we can deduce 26.5(i) and (ii) from 26.5(iii).
Let us, therefore, only verify (iii). Without loss of generality (see the complexification of a real
inner product space in Problem 26.3) we can consider the real case where 𝐿2 = 𝐿2

R
.

• 𝐿2 is a vector space — this was done in Remark 13.5.
• ⟨𝑢, 𝑣⟩ is finite on 𝐿2 × 𝐿2 — this is the Cauchy–Schwarz inequality 13.3.
• ⟨𝑢, 𝑣⟩ is bilinear — this is due to the linearity of the integral.
• ⟨𝑢, 𝑣⟩ is symmetric — this is obvious.
• ⟨𝑣, 𝑣⟩ is definite, and ‖𝑢‖2 is a Norm — cf. Remark 13.5.

■■

Problem 26.2 Solution:

(i) We prove it for the complex case—the real case is simpler. Observe that

⟨𝑢 ±𝑤, 𝑢 ±𝑤⟩ = ⟨𝑢, 𝑢⟩ ± ⟨𝑢,𝑤⟩ ± ⟨𝑤, 𝑢⟩ + ⟨𝑤,𝑤⟩

= ⟨𝑢, 𝑢⟩ ± ⟨𝑢,𝑤⟩ ± ⟨𝑢,𝑤⟩ + ⟨𝑤,𝑤⟩

= ⟨𝑢, 𝑢⟩ ± 2Re⟨𝑢,𝑤⟩ + ⟨𝑤,𝑤⟩.

Thus,

⟨𝑢 +𝑤, 𝑢 +𝑤⟩ + ⟨𝑢 −𝑤, 𝑢 −𝑤⟩ = 2⟨𝑢, 𝑢⟩ + 2⟨𝑤,𝑤⟩.

Since ‖𝑣‖2 = ⟨𝑣, 𝑣⟩ we are done.
(ii) (𝑆𝑃1): Obviously,

0 < (𝑢, 𝑢) = 1
4 ‖2𝑣‖

2 = ‖𝑣‖2 ⇐⇒ 𝑣 ≠ 0.

(𝑆𝑃1): is clear.
(iii) Using at the point (*) below the parallelogram identity, we have

4(𝑢 + 𝑣,𝑤) = 2(𝑢 + 𝑣, 2𝑤)

= 1
2

(

‖𝑢 + 𝑣 + 2𝑤‖2 − ‖𝑢 + 𝑣 − 2𝑤‖2
)
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= 1
2

(

‖(𝑢 +𝑤) + (𝑣 +𝑤)‖2 − ‖(𝑢 −𝑤) + (𝑣 −𝑤)‖2
)

∗
= 1

2

[

2
(

‖𝑢 +𝑤‖2 + ‖𝑣 +𝑤‖2 − ‖𝑢 −𝑤‖2 − ‖𝑣 −𝑤‖2
)

]

= 4(𝑢,𝑤) + 4(𝑣,𝑤)

and the claim follows.
(iv) We show (𝑞𝑣,𝑤) = 𝑞(𝑣,𝑤) for all 𝑞 ∈ Q. If 𝑞 = 𝑛 ∈ N0, we iterate (iii) 𝑛 times and

have
(𝑛𝑣,𝑤) = 𝑛(𝑣,𝑤) ∀ 𝑛 ∈ N0 (*)

(the case 𝑛 = 0 is obvious). By the same argument, we get for 𝑚 ∈ N

(𝑣,𝑤) =
(

𝑚 1
𝑚
𝑣,𝑤

)

= 𝑚
( 1
𝑚
𝑣,𝑤

)

which means that
( 1
𝑚
𝑣,𝑤

)

= 1
𝑚
(𝑣,𝑤) ∀𝑚 ∈ N. (**)

Combining (*) and (**) then yields ( 𝑛
𝑚
𝑣,𝑤) = 𝑛

𝑚
(𝑣,𝑤). Thus,

(𝑝𝑢 + 𝑞𝑣,𝑤) = 𝑝(𝑢,𝑤) + 𝑞(𝑣,𝑤) ∀ 𝑝, 𝑞 ∈ Q.

(v) By the lower triangle inequality for norms we get for any 𝑠, 𝑡 ∈ R
|

|

|

‖𝑡𝑣 ±𝑤‖ − ‖𝑠𝑣 ±𝑤‖||
|

⩽ ‖(𝑡𝑣 ±𝑤) − (𝑠𝑣 ±𝑤)‖

= ‖(𝑡 − 𝑠)𝑣‖

= |𝑡 − 𝑠| ⋅ ‖𝑣‖.

This means that the maps 𝑡 → 𝑡𝑣 ±𝑤 are continuous and so is 𝑡 → (𝑡𝑣, 𝑤) as the sum
of two continuous maps. If 𝑡 ∈ R is arbitrary, we pick a sequence (𝑞𝑗)𝑗∈N ⊂ Q such
that lim𝑗 𝑞𝑗 = 𝑡. Then

(𝑡𝑣, 𝑤) = lim
𝑗
(𝑞𝑗𝑣,𝑤) = lim

𝑗
𝑞𝑗(𝑞𝑣,𝑤) = 𝑡(𝑣,𝑤)

so that
(𝑠𝑢 + 𝑡𝑣, 𝑤) = (𝑠𝑢,𝑤) + (𝑡𝑣, 𝑤) = 𝑠(𝑢,𝑤) + 𝑡(𝑣,𝑤).

■■

Problem 26.3 Solution: This is actually a problem on complexification of inner product spaces... .
Since 𝑣 and 𝑖𝑤 are vectors in 𝑉 ⊕ 𝑖𝑉 and since ‖𝑣‖ = ‖ ± 𝑖𝑣‖, we get

(𝑣, 𝑖𝑤)R = 1
4

(

‖𝑣 + 𝑖𝑤‖2 − ‖𝑣 − 𝑖𝑤‖2
)

= 1
4

(

‖𝑖(𝑤 − 𝑖𝑣)‖2 − ‖(−𝑖)(𝑤 + 𝑖𝑣)‖2
)

= 1
4

(

‖𝑤 − 𝑖𝑣‖2 − ‖𝑤 + 𝑖𝑣‖2
)

= (𝑤,−𝑖𝑣)R
= −(𝑤, 𝑖𝑣)R.

(*)
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In particular,

(𝑣, 𝑖𝑣) = −(𝑣, 𝑖𝑣) ⇐⇒ (𝑣, 𝑖𝑣) = 0 ∀𝑣,

and we get

(𝑣, 𝑣)C = (𝑣, 𝑣)R > 0 ⇐⇒ 𝑣 = 0.

Moreover, using (*) we see that

(𝑣,𝑤)C = (𝑣,𝑤)R + 𝑖(𝑣, 𝑖𝑤)R
∗
= (𝑤, 𝑣)R − 𝑖(𝑤, 𝑖𝑣)R
= (𝑤, 𝑣)R + 𝑖 ⋅ (𝑤, 𝑖𝑣)R
= (𝑤, 𝑣)R + 𝑖(𝑤, 𝑖𝑣)R
= (𝑤, 𝑣)C.

Finally, for real 𝛼, 𝛽 ∈ R the linearity property of the real scalar product shows that

(𝛼𝑢 + 𝛽𝑣,𝑤)C = 𝛼(𝑢,𝑤)R + 𝛽(𝑣,𝑤)R + 𝑖𝛼(𝑢, 𝑖𝑤)R + 𝑖𝛽(𝑣, 𝑖𝑤)R
= 𝛼(𝑢,𝑤)C + 𝛽(𝑣,𝑤)C.

Therefore to get the general case where 𝛼, 𝛽 ∈ C we only have to consider the purely imaginary
case:

(𝑖𝑣, 𝑤)C = (𝑖𝑣, 𝑤)R + 𝑖(𝑖𝑣, 𝑖𝑤)R
∗
= −(𝑣, 𝑖𝑤)R − 𝑖(𝑣,−𝑤)R
= −(𝑣, 𝑖𝑤)R + 𝑖(𝑣,𝑤)R
= 𝑖

(

𝑖(𝑣, 𝑖𝑤)R + (𝑣,𝑤)R
)

= 𝑖(𝑣,𝑤)C,

where we use twice the identity (*). This shows complex linearity in the first coordinate, while
skew-linearity follows from the conjugation rule (𝑣,𝑤)C = (𝑤, 𝑣)C.

■■

Problem 26.4 Solution: The parallelogram law (stated for 𝐿1) would say:
(

∫

1

0
|𝑢 +𝑤| 𝑑𝑥

)2
+
(

∫

1

0
|𝑢 −𝑤| 𝑑𝑥

)2
= 2

(

∫

1

0
|𝑢| 𝑑𝑥

)2
+ 2

(

∫

1

0
|𝑤| 𝑑𝑥

)2
.

If 𝑢 ± 𝑤, 𝑢,𝑤 have always only ONE sign (i.e. +ve or −ve), we could leave the modulus signs |∙|
away, and the equality would be correct! To show that there is no equality, we should therefore
choose functions where we have some sign change. We try:

𝑢(𝑥) = 1∕2, 𝑤(𝑥) = 𝑥
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(note: 𝑢 −𝑤 does change its sign!) and get

∫

1

0
|𝑢 +𝑤| 𝑑𝑥 = ∫

1

0
(12 + 𝑥) 𝑑𝑥 = [12 (𝑥 + 𝑥

2)]10 = 1

∫

1

0
|𝑢 −𝑤| 𝑑𝑥 = ∫

1∕2

0
( 12 − 𝑥) 𝑑𝑥 + ∫

1

1∕2
(𝑥 − 1

2 ) 𝑑𝑥

= [12 (𝑥 − 𝑥
2)]1∕20 + [ 12 (𝑥

2 − 𝑥)]11∕2
= 1

4 −
1
8 −

1
8 +

1
4 = 1

4

∫

1

0
|𝑢| 𝑑𝑥 = ∫

1

0

1
2 𝑑𝑥 = 1

2

∫

1

0
|𝑤| 𝑑𝑥 = ∫

1

0
𝑥 𝑑𝑥 = [12𝑥

2]10 =
1
2

This shows that

12 + ( 14 )
2 = 17

16 ≠ 1 = 2(12 )
2 + 2( 12 )

2.

We conclude, in particular, that 𝐿1 cannot be a Hilbert space (since in any Hilbert space the Par-
allelogram law is true....).

■■

Problem 26.5 Solution:

(i) If 𝑘 = 0 we have 𝜃 = 1 and everything is obvious. If 𝑘 ≠ 0, we use the summation formula
for the geometric progression to get

𝑆 ∶= 1
𝑛

𝑛
∑

𝑗=1
𝜃𝑗𝑘 = 1

𝑛

𝑛
∑

𝑗=1

(

𝜃𝑘
)𝑗 = 𝜃

𝑛
1 − (𝜃𝑘)𝑛

1 − 𝜃𝑘

but (𝜃𝑘)𝑛 = exp(2𝜋 𝑖
𝑛
⋅ 𝑘 ⋅ 𝑛) = exp(2𝜋𝑖𝑘) = 1. Thus 𝑆 = 0 and the claim follows.

(ii) Note that 𝜃𝑗 = 𝜃−𝑗 so that

‖𝑣 + 𝜃𝑗𝑤‖2 = ⟨𝑣 + 𝜃𝑗𝑤, 𝑣 + 𝜃𝑗𝑤⟩

= ⟨𝑣, 𝑣⟩ + ⟨𝑣, 𝜃𝑗𝑤⟩ + ⟨𝜃𝑗𝑤, 𝑣⟩ + ⟨𝜃𝑗𝑤, 𝜃𝑗𝑤⟩

= ⟨𝑣, 𝑣⟩ + 𝜃−𝑗⟨𝑣,𝑤⟩ + 𝜃𝑗⟨𝑤, 𝑣⟩ + 𝜃𝑗𝜃−𝑗⟨𝑤,𝑤⟩

= ⟨𝑣, 𝑣⟩ + 𝜃−𝑗⟨𝑣,𝑤⟩ + 𝜃𝑗⟨𝑤, 𝑣⟩ + ⟨𝑤,𝑤⟩.

Therefore,
1
𝑛

𝑛
∑

𝑗=1
𝜃𝑗‖𝑣 + 𝜃𝑗𝑤‖2

= 1
𝑛

𝑛
∑

𝑗=1
𝜃𝑗⟨𝑣, 𝑣⟩ + 1

𝑛

𝑛
∑

𝑗=1
⟨𝑣,𝑤⟩ + 1

𝑛

𝑛
∑

𝑗=1
𝜃2𝑗⟨𝑤, 𝑣⟩ + 1

𝑛

𝑛
∑

𝑗=1
𝜃𝑗⟨𝑤,𝑤⟩

= 0 + ⟨𝑣,𝑤⟩ + 0 + 0

where we use the result from part (i) of the exercise.
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(iii) Since the function 𝜙 → 𝑒𝑖𝜙‖𝑣 + 𝑒𝑖𝜙𝑤‖2 is bounded and continuous, the integral exists as
a (proper) Riemann integral, and we can use any Riemann sum to approximate the integral,
see 12.6–12.12 in Chapter 12 or Corollary I.6 and Theorem I.8 of Appendix I. Before we do
that, we change variables according to 𝜓 = (𝜙 + 𝜋)∕2𝜋 so that 𝑑𝜓 = 𝑑𝜙∕2𝜋 and

1
2𝜋 ∫(−𝜋,𝜋]

𝑒𝑖𝜙 ‖‖
‖

𝑣 + 𝑒𝑖𝜙𝑤‖‖
‖

2
𝑑𝜙 = −∫(0,1]

𝑒2𝜋𝑖𝜓 ‖

‖

‖

𝑣 − 𝑒2𝜋𝑖𝜓𝑤‖‖
‖

2
𝑑𝜓.

Now using equidistant Riemann sums with step 1∕𝑛 and nodes 𝜃𝑗𝑛 = 𝑒2𝜋𝑖⋅
1
𝑛 ⋅𝑗 , 𝑗 = 1, 2,… , 𝑛

yields, because of part (ii) of the problem,

−∫(0,1]
𝑒2𝜋𝑖𝜓 ‖

‖

‖

𝑣 − 𝑒2𝜋𝑖𝜓𝑤‖‖
‖

2
𝑑𝜓 = − lim

𝑛→∞
1
𝑛

𝑛
∑

𝑗=1
𝜃𝑗𝑛‖𝑣 − 𝜃

𝑗
𝑛𝑤‖

2

= − lim
𝑛→∞

⟨𝑣,−𝑤⟩

= ⟨𝑣,𝑤⟩.

■■

Problem 26.6 Solution: We assume that 𝑉 is a C-inner product space. Then,

‖𝑣 +𝑤‖2 = ⟨𝑣 +𝑤, 𝑣 +𝑤⟩

= ⟨𝑣, 𝑣⟩ + ⟨𝑣,𝑤⟩ + ⟨𝑤, 𝑣⟩ + ⟨𝑤,𝑤⟩

= ‖𝑣‖2 + ⟨𝑣,𝑤⟩ + ⟨𝑣,𝑤⟩ + ‖𝑤‖2

= ‖𝑣‖2 + 2Re⟨𝑣,𝑤⟩ + ‖𝑤‖2.

Thus

‖𝑣 +𝑤‖2 = ‖𝑣‖2 + ‖𝑤‖2 ⇐⇒ Re⟨𝑣,𝑤⟩ = 0 ⇐⇒ 𝑣⊥𝑤.

■■

Problem 26.7 Solution: Let (ℎ𝑘)𝑘 ⊂  such that lim𝑘 ‖ℎ𝑘 − ℎ‖ = 0. By the triangle inequality

‖ℎ𝑘 − ℎ𝓁‖ ⩽ ‖ℎ𝑘 − ℎ‖
⏟⏞⏟⏞⏟

→0

+ ‖ℎ − ℎ𝓁‖
⏟⏞⏞⏟⏞⏞⏟

→0

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘,𝓁→∞

0.

■■

Problem 26.8 Solution: Let 𝑔, 𝑔 ∈ . By the Cauchy–Schwarz inequality 26.3
|

|

⟨𝑔, ℎ⟩ − ⟨𝑔, ℎ⟩|
|

⩽ |

|

⟨𝑔 − 𝑔, ℎ⟩|
|

⩽ ‖ℎ‖ ⋅ ‖𝑔 − 𝑔‖

which proves continuity. Incidentally, this calculation shows also that, since 𝑔 → ⟨𝑔, ℎ⟩ is linear,
it would have been enough to check continuity at the point 𝑔 = 0 (think about it!).

■■
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Problem 26.9 Solution: Definiteness (𝑁1) and positive homogeneity (𝑁2) are obvious. The triangle
inequality reads in this context (𝑔, 𝑔′, ℎ, ℎ′ ∈ ):

‖|(𝑔, ℎ) + (𝑔′, ℎ′)|‖ ⩽ ‖|(𝑔, ℎ)|‖ + ‖|(𝑔′, ℎ′)|‖ ⇐⇒
(

‖𝑔 + 𝑔′‖𝑝 + ‖ℎ + ℎ′‖𝑝
)1∕𝑝 ⩽

(

‖𝑔‖𝑝 + ‖ℎ‖𝑝
)1∕𝑝 +

(

‖𝑔′‖𝑝 + ‖ℎ′‖𝑝
)1∕𝑝.

Since
(

‖𝑔 + 𝑔′‖𝑝 + ‖ℎ + ℎ′‖𝑝
)1∕𝑝 ⩽

([

‖𝑔‖‖𝑔′‖
]𝑝 +

[

‖ℎ‖ + ‖ℎ′‖
]𝑝)1∕𝑝

we can use the Minkowski inequality for sequences resp. inR2—which reads for numbers 𝑎, 𝐴, 𝑏, 𝐵 ⩾
0

(

(𝑎 + 𝑏)𝑝 + (𝐴 + 𝐵)𝑝
)1∕𝑝 ⩽

(

𝑎𝑝 + 𝐴𝑝
)1∕𝑝 +

(

𝑏𝑝 + 𝐵𝑝
)1∕𝑝

—and the claim follows.
SinceR2 is only with the Euclidean norm a Hilbert space—the parallelogram identity fails for the
norms (|𝑥|𝑝 + |𝑦|𝑝)1∕𝑝—this shows that also in the case at hand only 𝑝 = 2 will be a Hilbert space
norm.

■■

Problem 26.10 Solution: For the scalar product we have for all 𝑔, 𝑔′, ℎ, ℎ′ ∈  such that ‖𝑔−𝑔′‖2+
‖ℎ − ℎ′‖2 < 1

|

|

|

⟨𝑔 − 𝑔′, ℎ − ℎ′⟩||
|

⩽ ‖𝑔 − 𝑔′‖ ⋅ ‖ℎ − ℎ′‖ ⩽
[

‖𝑔 − 𝑔′‖2 + ‖ℎ − ℎ′‖2
]1∕2

where we use the elementary inequality
𝑎𝑏 ⩽ 1

2
(𝑎2 + 𝑏2) ⩽ 𝑎2 + 𝑏2 ⩽

√

𝑎2 + 𝑏2
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

if 𝑎2+𝑏2⩽1

.

Since (𝑔, ℎ) →
[

‖𝑔‖2 + ‖ℎ‖2
]1∕2 is a norm on  × we are done.

Essentially the same calculation applies to (𝑡, ℎ) → 𝑡 ⋅ ℎ.
■■

Problem 26.11 Solution: Assume that  has a countable maximal ONS, say (𝑒𝑗)𝑗 . Then, by defini-
tion, every vector ℎ ∈  can be approximated by a sequence made up of finite linear combinations
of the (𝑒𝑗)𝑗 :

ℎ𝑘 ∶=
𝑛(𝑘)
∑

𝑗=1
𝛼𝑗 ⋅ 𝑒𝑗

(note that 𝛼𝑗 = 0 is perfectly possible!). In view of problem 26.10 we can even assume that the 𝛼𝑗
are rational numbers. This shows that the set

 ∶=
{

𝑛
∑

𝑗=1
𝛼𝑗 ⋅ 𝑒𝑗 ∶ 𝛼𝑗 ∈ Q, 𝑛 ∈ N

}
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is a countable dense subset of .
Conversely, if  ⊂  is a countable dense subset, we can use the Gram-Schmidt procedure and
obtain from  an ONS. Then Theorem 26.24 proves the claim.

■■

Problem 26.12 Solution: Let us, first of all, show that for a closed subspace 𝐶 ⊂  we have 𝐶 =
(𝐶⊥)⊥.
Because of Lemma 26.12 we know that 𝐶 ⊂ (𝐶⊥)⊥ and that 𝐶⊥ is itself a closed linear subspace
of . Thus,

𝐶 ⊕ 𝐶⊥ =  = 𝐶⊥ ⊕ (𝐶⊥)⊥.

Thus 𝐶 cannot be a proper subspace of (𝐶⊥)⊥ and therefore 𝐶 = (𝐶⊥)⊥.
Applying this to the obviously closed subspace𝐶 ∶= K⋅𝑤 = span(𝑤)we conclude that span(𝑤) =
span(𝑤)⊥⊥.
By assumption, 𝑀𝑤 = {𝑤}⊥ and 𝑀⊥

𝑤 = {𝑤}⊥⊥ and we have 𝑤 ∈ {𝑤}⊥⊥. The last expression is
a (closed) subspace, so

𝑤 ∈ {𝑤}⊥⊥ ⇐⇒ span(𝑤) ⊂ {𝑤}⊥⊥

also. Further
{𝑤} ⊂ span(𝑤) ⇐⇒ {𝑤}⊥ ⊃ span(𝑤)⊥

⇐⇒ {𝑤}⊥⊥ ⊂ span(𝑤)⊥⊥ = span(𝑤)

and we conclude that
{𝑤}⊥⊥ = span(𝑤)

which is either {0} or a one-dimensional subspace.
■■

Problem 26.13 Solution:

(i) By Pythagoras’ Theorem 26.19
‖𝑒𝑗 − 𝑒𝑘‖2 = ‖𝑒𝑗‖

2 + ‖𝑒𝑘‖
2 = 2 ∀ 𝑗 ≠ 𝑘.

This shows that no subsequence (𝑒𝑗)𝑗∈⟋ can ever be a Cauchy sequence, i.e. it cannot
converge.
If ℎ ∈  we get from Bessel’s inequality 26.19 that the series

∑

𝑗
|⟨𝑒𝑗 , ℎ⟩|

2 ⩽ ‖ℎ‖2

is finite, i.e. converges. Thus the sequence with elements ⟨𝑒𝑗 , ℎ⟩ must converge to 0 as
𝑗 → ∞.
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(ii) Parseval’s equality 26.19 shows that

‖ℎ‖2 =
∞
∑

𝑗=1
|⟨𝑒𝑗 , ℎ⟩|

2 =
∞
∑

𝑗=1
|𝑐𝑗|

2 ⩽
∞
∑

𝑗=1

1
𝑗2
<∞

uniformly for all ℎ ∈ 𝑄, i.e. 𝑄 is a bounded set.
Let (ℎ𝓁)𝓁 ⊂ 𝑄 be a sequence with lim𝓁 ℎ𝓁 = ℎ and write 𝑐𝑗 ∶= ⟨𝑒𝑗 , ℎ⟩ and 𝑐𝓁𝑗 ∶=
⟨𝑒𝑗 , ℎ𝓁⟩. Because of the continuity of the scalar product

|𝑐𝑗| = |⟨𝑒𝑗 , ℎ⟩| = lim
𝓁

|⟨𝑒𝑗 , ℎ𝓁⟩| = lim
𝓁

|𝑐𝓁𝑗 | ⩽
1
𝑗

which means that ℎ ∈ 𝑄 and that 𝑄 is closed.
Let (ℎ𝓁)𝓁 ⊂ 𝑄 be a sequence and set 𝑐𝑗(𝓁) ∶= ⟨𝑒𝑗 , ℎ𝓁⟩. Using the Bolzano-Weierstraß
theorem for bounded sequences we get

|𝑐1(𝓁)| ⩽ 1 ⇐⇒ ∃
(

𝑐1(𝓁1
𝑗 )
)

𝑗 ⊂
(

𝑐1(𝓁)
)

𝓁 ∶ lim
𝑗
𝑐1(𝓁1

𝑗 ) = 𝛾1

and
|𝑐2(𝓁1

𝑗 )| ⩽
1
2

⇐⇒ ∃
(

𝑐2(𝓁2
𝑗 )
)

𝑗 ⊂
(

𝑐2(𝓁1
𝑗 )
)

𝑗 ∶ lim
𝑗
𝑐2(𝓁2

𝑗 ) = 𝛾2

and, recursively,
|𝑐𝑘(𝓁𝑘−1𝑗 )| ⩽ 1

𝑘
⇐⇒ ∃

(

𝑐𝑘(𝓁𝑘𝑗 )
)

𝑗 ⊂
(

𝑐𝑘(𝓁𝑘−1𝑗 )
)

𝑗 ∶ lim
𝑗
𝑐𝑘(𝓁𝑘𝑗 ) = 𝛾𝑘

and since we have considered sub-sub-etc.-sequences we get
𝑐𝑘(𝓁𝑚𝑚) ←←←←←←←←←←←←←←←←←←←←←←→𝑚→∞

𝛾𝑘 ∀ 𝑘 ∈ N.

Thus, we have constructed a subsequence (ℎ𝓁𝑚𝑚 )𝑚 ⊂ (ℎ𝓁)𝓁 with
⟨𝑒𝑘, ℎ𝓁𝑚𝑚 ⟩ ←←←←←←←←←←←←←←←←←←←←←←→𝑚→∞

𝛾𝑘 ∀ 𝑘 ∈ N (*)
so that 𝛾𝑗 ⩽ 1∕𝑗. Setting ℎ =

∑

𝑗 𝛾𝑗𝑒𝑗 we see (by Parseval’s relation) that ℎ ∈ 𝑄.
Further,

‖ℎ − ℎ𝓁𝑚𝑚‖
2 =

∞
∑

𝑗=1
|𝛾𝑗 − 𝑐𝑗(𝓁𝑚𝑚)|

2

⩽
𝑁
∑

𝑗=1
|𝛾𝑗 − 𝑐𝑗(𝓁𝑚𝑚)|

2 +
∞
∑

𝑗=𝑁+1

4
𝑗2
.

Letting first 𝑚→ ∞ we get, because of (*)
𝑁
∑

𝑗=1
|𝛾𝑗 − 𝑐𝑗(𝓁𝑚𝑚)|

2 ←←←←←←←←←←←←←←←←←←←←←←→
𝑚→∞

0,

and letting 𝑁 → ∞ gives

lim sup
𝑚

‖ℎ − ℎ𝓁𝑚𝑚‖
2 ⩽

∞
∑

𝑗=𝑁+1

4
𝑗2

←←←←←←←←←←←←←←←←←←←←←←←←→
𝑁→∞

0

so that lim𝑚 ‖ℎ − ℎ𝓁𝑚𝑚‖
2 = 0.
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(iii) 𝑅 cannot be compact since (𝑒𝑗)𝑗 ⊂ 𝑅 does not have any convergent subsequence, see
part (i).
𝑅 is bounded since 𝑟 ∈ 𝑅 if, and only if, there is some 𝑗 ∈ N such that

‖𝑟 − 𝑒𝑗‖ ⩽ 1
𝑗
⩽ 1.

Thus, every 𝑟 ∈ 𝑅 is bounded by

‖𝑟‖ ⩽ ‖𝑟 − 𝑒𝑗‖ + ‖𝑒𝑗‖ ⩽ 2.

𝑅 is closed. Indeed, if 𝑥𝑗 ∈ 𝐵1∕𝑗(𝑒𝑗) we see that for 𝑗 ≠ 𝑘

‖𝑥𝑗 − 𝑥𝑘‖ = ‖(𝑥𝑗 − 𝑒𝑗) + (𝑒𝑗 − 𝑒𝑘) + (𝑒𝑘 − 𝑥𝑘)‖

⩾ ‖𝑒𝑗 − 𝑒𝑘‖ − ‖𝑥𝑗 − 𝑒𝑗‖ − ‖𝑥𝑘 − 𝑒𝑘‖
(i)
⩾
√

2 − 1
𝑗
− 1
𝑘
.

This means that any sequence (𝑟𝑗)𝑟 ⊂ 𝑅 with lim𝑗 𝑟𝑗 = 𝑟 is in at most finitely many of
the sets 𝐵1∕𝑗(𝑒𝑗). But a finite union of closed sets is closed so that 𝑟 ∈ 𝑅.

(iv) Assume that ∑𝑗 𝛿
2
𝑗 < ∞. Then closedness, boundedness and compactness follows

exactly as in part (ii) of the problem with 𝛿𝑗 replacing 1∕𝑗.
Conversely, assume that 𝑆 is compact. Then the sequence

ℎ𝓁 =
𝓁
∑

𝑗=1
𝛿𝑗𝑒𝑗 ∈ 𝑆

and, by compactness, there is a convergent subsequence

ℎ𝓁𝑘 =
𝓁𝑘
∑

𝑗=1
𝛿𝑗𝑒𝑗 ←←←←←←←←←←←←←←←←←←←←→𝑘→∞

ℎ.

By Parseval’s identity we get:

‖ℎ𝓁𝑘‖
2 =

𝓁𝑘
∑

𝑗=1
𝛿2𝑗 ←←←←←←←←←←←←←←←←←←←←→𝑘→∞

∞
∑

𝑗=1
𝛿2𝑗 = ‖ℎ‖2 <∞.

■■

Problem 26.14 Solution:

(i) Note that for all 𝑔 ≠ 0

|⟨𝑔, ℎ⟩| ⩽ ‖𝑔‖ ⋅ ‖ℎ‖ ⇐⇒
|⟨𝑔, ℎ⟩|
‖𝑔‖

⩽ ‖ℎ‖

so that

sup
𝑔≠0

|⟨𝑔, ℎ⟩|
‖𝑔‖

⩽ ‖ℎ‖.
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Since for 𝑔 = ℎ the supremum is attained, we get equality.
Further, since ‖

‖

‖

𝑔
‖𝑔‖

‖

‖

‖

= 1, we have

sup
𝑔≠0

|⟨𝑔, ℎ⟩|
‖𝑔‖

= sup
𝑔≠0

|

|

|

⟨ 𝑔
‖𝑔‖

, ℎ
⟩

|

|

|

= sup
𝛾, ‖𝛾‖=1

|⟨𝛾, ℎ⟩|.

Finally,

‖ℎ‖ = sup
𝑔, ‖𝑔‖=1

|⟨𝑔, ℎ⟩| ⩽ sup
𝑔, ‖𝑔‖⩽1

|⟨𝑔, ℎ⟩| ⩽ sup
𝑔, ‖𝑔‖⩽1

‖𝑔‖ ⋅ ‖ℎ‖ ⩽ ‖ℎ‖.

(ii) Yes, since we can, by a suitable rotation 𝑒𝑖𝜃 achieve that

⟨𝑒𝑖𝜃𝑔, ℎ⟩ = |⟨𝑔, ℎ⟩|

while ‖𝑔‖ = ‖𝑒𝑖𝜃𝑔‖.
(iii) Yes. If 𝐷 ⊂  is dense and ℎ ∈  we find a sequence (𝑑𝑗)𝑗 ⊂ 𝐷 with lim𝑗 𝑑𝑗 = ℎ.

Since the scalar product and the norm are continuous, we get

lim
𝑗

⟨𝑑𝑗 , ℎ⟩
‖𝑑𝑗‖

=
⟨ℎ, ℎ⟩
‖ℎ‖

= ‖ℎ‖

and we conclude that

‖ℎ‖ ⩽ sup
𝑗

|⟨𝑑𝑗∕‖𝑑𝑗‖, ℎ⟩| ⩽ sup
𝑑∈𝐷, ‖𝑑‖=1

|⟨𝑑, ℎ⟩|.

The reverse inequality is trivial.
■■

Problem 26.15 Solution: Let 𝑥, 𝑦 ∈ span{𝑒𝑗 , 𝑗 ∈ N}. By definition, there exist numbers 𝑚, 𝑛 ∈ N
and ‘coordinates’ 𝜉1,… , 𝜉𝑚, 𝜂1,… , 𝜂𝑛 ∈ K such that

𝑥 =
𝑚
∑

𝑗=1
𝜉𝑗𝑒𝑗 and 𝑦 =

𝑛
∑

𝑘=1
𝜂𝑘𝑒𝑘.

Without loss of generality we can assume that 𝑚 ⩽ 𝑛. By defining

𝜉𝑚+1 ∶= 0,… , 𝜉𝑛 ∶= 0

we can write for all 𝛼, 𝛽 ∈ K

𝑥 =
𝑛
∑

𝑗=1
𝜉𝑗𝑒𝑗 and 𝑦 =

𝑛
∑

𝑘=1
𝜂𝑘𝑒𝑘 and 𝛼𝑥 + 𝛽𝑦 =

𝑛
∑

𝓁=1
(𝛼𝜉𝓁 + 𝛽𝜂𝓁)𝑒𝑘.

This shows that span{𝑒𝑗 , 𝑗 ∈ N} ⊂  is a linear subspace.
■■

Problem 26.16 Solution:
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(i) Since ∑∞
𝑗=1 𝑎

2
𝑗 = ∞ there is some number 𝑗1 ∈ N such that

𝑗1
∑

𝑗=1
𝑎2𝑗 > 1.

Since the remaining tail of the series ∑

𝑗>𝑗1
𝑎2𝑗 = ∞ we can construct recursively a

strictly increasing sequence (𝑗𝑘)𝑘∈N0
⊂ N, 𝑗0 ∶= 1, such that

∑

𝑗∈𝐽𝑘

𝑎2𝑗 > 1 where 𝐽𝑘 ∶= (𝑗𝑘, 𝑗𝑘+1] ∩N.

(ii) Define the numbers 𝛾𝑘 as, say,

𝛾𝑘 ∶=
1

𝑘
√

∑

𝑗∈𝐽𝑘 𝑎
2
𝑗

.

Then
∑

𝑗
𝑏2𝑗 =

∑

𝑘

∑

𝑗∈𝐽𝑘

𝛾2𝑘𝑎
2
𝑗

=
∑

𝑘
𝛾2𝑘

∑

𝑗∈𝐽𝑘

𝑎2𝑗

=
∑

𝑘

∑

𝑗∈𝐽𝑘 𝑎
2
𝑗

𝑘2
∑

𝑗∈𝐽𝑘 𝑎
2
𝑗

=
∑

𝑘

1
𝑘2

<∞.

Moreover, since
∑

𝑗∈𝐽𝑘 𝑎
2
𝑗

√

∑

𝑗∈𝐽𝑘 𝑎
2
𝑗

⩾ 1,

we get
∑

𝑗
𝑎𝑗𝑏𝑗 =

∑

𝑘

∑

𝑗∈𝐽𝑘

𝛾𝑘𝑎
2
𝑗

=
∑

𝑘
𝛾𝑘

∑

𝑗∈𝐽𝑘

𝑎2𝑗

=
∑

𝑘

1
𝑘

∑

𝑗∈𝐽𝑘 𝑎
2
𝑗

√

∑

𝑗∈𝐽𝑘 𝑎
2
𝑗

⩾
∑

𝑘

1
𝑘
= ∞.

(iii) We want to show (note that we renamed 𝛽 ∶= 𝑎 and 𝛼 ∶= 𝑏 for notational reasons) that
for any sequence 𝛼 = (𝛼𝑗)𝑗 we have:

∀ 𝛽 ∈ 𝓁2 ∶ ⟨𝛼, 𝛽⟩ <∞ ⇐⇒ 𝛼 ∈ 𝓁2.
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Assume, to the contrary, that 𝛼 ∉ 𝓁2. Then ∑

𝑗 𝛼
2
𝑗 = ∞ and, by part (i), we can find

a sequence of 𝑗𝑘 with the properties described in (i). Because of part (ii) there is a
sequence 𝛽 = (𝛽𝑗)𝑗 ∈ 𝓁2 such that the scalar product ⟨𝛼, 𝛽⟩ = ∞. This contradicts our
assumption, i.e. 𝛼 should have been in 𝓁2 in the first place.

(iv) Since, by Theorem 26.24 every separable Hilbert space has a basis (𝑒𝑗)𝑗∈N ⊂ , we
can identify ℎ ∈  with the sequence of ‘coordinates’ (⟨ℎ, 𝑒𝑗⟩)𝑗∈N and it is clear that
(iii) implies (iv).

■■

Problem 26.17 Solution:

(i) Since 𝑃 2 = 𝑃 is obvious by the uniqueness of the minimizing element, this part follows
already from Remark 26.15.

(ii) Note that for 𝑢, 𝑣 ∈  we have

∀ℎ ∈  ∶ ⟨𝑢, ℎ⟩ = ⟨𝑣, ℎ⟩ ⇐⇒ 𝑢 = 𝑣.

Indeed, consider ℎ ∶= 𝑢 − 𝑣. Then

⟨𝑢, ℎ⟩ = ⟨𝑣, ℎ⟩ ⇐⇒ 0 = ⟨𝑢 − 𝑣, ℎ⟩ = ⟨𝑢 − 𝑣, 𝑢 − 𝑣⟩ = |𝑢 − 𝑣|2

so that 𝑢 = 𝑣.
Linearity of 𝑃 : Let 𝛼, 𝛽 ∈ K and 𝑓, 𝑔, ℎ ∈ . Then

⟨𝑃 (𝛼𝑓 + 𝛽𝑔), ℎ⟩ = ⟨𝛼𝑓 + 𝛽𝑔, 𝑃ℎ⟩

= 𝛼⟨𝑓, 𝑃ℎ⟩ + 𝛽⟨𝑔, 𝑃ℎ⟩

= 𝛼⟨𝑃𝑓, ℎ⟩ + 𝛽⟨𝑃𝑔, ℎ⟩

= ⟨𝛼𝑃𝑓 + 𝛽𝑃𝑔, ℎ⟩

and we conclude that 𝑃 (𝛼𝑓 + 𝛽𝑔) = 𝛼𝑃𝑓 + 𝛽𝑃𝑔.
Continuity of 𝑃 : We have for all ℎ ∈ 

‖𝑃ℎ‖2 = ⟨𝑃ℎ, 𝑃ℎ⟩ = ⟨𝑃 2ℎ, ℎ⟩ = ⟨𝑃ℎ, ℎ⟩ ⩽ ‖𝑃ℎ‖ ⋅ ‖ℎ‖

and dividing by ‖𝑃ℎ‖ shows that 𝑃 is continuous, even a contraction.
Closedness of 𝑃 (): Note that 𝑓 ∈ 𝑃 () if, and only if, 𝑓 = 𝑃ℎ for some ℎ ∈ .
Since 𝑃 2 = 𝑃 we get

𝑓 = 𝑃ℎ ⇐⇒ 𝑓 − 𝑃ℎ = 0

⇐⇒ 𝑓 − 𝑃 2ℎ = 0

⇐⇒ 𝑓 − 𝑃𝑓 = 0

⇐⇒ 𝑓 ∈ (id−𝑃 )−1({0})
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and since 𝑃 is continuous and {0} is a closed set, (id −𝑃 )−1({0}) is closed and the above
line shows 𝑃 () = (id−𝑃 )−1({0}) is closed.
Projection: In view of Corollary 26.14 we have to show that 𝑃ℎ − ℎ is for any ℎ ∈ 
orthogonal to 𝑓 ∈ 𝑃 (). But

⟨𝑃ℎ − ℎ, 𝑓⟩ = ⟨𝑃ℎ, 𝑓⟩ − ⟨ℎ, 𝑓⟩

= ⟨ℎ, 𝑃𝑓⟩ − ⟨ℎ, 𝑓⟩

= ⟨ℎ, 𝑓⟩ − ⟨ℎ, 𝑓⟩ = 0.

(iii) Since, by assumption, ‖𝑃ℎ‖ ⩽ ‖ℎ‖, 𝑃 is continuous and closedness follows just as in
(ii). It is, therefore, enough to show that 𝑃 is an orthogonal projection.
We will show that 𝒩 ∶= {ℎ ∈  ∶ 𝑃ℎ = 0} satisfies 𝒩 ⊥ = 𝑃 ().
For this we observe that if ℎ ∈ , 𝑃 (𝑃ℎ − ℎ) = 𝑃 2ℎ − 𝑃ℎ = 𝑃ℎ − 𝑃ℎ = 0 so that
𝑃ℎ − ℎ ∈ 𝒩 . In particular

ℎ ∈ 𝒩 ⊥ ⇐⇒ 𝑦 = 𝑃ℎ − ℎ ∈ 𝒩

⇐⇒ 𝑃ℎ = ℎ + 𝑦 with ℎ⊥𝑦. (*)

Thus,

‖ℎ‖2 + ‖𝑦‖2 = ‖𝑃ℎ‖2 ⩽ ‖ℎ‖2 ⇐⇒ ‖𝑦‖2 ⇐⇒ 𝑦 = 0.

We conclude that

ℎ ∈ 𝒩 ⊥ ⇐⇒ 𝑃ℎ − ℎ = 0 ⇐⇒ 𝑃ℎ = ℎ ⇐⇒ ℎ ∈ 𝑃 ()

and we have shown that 𝒩 ⊥ ⊂ 𝑃 ().
To see the converse direction we pick ℎ ∈ 𝑃 () and find 𝑃ℎ = ℎ. Since  = 𝒩 ⊕𝒩 ⊥

we have ℎ = 𝑥 + 𝑥⊥ with 𝑥 ∈ 𝒩 and 𝑥⊥ ∈ 𝒩 ⊥. Thus,

𝑃ℎ = 𝑃𝑥 + 𝑃 (𝑥⊥) = 𝑃 (𝑥⊥)
(∗)
= 𝑥⊥,

thus

ℎ = 𝑃ℎ = 𝑥⊥ ⇐⇒ 𝑃 () ⊂ 𝒩 ⊥.

We have seen that 𝑃 () = 𝒩 ⊥⊥𝒩 = kernel(𝑃 ). This means that

⟨𝑃ℎ − ℎ, 𝑃ℎ⟩ = 0

and we conclude that 𝑃 is an orthogonal projection.
■■

Problem 26.18 Solution:
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(i) Pick 𝑢𝑗 ∈ 𝑌𝑗 and 𝑢𝑘 ∈ 𝑌𝑘, 𝑗 ≠ 𝑘. Then

∫𝐴𝑚
𝑢𝑗𝑢𝑘 𝑑𝜇 ⩽

√

∫𝐴𝑚
𝑢2𝑗 𝑑𝜇

√

∫𝐴𝑚
𝑢2𝑘 𝑑𝜇

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ⋅ 0 if 𝑚 ∉ {𝑗, 𝑘}
√

⋯ ⋅ 0 if 𝑚 = 𝑗, 𝑚 ≠ 𝑘

0 ⋅
√

⋯ if 𝑚 ≠ 𝑗, 𝑚 = 𝑘

= 0.

(ii) Let 𝑢 ∈ 𝐿2(𝜇) and set 𝑤𝑗 ∶= 𝑤1𝐴1∪⋯∪𝐴𝑗 . Since (𝐴1 ∪⋯ ∪ 𝐴𝑗)𝑐 = 𝐴𝑐1 ∩⋯ ∩ 𝐴𝑐𝑗 ↓ ∅
we get by dominated convergence

‖𝑢 −𝑤𝑗‖
2
2 = ∫(𝐴1∪⋯∪𝐴𝑗 )𝑐

𝑢2 𝑑𝜇 = ∫𝐴𝑐1∩⋯∩𝐴𝑐𝑗
𝑢2 𝑑𝜇 ←←←←←←←←←←←←←←←←←←←←→

𝑗→∞
0.

(iii) 𝑃 is given by 𝑃𝑗(𝑢) = 𝑢1𝐴𝑗 . Clearly, 𝑃𝑗 ∶ 𝐿2(𝜇) → 𝑌𝑗 is linear and 𝑃 2 = 𝑃 , i.e. it is a
projection. Orthogonality follows from

⟨𝑢 − 𝑢1𝐴𝑗 , 𝑢1𝐴𝑗 ⟩ = ∫ 𝑢1𝐴𝑐𝑗 ⋅ 𝑢1𝐴𝑗 𝑑𝜇 = ∫ 𝑢1∅ 𝑑𝜇 = 0.

■■

Problem 26.19 Solution:

(i) See Lemma 27.1 in Chapter 27.
(ii) Set 𝑢𝑛 ∶= 𝐸𝒜𝑛𝑢. Then

𝑢𝑛 =
𝑛
∑

𝑗=0
𝛼𝑗 ⋅ 1𝐴𝑗 , 𝛼𝑗 ∶=

1
𝜇(𝐴𝑗) ∫𝐴𝑗

𝑢 𝑑𝜇, 0 ⩽ 𝑗 ⩽ 𝑛.

where𝐴0 ∶= (𝐴1∪⋯∪𝐴𝑛)𝑐 and 1∕∞ ∶= 0. This follows simply from the consideration
that 𝑢𝑛, as an element of 𝐿2(𝒜𝑛), must be of the form ∑𝑛

𝑗=0 𝛼𝑗 ⋅ 1𝐴𝑗 while the 𝛼𝑗’s are
calculated as

⟨𝐸𝒜𝑗𝑢,1𝐴𝑗 ⟩ = ⟨𝑢, 𝐸𝒜𝑗1𝐴𝑗 ⟩ = ⟨𝑢,1𝐴𝑗 ⟩ = ∫𝐴𝑗
𝑢 𝑑𝜇

(resp. = 0 if 𝜇(𝐴0) = ∞) so that, because of disjointness,

𝛼𝑗𝜇(𝐴𝑗) =
⟨

𝑛
∑

𝑘=0
𝛼𝑘 ⋅ 1𝐴𝑘 ,1𝐴𝑗

⟩

= ⟨𝐸𝒜𝑗𝑢,1𝐴𝑗 ⟩ = ∫𝐴𝑗
𝑢 𝑑𝜇.

Clearly this is a linear map and 𝑢𝑛 ∈ 𝐿2(𝒜𝑛). Orthogonality follows because all the
𝐴0,… , 𝐴𝑛 are disjoint so that

⟨𝑢 − 𝑢𝑛, 𝑢𝑛⟩ =
⟨

𝑢 −
𝑛
∑

𝑗=0
𝛼𝑗1𝐴𝑗 ,

𝑛
∑

𝑘=0
𝛼𝑘1𝐴𝑘

⟩
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=
𝑛
∑

𝑗=0
∫𝐴𝑗

(𝑢 − 𝛼𝑗)𝛼𝑗 𝑑𝜇

=
𝑛
∑

𝑗=0

(

𝛼𝑗 ∫𝐴𝑗
𝑢 𝑑𝜇 − 𝜇(𝐴𝑗)𝛼2𝑗

)

=
𝑛
∑

𝑗=0
0 = 0.

(iii) We have

𝐿2(𝒜𝑛)⊥ =
{

𝑢 −
𝑛
∑

𝑗=0
𝛼𝑗1𝐴𝑗 =

𝑛
∑

𝑗=0
(𝑢 − 𝛼𝑗)1𝐴𝑗 ∶ 𝑢 ∈ 𝐿2(𝜇)

}

(iv) In view of Remark 23.2 we have to show that

∫𝐴𝑗
𝐸𝒜𝑛𝑢 𝑑𝜇 = ∫𝐴𝑗

𝐸𝒜𝑛+1𝑢 𝑑𝜇, ∀𝐴0, 𝐴1,… , 𝐴𝑛.

Thus

∫𝐴𝑗
𝐸𝒜𝑛𝑢 𝑑𝜇 = ⟨𝐸𝒜𝑛𝑢,1𝐴𝑗 ⟩ = ⟨𝑢, 𝐸𝒜𝑛1𝐴𝑗 ⟩ = ⟨𝑢,1𝐴𝑗 ⟩ = ∫𝐴𝑗

𝑢 𝑑𝜇

for all 0 ⩽ 𝑗 ⩽ 𝑛. The same argument shows also that

∫𝐴𝑗
𝐸𝒜𝑛+1𝑢 𝑑𝜇 = ∫𝐴𝑗

𝑢 𝑑𝜇 ∀ 𝑗 = 1, 2,… , 𝑛.

Since the𝐴1, 𝐴2,… are pairwise disjoint and𝐴0 = (𝐴1∪⋯∪𝐴𝑛)𝑐 , we have𝐴𝑛+1 ⊂ 𝐴0

and 𝐴𝑗 ∩ 𝐴0 = ∅, 1 ⩽ 𝑗 ⩽ 𝑛; if 𝑗 = 0 we get

∫𝐴0

𝐸𝒜𝑛+1𝑢 𝑑𝜇

= ∫𝐴0

(

1𝐴𝑛+1

∫𝐴𝑛+1 𝑢 𝑑𝜇

𝜇(𝐴𝑛+1)
+ 1𝐴0⧵𝐴𝑛+1

∫𝐴0⧵𝐴𝑛+1
𝑢 𝑑𝜇

𝜇(𝐴0 ⧵ 𝐴𝑛+1)

)

𝑑𝜇

= 𝜇(𝐴0 ∩ 𝐴𝑛+1)
∫𝐴𝑛+1 𝑢 𝑑𝜇

𝜇(𝐴𝑛+1)
+ 𝜇(𝐴0 ⧵ 𝐴𝑛+1)

∫𝐴0⧵𝐴𝑛+1
𝑢 𝑑𝜇

𝜇(𝐴0 ⧵ 𝐴𝑛+1)

= 𝜇(𝐴𝑛+1)
∫𝐴𝑛+1 𝑢 𝑑𝜇

𝜇(𝐴𝑛+1)
+ 𝜇(𝐴0 ⧵ 𝐴𝑛+1)

∫𝐴0⧵𝐴𝑛+1
𝑢 𝑑𝜇

𝜇(𝐴0 ⧵ 𝐴𝑛+1)

= ∫𝐴𝑛+1
𝑢 𝑑𝜇 + ∫𝐴0⧵𝐴𝑛+1

𝑢 𝑑𝜇

= ∫𝐴0

𝑢 𝑑𝜇.

The claim follows.
Remark. It is, actually, better to show that for 𝑢𝑛 ∶= 𝐸𝒜𝑛𝑢 the sequence (𝑢2𝑛)𝑛 is a
sub-Martingale. (The advantage of this is that we do not have to assume that 𝑢 ∈ 𝐿1

and that 𝑢 ∈ 𝐿2 is indeed enough....). O.k.:
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We have
𝐴𝑛0 ∶= (𝐴1 ⊍⋯ ⊍ 𝐴𝑛)𝑐 = 𝐴𝑐1 ∩⋯ ∩ 𝐴𝑐𝑛

𝐴𝑛+10 ∶= (𝐴1 ⊍⋯ ⊍ 𝐴𝑛 ⊍ 𝐴𝑛+1)𝑐 = 𝐴𝑛0 ∩ 𝐴
𝑐
𝑛+1

and

𝐸𝒜𝑛𝑢 =
𝑛
∑

𝑗=1
1𝐴𝑗 ∫𝐴𝑗

𝑢
𝑑𝜇
𝜇(𝐴𝑗)

+ 1𝐴𝑛0 ∫𝐴𝑛0
𝑢

𝑑𝜇
𝜇(𝐴𝑛0)

𝐸𝒜𝑛+1𝑢 =
𝑛+1
∑

𝑗=1
1𝐴𝑗 ∫𝐴𝑗

𝑢
𝑑𝜇
𝜇(𝐴𝑗)

+ 1𝐴𝑛+10 ∫𝐴𝑛+10

𝑢
𝑑𝜇

𝜇(𝐴𝑛+10 )

with the convention that 1∕∞ = 0. Since the 𝐴𝑗’s are mutually disjoint,
(

𝐸𝒜𝑛𝑢
)2 =

𝑛
∑

𝑗=1
1𝐴𝑗

[

∫𝐴𝑗
𝑢

𝑑𝜇
𝜇(𝐴𝑗)

]2
+ 1𝐴𝑛0

[

∫𝐴𝑛0
𝑢

𝑑𝜇
𝜇(𝐴𝑛0)

]2

(

𝐸𝒜𝑛+1𝑢
)2 =

𝑛+1
∑

𝑗=1
1𝐴𝑗

[

∫𝐴𝑗
𝑢

𝑑𝜇
𝜇(𝐴𝑗)

]2
+ 1𝐴𝑛+10

[

∫𝐴𝑛+10

𝑢
𝑑𝜇

𝜇(𝐴𝑛+10 )

]2
.

We have to show that (𝐸𝒜𝑛𝑢
)2 = 𝑢2𝑛 ⩽ 𝑢2𝑛+1 =

(

𝐸𝒜𝑛+1𝑢
)2. If 𝜇(𝐴𝑛+10 ) = ∞ this follows

trivially since in this case
(

𝐸𝒜𝑛𝑢
)2 =

𝑛
∑

𝑗=1
1𝐴𝑗

[

∫𝐴𝑗
𝑢

𝑑𝜇
𝜇(𝐴𝑗)

]2

(

𝐸𝒜𝑛+1𝑢
)2 =

𝑛+1
∑

𝑗=1
1𝐴𝑗

[

∫𝐴𝑗
𝑢

𝑑𝜇
𝜇(𝐴𝑗)

]2
.

If 𝜇(𝐴𝑛+10 ) <∞ we get
(

𝐸𝒜𝑛𝑢
)2 −

(

𝐸𝒜𝑛+1𝑢
)2

= 1𝐴𝑛0

[

∫𝐴𝑛0
𝑢

𝑑𝜇
𝜇(𝐴𝑛0)

]2
− 1𝐴𝑛+1

[

∫𝐴𝑛+1
𝑢

𝑑𝜇
𝜇(𝐴𝑛+1)

]2

+ 1𝐴𝑛+10

[

∫𝐴𝑛+10

𝑢
𝑑𝜇

𝜇(𝐴𝑛+10 )

]2

= 1𝐴𝑛+1

(

[

∫𝐴𝑛+1
𝑢

𝑑𝜇
𝜇(𝐴𝑛0)

]2
−
[

∫𝐴𝑛+1
𝑢

𝑑𝜇
𝜇(𝐴𝑛+1)

]2
)

+ 1𝐴𝑛+10

(

[

∫𝐴𝑛+10

𝑢
𝑑𝜇
𝜇(𝐴𝑛0)

]2
−
[

∫𝐴𝑛+10

𝑢
𝑑𝜇

𝜇(𝐴𝑛+10 )

]2
)

and each of the expressions in the brackets is negative since
𝐴𝑛0 ⊃ 𝐴𝑛+1 ⇐⇒ 𝜇(𝐴𝑛0) ⩾ 𝜇(𝐴𝑛+1) ⇐⇒

1
𝜇(𝐴𝑛0)

⩽ 1
𝜇(𝐴𝑛+1)

and
𝐴𝑛0 ⊃ 𝐴

𝑛+1
0 ⇐⇒ 𝜇(𝐴𝑛0) ⩾ 𝜇(𝐴𝑛+10 ) ⇐⇒

1
𝜇(𝐴𝑛0)

⩽ 1
𝜇(𝐴𝑛+10 )

.
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(v) Set 𝑢𝑛 ∶= 𝐸𝒜𝑛𝑢. Since (𝑢𝑛)𝑛 is a martingale, 𝑢2𝑛 is a submartingale. In fact, (𝑢2𝑛)𝑛 is even
uniformly integrable. For this we remark that

𝑢𝑛 =
𝑛
∑

𝑗=1
1𝐴𝑗 ∫𝐴𝑗

𝑢(𝑥) 𝜇(𝑑𝑥)
𝜇(𝐴𝑗)

+ 1𝐴𝑛0 ∫𝐴𝑛0
𝑢(𝑥) 𝑓𝑟𝑎𝑐𝜇(𝑑𝑥)𝜇(𝐴𝑛0)

(1∕∞ ∶= 0) and that the function

𝑣 ∶=
∞
∑

𝑗=1
1𝐴𝑗 ∫𝐴𝑗

𝑢(𝑥) 𝜇(𝑑𝑥)
𝜇(𝐴𝑗)

is in 𝐿2(𝒜∞). Only integrability is a problem: since the 𝐴𝑗’s are mutually disjoint, the
square of the series defining 𝑣 factorizes, i.e.

∫ 𝑣2(𝑦)𝜇(𝑑𝑦) = ∫

( ∞
∑

𝑗=1
1𝐴𝑗 (𝑦)∫𝐴𝑗

𝑢(𝑥) 𝜇(𝑑𝑥)
𝜇(𝐴𝑗)

)2
𝜇(𝑑𝑦)

=
∞
∑

𝑗=1
∫ 1𝐴𝑗 (𝑦)𝜇(𝑑𝑦)

(

∫𝐴𝑗
𝑢(𝑥) 𝜇(𝑑𝑥)

𝜇(𝐴𝑗)

)2

⩽
∞
∑

𝑗=1
∫ 1𝐴𝑗 (𝑦)𝜇(𝑑𝑦)∫𝐴𝑗

𝑢2(𝑥) 𝜇(𝑑𝑥)
𝜇(𝐴𝑗)

=
∞
∑

𝑗=1
∫𝐴𝑗

𝑢2(𝑥)𝜇(𝑑𝑥)

= ∫ 𝑢2(𝑥)𝜇(𝑑𝑥)

where we use Beppo Levi’s theorem (twice) and Jensen’s inequality. In fact,
𝑣 = 𝐸𝒜∞𝑢.

Since 𝑢𝑛(𝑥) = 𝑣(𝑥) for all 𝑥 ∈ 𝐴1 ∪⋯ ∪ 𝐴𝑛, and since 𝐴𝑛0 = (𝐴1 ∪⋯ ∪ 𝐴𝑛)𝑐 ∈ 𝒜𝑛 we
find by the submartingale property

∫{𝑢2𝑛>(2𝑣)2}
𝑢2𝑛 𝑑𝜇 ⩽ ∫𝐴𝑛0

𝑢2𝑛 𝑑𝜇

⩽ ∫𝐴𝑛0
𝑢2 𝑑𝜇

←←←←←←←←←←←←←←←←←←←←→
𝑛→∞

0

by dominated convergence since 𝐴𝑛0 → ∅ and 𝑢2 ∈ 𝐿1(𝜇).
Using the convergence theorem for UI (sub)martingales, Theorem 24.6, we conclude
that 𝑢2𝑗 converges pointwise and in𝐿1-sense to some 𝑢2∞ ∈ 𝐿1(𝒜∞) and that (𝑢2𝑗 )𝑗∈N∪{∞}

is again a submartingale. By Riesz’s convergence theorem 13.10 we conclude that
𝑢𝑗 → 𝑢∞ in 𝐿2-norm.
Remark: We can also identify 𝑢∞ with 𝑣: since 𝐸𝒜𝑗𝑣 = 𝑢𝑗 = 𝐸𝒜𝑗𝑢∞ it follows that
for 𝑘 = 1, 2,… , 𝑗 and all 𝑗

0 = ⟨𝐸𝒜𝑗𝑣 − 𝐸𝒜𝑗𝑢∞,1𝐴𝑘⟩ = ⟨𝑣 − 𝑢∞, 𝐸𝒜𝑗1𝐴𝑘⟩ = ⟨𝑣 − 𝑢∞,1𝐴𝑘⟩

319



R.L. Schilling: Measures, Integrals & Martingales

i.e. 𝑣 = 𝑢∞ on all sets of the ∩-stable generator of 𝒜∞ which can easily be extended to
contain an exhausting sequence 𝐴1 ⊍⋯ ⊍ 𝐴𝑛 of sets of finite 𝜇-measure.

(vi) The above considerations show that the functions

𝐷 ∶=

{

𝛼01𝐴𝑛0 +
𝑛
∑

𝑗=1
𝛼𝑗1𝐴𝑗 ∶ 𝑛 ∈ N, 𝛼𝑗 ∈ R

}

(if 𝜇(𝐴𝑛0) = ∞, then 𝛼0 = 0) are dense in 𝐿2(𝒜∞). It is easy to see that

𝐸 ∶=

{

𝑞01𝐴𝑛0 +
𝑛
∑

𝑗=1
𝑞𝑗1𝐴𝑗 ∶ 𝑛 ∈ N, 𝛼𝑗 ∈ Q

}

(if 𝜇(𝐴𝑛0) = ∞, then 𝑞0 = 0) is countable and dense in 𝐷 so that the claim follows.
■■
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27 Conditional expectations.

Solutions to Problems 27.1–27.19

Problem 27.1 Solution: In Theorem 27.4(vii) we have seen that

EℋE𝒢 𝑢 = Eℋ 𝑢.

Since, by 27.4(i) and 27.1 Eℋ 𝑢 ∈ 𝐿2(ℋ ) ⊂ 𝐿2(𝒢 ) we have, because of 27.4

E𝒢Eℋ 𝑢 = Eℋ 𝑢.

■■

Problem 27.2 Solution: Note that by the Markov inequality 𝜇{𝑢 > 1} ⩽ ∫ 𝑢2 𝑑𝜇 < ∞, i.e. 𝑢1{𝑢>1}
is an integrable function (use Cauchy-Schwarz).
We have

1𝜇{𝑢 > 1} = ∫{𝑢>1}
1 𝑑𝜇

(*)
< ∫{𝑢>1}

𝑢 𝑑𝜇
assumption

⩽ 𝜇{𝑢 > 1}.

In the step marked (*) we really (!) need that 𝜇{𝑢 > 1} > 0 — otherwise we could not get a strict
inequality. Thus, 𝜇{𝑢 > 1} < 𝜇{𝑢 > 1} which is a contradiciton. Therefore, 𝜇{𝑢 > 1} = 0 and
we have 𝑢 ⩽ 1 a.e.
If you are unhappy with strict inequalities, you can extend the argument as follows: By assumption
𝜇{𝑢 > 1} > 0. Since {𝑢 > 1} =

⋃

𝑛⩾1{𝑢 ⩾ 1+1∕𝑛}, there is some𝑁 such that 𝜇{𝑢 ⩾ 1+1∕𝑛} > 0
for all 𝑛 ⩾ 𝑁 — use a continuity of measure argument. Now we get for all 𝑛 ⩾ 𝑁

∫{𝑢⩾1+1
𝑛

}
1 𝑑𝜇 = 𝜇

{

𝑢 ⩾ 1 + 1
𝑛

}

<
(

1 + 1
𝑛

)

𝜇
{

𝑢 ⩾ 1 + 1
𝑛

}

= ∫{𝑢⩾1+1
𝑛

}

(

1 + 1
𝑛

)

𝑑𝜇

⩽ ∫{𝑢⩾1+1
𝑛

}
𝑢 𝑑𝜇.

Observe that

∫{𝑢>1}
1 𝑑𝜇 =

∞
∑

𝑛=𝑁+1
∫{1+1∕𝑛⩽𝑢<1+1∕(𝑛−1)

}
1 𝑑𝜇 + ∫{𝑢⩾1+ 1

𝑁

}
1 𝑑𝜇
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⩽
∞
∑

𝑛=𝑁+1
∫{1+1∕𝑛⩽𝑢<1+1∕(𝑛−1)

}
𝑢 𝑑𝜇 + ∫{𝑢⩾1+ 1

𝑁

}
1 𝑑𝜇

<
∞
∑

𝑛=𝑁+1
∫{1+1∕𝑛⩽𝑢<1+1∕(𝑛−1)

}
𝑢 𝑑𝜇 + ∫{𝑢⩾1+ 1

𝑁

}
𝑢 𝑑𝜇

= ∫{𝑢>1}
𝑢 𝑑𝜇.

With our assumption we thus get the contradiction 𝜇{𝑢 > 1} < 𝜇{𝑢 > 1}.
Alternative: From ∫{𝑢>1} 𝑢 𝑑𝜇 ⩽ 𝜇(𝑢 > 1) we get

∫{𝑢>1}
(𝑢 − 1) 𝑑𝜇 ⩽ 0.

Observe that (𝑢 − 1)1{𝑢>1} ⩾ 0 implies

∫{𝑢>1}
(𝑢 − 1) 𝑑𝜇 ⩾ 0.

Therefore, ∫{𝑢>1}(𝑢 − 1) 𝑑𝜇 = 0 and we see that (𝑢 − 1)1{𝑢>1} = 0 a.e., hence 1{𝑢>1} = 0 a.e.
■■

Problem 27.3 Solution: Note that, since E𝒢 is (currently...) only defined for 𝐿2-functions the prob-
lem implicitly requires that 𝑓 ∈ 𝐿2(𝒜 , 𝜇). (A look at the next section reveals that this is not
really necessary...). Below we will write ⟨∙, ∙⟩𝐿2(𝜇) resp. ⟨∙, ∙⟩𝐿2(𝜈) to indicate which scalar product
is meant.
We begin with a general consideration: Let 𝑢,𝑤 be functions such that 𝑢2, 𝑣2 ∈ 𝐿2(𝜇). Then we
have |𝑢 ⋅𝑤| ⩽ 1

2 (𝑢
2 +𝑤2) ∈ 𝐿2(𝜇) and, using again the elementary inequality

|𝑥𝑦| ⩽ 𝑥2

2
+ 𝑦2

2

for 𝑥 = |𝑢|∕
√

E𝒢
𝜇 (𝑢2) and 𝑦 = |𝑤|∕

√

E𝒢
𝜇 (𝑤2) we conclude that on 𝐺𝑛 ∶= {E𝒢

𝜇 (𝑢
2) > 1

𝑛
} ∩

{E𝒢
𝜇 (𝑤

2) > 1
𝑛
}

|𝑢| ⋅ |𝑤|
√

E𝒢
𝜇 (𝑤2)

√

E𝒢
𝜇 (𝑤2)

1𝐺𝑛 ⩽

[

𝑢2

2E𝒢
𝜇 (𝑢2)

+ 𝑤2

2E𝒢
𝜇 (𝑤2)

]

1𝐺𝑛 .

Taking conditional expectations on both sides yields, since 𝐺𝑛 ∈ 𝒢 :
E𝒢
𝜇
(

|𝑢| ⋅ |𝑤|
)

√

E𝒢
𝜇 (𝑤2)

√

E𝒢
𝜇 (𝑤2)

1𝐺𝑛 ⩽ 1𝐺𝑛 .

Multiplying through with the denominator of the lhS and letting 𝑛→ ∞ gives
|

|

|

E𝒢
𝜇 (𝑢𝑤)

|

|

|

1𝐺∗ ⩽ E𝒢
𝜇
(

|𝑢𝑤|
)

1𝐺∗ ⩽
√

E𝒢
𝜇 (𝑢2)

√

E𝒢
𝜇 (𝑤2)

on the set 𝐺∗ ∶= 𝐺𝑢 ∩ 𝐺𝑤 ∶= {E𝒢
𝜇 𝑢

2 > 0} ∩ {E𝒢
𝜇𝑤

2 > 0}.
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(i) Set 𝐺∗ ∶= {E𝒢
𝜇 𝑓 > 0} and 𝐺𝑛 ∶= {E𝒢

𝜇 𝑓 >
1
𝑛
}. Clearly, using the Markov inequality,

𝜇(𝐺𝑛) ⩽ 𝑛2 ∫ (E𝒢
𝜇 𝑓 )

2 𝑑𝜇 ⩽ 𝑛∫ 𝑓 2 𝑑𝜇 <∞

so that by monotone convergence we find for all 𝐺 ∈ 𝒢 ∩ 𝐺∗

𝜈(𝐺) = ⟨𝑓,1𝐺⟩𝐿2(𝜇)

= sup
𝑛
⟨𝑓,1𝐺∩𝐺𝑛⟩𝐿2(𝜇)

= sup
𝑛
⟨𝑓,E𝒢

𝜇 1𝐺∩𝐺𝑛⟩𝐿2(𝜇)

= sup
𝑛
⟨E𝒢

𝜇 𝑓,1𝐺∩𝐺𝑛⟩𝐿2(𝜇)

= ⟨E𝒢
𝜇 𝑓,1𝐺⟩𝐿2(𝜇)

which means that 𝜈|𝒢∩𝐺∗ = E𝒢𝑓 ⋅ 𝜇|𝒢∩𝐺∗ .
(ii) We define for bounded 𝑢 ∈ 𝐿2(𝜈)

𝑃𝑢 ∶=
E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗ .

Let us show that 𝑃 ∈ 𝐿2(𝜈). Set 𝐺√

𝑓𝑢 ∶= {E𝒢
𝜇
(

𝑓 ⋅ 𝑢2
)

> 0}. Then, for bounded
𝑢 ∈ 𝐿2(𝜈)

‖

‖

‖

‖

E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗∩𝐺√

𝑓𝑢∩𝐺√

𝑓

‖

‖

‖

‖

2

𝐿2(𝜈)

= ∫𝐺∗∩𝐺√

𝑓𝑢∩𝐺√

𝑓

[

E𝒢
𝜇 (𝑓𝑢)

]2

[

E𝒢
𝜇 𝑓

]2 𝑑𝜈

= ∫𝐺∗∩𝐺√

𝑓𝑢∩𝐺√

𝑓

[

E𝒢
𝜇 (𝑓𝑢)

]2

[

E𝒢
𝜇 𝑓

]2 𝑓 𝑑𝜇

= ∫𝐺∗∩𝐺√

𝑓𝑢∩𝐺√

𝑓

[

E𝒢
𝜇 (𝑓𝑢)

]2

[

E𝒢
𝜇 𝑓

]2 E𝒢
𝜇 𝑓 𝑑𝜇

= ∫𝐺∗∩𝐺√

𝑓𝑢∩𝐺√

𝑓

[

E𝒢
𝜇 (𝑓𝑢)

]2

E𝒢
𝜇 𝑓

𝑑𝜇

= ∫𝐺∗∩𝐺√

𝑓𝑢∩𝐺√

𝑓

[

E𝒢
𝜇
[
√

𝑓 (
√

𝑓𝑢)
]]2

E𝒢
𝜇 𝑓

𝑑𝜇

⩽ ∫𝐺∗∩𝐺√

𝑓𝑢∩𝐺√

𝑓

E𝒢
𝜇 𝑓 ⋅ E𝒢

𝜇
[

𝑓𝑢2
]

E𝒢
𝜇 𝑓

𝑑𝜇

= ∫𝐺∗∩𝐺√

𝑓𝑢∩𝐺√

𝑓

E𝒢
𝜇
[

𝑓𝑢2
]

𝑑𝜇

= sup
𝑛 ∫ 1𝐺𝑛∩𝐺√

𝑓𝑢∩𝐺√

𝑓
E𝒢
𝜇
[

𝑓𝑢2
]

𝑑𝜇

323



R.L. Schilling: Measures, Integrals & Martingales

= sup
𝑛 ∫ E𝒢

𝜇 1𝐺𝑛∩𝐺√

𝑓𝑢∩𝐺√

𝑓
𝑓𝑢2 𝑑𝜇

= sup
𝑛 ∫ 1𝐺𝑛∩𝐺√

𝑓𝑢∩𝐺√

𝑓
𝑓𝑢2 𝑑𝜇

= ∫ 1𝐺∗∩𝐺√

𝑓𝑢∩𝐺√

𝑓
𝑓𝑢2 𝑑𝜇

⩽ ∫ 𝑓𝑢2 𝑑𝜇 = ‖

‖

‖

√

𝑓𝑢‖‖
‖

2

𝐿2(𝜇)
= ‖𝑢‖2𝐿2(𝜈) <∞.

Still for bounded 𝑢 ∈ 𝐿2(𝜈),

∫𝐺𝑛∩{𝑓<𝑛}∩{E𝒢 (𝑓𝑢2)=0}
E𝒢
𝜇 (𝑓𝑢) 𝑑𝜇

= ∫𝐺𝑛∩{E𝒢 (
√

𝑓𝑢)=0}
𝑓𝑢 𝑑𝜇

⩽

√

∫𝐺𝑛∩{𝑓<𝑛}
𝑓 𝑑𝜇

√

∫𝐺𝑛∩{E𝒢 (𝑓𝑢2)=0}
𝑓𝑢2 𝑑𝜇

=

√

∫𝐺𝑛∩{𝑓<𝑛}
𝑓 𝑑𝜇

√

∫𝐺𝑛∩{E𝒢 (𝑓𝑢2)=0}
E𝒢
𝜇 𝑓𝑢2 𝑑𝜇

= 0

and, using monotone convergence, we have
‖𝑃𝑢‖2𝐿2(𝜈) ⩽ ‖𝑢‖2𝐿2(𝜈)

for all bounded 𝑢 ∈ 𝐿2(𝜈), hence – through extension by continuity – for all 𝑢 ∈ 𝐿2(𝜈).
(iii) Since

⟨

𝑢 − 𝑃𝑢, 𝑃 𝑢
⟩

𝐿2(𝜈)

=
⟨

𝑓𝑢 − 𝑓𝑃𝑢, 𝑃 𝑢
⟩

𝐿2(𝜇)

=
⟨

𝑓𝑢 − 𝑓
E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗ ,
E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗

⟩

𝐿2(𝜇)

=
⟨

E𝒢
𝜇

[

𝑓𝑢 − 𝑓
E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗

]

,
E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗

⟩

𝐿2(𝜇)

=
⟨

E𝒢
𝜇 (𝑓𝑢) − E

𝒢
𝜇

[

𝑓
E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗

]

,
E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗

⟩

𝐿2(𝜇)

=
⟨

E𝒢
𝜇 (𝑓𝑢) − E

𝒢
𝜇 (𝑓 )

E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗ ,
E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗

⟩

𝐿2(𝜇)

=
⟨

E𝒢
𝜇 (𝑓𝑢) − E

𝒢
𝜇 (𝑓𝑢)1𝐺∗ ,

E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗

⟩

𝐿2(𝜇)

= 0

which shows that 𝑃 is the (uniquely determined) orthogonal projection onto 𝐿2(𝜈,𝒢 ),
i.e. 𝑃 = E𝒢

𝜈 .
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(Note that we have, implicitly, extended E𝒢
𝜇 onto 𝐿1....)

(iv) The condition that 𝑓1𝐺∗ is 𝒢 -measurable will do. Indeed, since 𝐺∗ ∈ 𝒢 :

E𝒢
𝜈 𝑢 =

E𝒢
𝜇 (𝑓𝑢)

E𝒢
𝜇 𝑓

1𝐺∗ =
E𝒢
𝜇 ((𝑓1𝐺∗)𝑢)

E𝒢
𝜇 (𝑓1𝐺∗)

=
(𝑓1𝐺∗)E𝒢

𝜇 (𝑢)
(𝑓1𝐺∗)

= E𝒢
𝜇 𝑢.

In fact, if 𝑓 ∈ 𝐿4(𝜇,𝒜 ) this is also necessary:

E𝒢
𝜇 𝑓 = E𝒢

𝜈 𝑓

implies, because of (i), that

E𝒢
𝜇 𝑓 =

E𝒢
𝜇 (𝑓

2)

E𝒢
𝜇 𝑓

1{E𝒢
𝜇 𝑓>0}

⇐⇒
(

E𝒢
𝜇 𝑓

)2 = E𝒢
𝜇 (𝑓

2)1{E𝒢
𝜇 𝑓>0}

⇐⇒
(

E𝒢
𝜇 𝑓

)2 = E𝒢
𝜇 (𝑓

2).

Thus,

E𝒢
𝜇

[

(

𝑓 − E𝒢
𝜇 𝑓

)2
]

= 0,

which means that on the set 𝐺∗ =
⋃

𝑛𝐺𝑛 with 𝜇(𝐺𝑛) <∞, see above,

0 = ∫𝐺𝑛
E𝒢
𝜇 (𝑓 − E𝒢

𝜇 𝑓 )
2 𝑑𝜇 = ∫𝐺𝑛

(𝑓 − E𝒢
𝜇 𝑓 )

2 𝑑𝜇

i.e. 𝑓 = E𝒢
𝜇 𝑓 on 𝐺∗ = {E𝒢

𝜇 𝑓 > 0}

■■

Problem 27.4 Solution: Since 𝒢 = {𝐺1,… , 𝐺𝑛} such that the𝐺𝑗’s form a mutually disjoint partition
of the whole space 𝑋, we have

𝐿2(𝒢 ) =

{ 𝑛
∑

𝑗=1
𝛼𝑗1𝐺𝑗 ∶ 𝛼𝑗 ∈ R

}

.

It is, therefore, enough to determine the values of the 𝛼𝑗 . Using the symmetry and idempotency of
the conditional expectation we get for 𝑘 ∈ {1, 2,… , 𝑛}

⟨E𝒢 𝑢,1𝐺𝑘⟩ = ⟨𝑢,E𝒢1𝐺𝑘⟩ = ⟨𝑢,1𝐺𝑘⟩ = ∫𝐺𝑘
𝑢 𝑑𝜇.

On the other hand, using that E𝒢 𝑢 ∈ 𝐿2(𝒢 ) we find

⟨E𝒢 𝑢,1𝐺𝑘⟩ =
⟨

𝑛
∑

𝑗=1
𝛼𝑗1𝐺𝑗 ,1𝐺𝑘

⟩

=
𝑛
∑

𝑗=1
𝛼𝑗⟨1𝐺𝑗 ,1𝐺𝑘⟩ = 𝛼𝑘𝜇(𝐺𝑘)

and we conclude that

𝛼𝑘 =
1

𝜇(𝐺𝑘) ∫𝐺𝑘
𝑢 𝑑𝜇 = ∫𝐺𝑘

𝑢(𝑥) 𝜇(𝑑𝑥)
𝜇(𝐺𝑘)

.

■■
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Problem 27.5 Solution: We follow the hint. Let 𝑢 ∈ 𝐿𝑝(𝜇) and define 𝑢𝑛 = [(−𝑛) ∨ 𝑢 ∧ 𝑛]1{|𝑢|⩾1∕𝑛}.
Clearly, 𝑢𝑛 is bounded, and by the Markov inequality (11.4)

𝜇{|𝑢| ⩾ 1∕𝑛} = 𝜇{|𝑢|𝑝 ⩾ 1∕𝑛𝑝} ⩽ 𝑛𝑝 ∫ |𝑢|𝑝 𝑑𝜇 <∞.

Therefore, 𝑢𝑛 ∈ 𝐿𝑟(𝜇) for all 𝑟 ⩾ 1:

∫ |𝑢𝑛|
𝑟 𝑑𝜇 = ∫{|𝑢𝑛|⩾1∕𝑛}

(|𝑢| ∧ 𝑛)𝑟 ⩽ 𝑛𝑟𝜇{|𝑢𝑛| ⩾ 1∕𝑛} ⩽ 𝑛𝑟+𝑝 ∫ |𝑢|𝑝 𝑑𝜇 <∞.

Since 𝑢𝑛 → 𝑢 a.e., dominated convergence (use the majorant |𝑢|𝑝) shows that 𝑢𝑛 → 𝑢 in 𝐿𝑝. Thus,
we see as in the remark before Theorem 27.5 that (𝑇 𝑢𝑛)𝑛∈N is a Cauchy sequence in 𝐿𝑝(𝜇), i.e. the
limit 𝐿𝑝-lim𝑛 𝑇 𝑢𝑛 exists. If (𝑤𝑛)𝑛 is a further approximating sequence such that 𝑤𝑛 → 𝑢 in 𝐿𝑝(𝜇),
we get

‖𝑇 𝑢𝑛 − 𝑇𝑤𝑛‖𝑝 = ‖𝑇 (𝑢𝑛 −𝑤𝑛)‖𝑝 ⩽ 𝑐‖𝑢𝑛 −𝑤𝑛‖𝑝 ⩽ 𝑐‖𝑢𝑛 − 𝑢‖𝑝 + 𝑐‖𝑢 −𝑤𝑛‖𝑝 ←←←←←←←←←←←←←←←←←←←←→𝑛→∞
0

which shows that lim𝑛 𝑇 𝑢𝑛 = lim𝑛 𝑇𝑤𝑛, i.e. 𝑇 𝑢 ∶= lim𝑛 𝑇 𝑢𝑛 (as an 𝐿𝑝-limit) is well-defined since
it is independent of the approximating sequence. Linearity is clear from the linearity of the limit.
Assume now that 0 ⩽ 𝑢𝑛 ↑ 𝑢 where 𝑢𝑛 ∈ 𝐿𝑝(𝜇) ∩ 𝐿2(𝜇). By the first part, 𝑇 𝑢 = lim𝑛 𝑇 𝑢𝑛 in 𝐿𝑝,
so there is a subsequence such that 𝑇 𝑢 = lim𝑘 𝑇 𝑢𝑛𝑘 a.e. Because of monotonicity we have

𝑇 𝑢𝑛𝑘 ⩽ 𝑇 𝑢𝑛 ∀ 𝑛 ⩾ 𝑛(𝑘) ⇐⇒ 0 ⩽ 𝑇 𝑢 − 𝑇 𝑢𝑛 ⩽ 𝑇 𝑢 − 𝑇 𝑢𝑛𝑘 .

So,

0 ⩽ lim sup
𝑛→∞

(𝑇 𝑢 − 𝑇 𝑢𝑛) ⩽ 𝑇 𝑢 − 𝑇 𝑢𝑛𝑘 ←←←←←←←←←←←←←←←←←←←←→𝑘→∞
0,

which shows that lim𝑛(𝑇 𝑢 − 𝑇 𝑢𝑛) = 0.
■■

Problem 27.6 Solution: Let 𝐺𝑢 ∶= {E𝒢
|𝑢|𝑝 > 0}, 𝐺𝑤 ∶= {E𝒢

|𝑤|𝑞 > 0} and 𝐺 ∶= 𝐺𝑢 ∩ 𝐺𝑤.
Following the hint we get

|𝑢|
[

E𝒢 (|𝑢|𝑝)
]1∕𝑝

|𝑤|
[

E𝒢 (|𝑤|𝑞)
]1∕𝑞 1𝐺 ⩽ |𝑢|𝑝

𝑝E𝒢 (|𝑢|𝑝)
1𝐺 + |𝑢|𝑞

𝑞E𝒢 (|𝑤|𝑞)
1𝐺

Since 1𝐺 is bounded and 𝒢 -measurable, we can apply E𝒢 on both sides of the above inequality
and get

E𝒢 (|𝑢||𝑤|)
[

E𝒢 (|𝑢|𝑝)
]1∕𝑝[

E𝒢 (|𝑤|𝑞)
]1∕𝑞 1𝐺 ⩽ E𝒢 (|𝑢|𝑝)

𝑝E𝒢 (|𝑢|𝑝)
1𝐺 + E𝒢 (|𝑢|𝑞)

𝑞E𝒢 (|𝑤|𝑞)
1𝐺 = 1𝐺

or

E𝒢 (|𝑢||𝑤|)1𝐺 ⩽
[

E𝒢 (|𝑢|𝑝)
]1∕𝑝[

E𝒢 (|𝑤|𝑞)
]1∕𝑞

1𝐺

⩽
[

E𝒢 (|𝑢|𝑝)
]1∕𝑝[

E𝒢 (|𝑤|𝑞)
]1∕𝑞.
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Denote by 𝐺𝑛 an exhaustion of 𝑋 such that 𝐺𝑛 ∈ 𝒢 , 𝐺𝑛 ↑ 𝑋 and 𝜇(𝐺𝑛) <∞. Then

∫𝐺𝑐𝑢
|𝑢|𝑝 𝑑𝜇 = sup

𝑛 ∫𝐺𝑐𝑢∩𝐺𝑛
|𝑢|𝑝 𝑑𝜇

= sup
𝑛
⟨1𝐺𝑐𝑢∩𝐺𝑛

, |𝑢|𝑝⟩

= sup
𝑛
⟨E𝒢1𝐺𝑐𝑢∩𝐺𝑛

, |𝑢|𝑝⟩

= sup
𝑛
⟨1𝐺𝑐𝑢∩𝐺𝑛

,E𝒢 (|𝑢|𝑝)⟩

= 0

which means that 1𝐺𝑢𝑢 = 𝑢 almost everywhere. Thus,
E𝒢 (|𝑢||𝑤|)1𝐺 = E𝒢 (|𝑢||𝑤|1𝐺) = E𝒢 (|𝑢|1𝐺𝑢|𝑤|1𝐺𝑤) = E

𝒢 (|𝑢||𝑤|)

and the inequality follows since
|

|

|

E𝒢 (𝑢𝑤)||
|

⩽ E𝒢 (|𝑢𝑤|).

■■

Problem 27.7 Solution: In this problem it is helpful to keep the distinction between E𝒢 defined on
𝐿2(𝒜 ) and the extension 𝐸𝒢 defined on 𝐿𝒢 (𝒜 ).
Since 𝜇|𝒜 is 𝜎-finite we can find an exhausting sequence of sets 𝐴𝑛 ↑ 𝑋 with 𝜇(𝐴𝑛) <∞. Setting
for 𝑢,𝑤 ∈ 𝐿𝒢 (𝒜 ) with 𝑢𝐸𝒢𝑤 ∈ 𝐿1(𝒜 ) 𝑢𝑛 ∶=

(

(−𝑛)∨𝑢∧𝑛
)

⋅1𝐴𝑛 and𝑤𝑛 ∶=
(

(−𝑛)∨𝑤∧𝑛
)

⋅1𝐴𝑛
we have found approximating sequences such that 𝑢𝑛, 𝑤𝑛 ∈ 𝐿1(𝒜 ) ∩ 𝐿∞(𝒜 ) and, in particular,
∈ 𝐿2(𝒜 ).
(iii): For 𝑢,𝑤 ⩾ 0 we find by monotone convergence, using the properties listed in Theorem 27.4:

⟨𝐸𝒢 𝑢,𝑤⟩ = lim
𝑛
⟨E𝒢 𝑢𝑛, 𝑤⟩

= lim
𝑛

lim
𝑚
⟨E𝒢 𝑢𝑛, 𝑤𝑚⟩

= lim
𝑛

lim
𝑚
⟨𝑢𝑛,E

𝒢𝑤𝑚⟩

= lim
𝑛
⟨𝑢𝑛, 𝐸

𝒢𝑤⟩

= ⟨𝑢, 𝐸𝒢𝑤⟩.

In the general case we write
⟨𝐸𝒢 𝑢,𝑤⟩ = ⟨𝐸𝒢 𝑢+, 𝑤+

⟩ − ⟨𝐸𝒢 𝑢−, 𝑤+
⟩ − ⟨𝐸𝒢 𝑢+, 𝑤−

⟩ + ⟨𝐸𝒢 𝑢−, 𝑤−
⟩

and consider each term separately.
The equality ⟨𝐸𝒢 𝑢,𝑤⟩ = ⟨𝐸𝒢 𝑢, 𝐸𝒢𝑤⟩ follows similarly.

(iv): we have
𝑢 = 𝑤 ⇐⇒ 𝑢𝑗 = 𝑤𝑗 ∀ 𝑗 ⇐⇒ E𝒢 𝑢𝑗 = E𝒢𝑤𝑗 ∀ 𝑗
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and we get

𝐸𝒢 𝑢 = lim
𝑗
E𝒢 𝑢𝑗 = lim

𝑗
E𝒢𝑤𝑗 = 𝑤.

(ix): we have

0 ⩽ 𝑢 ⩽ 1 ⇐⇒ 0 ⩽ 𝑢𝑛 ⩽ 1 ∀ 𝑛

⇐⇒ 0 ⩽ E𝒢 𝑢𝑛 ⩽ 1 ∀ 𝑛

⇐⇒ 0 ⩽ 𝐸𝒢 𝑢 = lim
𝑛
E𝒢 𝑢𝑛 ⩽ 1.

(x):

𝑢 ⩽ 𝑤 ⇐⇒ 0 ⩽ 𝑤 − 𝑢 ⇐⇒ 0 ⩽ 𝐸𝒢 (𝑢 −𝑤) = 𝐸𝒢 𝑢 − 𝐸𝒢𝑤.

(xi):

±𝑢 ⩽ |𝑢| ⇐⇒ ±𝐸𝒢 𝑢 ⩽ 𝐸𝒢
|𝑢| ⇐⇒ |

|

|

𝐸𝒢 𝑢||
|

⩽ 𝐸𝒢
|𝑢|.

■■

Problem 27.8 Solution: (Mind the typo in the hint: E𝒢 = E𝒢 should read E𝒢 = 𝐸𝒢 .) Assume first
that 𝜇|𝒢 is 𝜎-finite and denote by 𝐺𝑘 ∈ 𝒢 , 𝐺𝑘 ↑ 𝑋 and 𝜇(𝐺𝑘) <∞ an exhausting sequence. Then
1𝐺𝑘 ∈ 𝐿2(𝒢 ), 1𝐺𝑘 ↑ 1 and

𝐸𝒢 1 = sup
𝑘
E𝒢1𝐺𝑘 = sup

𝑘
1𝐺𝑘 = 1.

Conversely, let 𝐸𝒢 1 = 1. Because of Lemma 27.7 there is a sequence (𝑢𝑘)𝑘 ⊂ 𝐿2(𝒜 ) with 𝑢𝑘 ↑ 1.
By the very definition of 𝐸𝒢 we have

𝐸𝒢 1 = sup
𝑘
E𝒢 𝑢𝑘 = 1,

i.e. there is a sequence 𝑔𝑘 ∶= E𝒢 𝑢𝑘 ∈ 𝐿2(𝒢 ) such that 𝑔𝑘 ↑ 1. Set 𝐺𝑘 ∶= {𝑔𝑘 > 1 − 1∕𝑘} and
observe that 𝐺𝑘 ↑ 𝑋 as well as

𝜇(𝐺𝑘) ⩽
1

(1 − 1
𝑘
)2 ∫

𝑔2𝑘 𝑑𝜇

= 1
(1 − 1

𝑘
)2
‖E𝒢 𝑢𝑘‖

2
𝐿2

⩽ 1
(1 − 1

𝑘
)2
‖𝑢𝑘‖

2
𝐿2

<∞.

This shows that 𝜇|𝒢 is 𝜎-finite.
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If 𝒢 is not 𝜎-finite, e.g. if 𝒢 = {∅, 𝐺, 𝐺𝑐 , 𝑋} where 𝜇(𝐺) <∞ and 𝜇(𝐺𝑐) = ∞ we find that

𝐿2(𝒢 ) = {𝑐1𝐺 ∶ 𝑐 ∈ R}

which means that 𝐸𝒢 1 = 1𝐺 since for every 𝐴 ⊂ 𝐺𝑐 , 𝐴 ∈ 𝒜 and 𝜇(𝐴) <∞ we find

𝐸𝒢1𝐴⊍𝐺 = 𝐸𝒢 (1𝐴 + 1𝐺) = 𝐸𝒢1𝐴 + 𝐸𝒢1𝐺 = 𝐸𝒢1𝐴 + 1𝐺

Since this must be an element of 𝐿2(𝒢 ), we have necessarily 𝐸𝒢1𝐴 = 𝑐1𝐺 or

⟨𝑐1𝐺,1𝐺⟩ = ⟨𝐸𝒢1𝐴,1𝐺⟩ = ⟨1𝐴, 𝐸
𝒢1𝐺⟩ = ⟨1𝐴,1𝐺⟩ = 𝜇(𝐴 ∩ 𝐺) = 0,

hence 𝑐 = 0 or 𝐸𝒢1𝐴 = 0.
This shows that

𝐸𝒢 1 = 1𝐺 ⩽ 1

is best possible.
■■

Problem 27.9 Solution: For this problem it is helpful to distinguish betweenE𝒢 (defined on 𝐿2) and
the extension 𝐸𝒢 .
Without loss of generality we may assume that 𝑔 ⩾ 0—otherwise we would consider positive and
negative parts separately. Since 𝑔 ∈ 𝐿𝑝(𝒢 ) we have that

𝜇{𝑔 > 1∕𝑗} ⩽ 𝑗𝑝 ∫ 𝑔𝑝 𝑑𝜇 <∞

which means that the sequence 𝑔𝑗 ∶= (𝑗 ∧ 𝑔)1{𝑔>1∕𝑗} ∈ 𝐿2(𝒢 ). Obviously, 𝑔𝑗 ↑ 𝑔 pointwise as
well as in 𝐿𝑝-sense. Using the results from Theorem 27.4 we get

E𝒢 𝑔𝑗 = 𝑔𝑗 ⇐⇒ 𝐸𝒢 = sup
𝑗
E𝒢 𝑔𝑗 = sup

𝑗
𝑔𝑗 = 𝑔.

■■

Problem 27.10 Solution: For this problem it is helpful to distinguish between E𝒢 (defined on 𝐿2)
and the extension 𝐸𝒢 .
For 𝑢 ∈ 𝐿𝑝(𝒜 ) we get 𝐸ℋ𝐸𝒢 𝑢 = 𝐸ℋ 𝑢 because of Theorem 27.11(vi) while the other equality
𝐸𝒢𝐸ℋ 𝑢 = 𝐸ℋ 𝑢 follows from Problem 27.9.
If 𝑢 ∈ 𝑀+(𝒜 ) (mind the misprint in the problem!) we get a sequence 𝑢𝑗 ↑ 𝑢 of functions 𝑢𝑗 ∈
𝐿2
+(𝒜 ). From Theorem 27.4 we know thatE𝒢 𝑢𝑗 ∈ 𝐿2(𝒢 ) increases and, by definition, it increases

towards 𝐸𝒢 𝑢. Thus,

EℋE𝒢 𝑢𝑗 = Eℋ 𝑢𝑗 ↑ 𝐸
ℋ 𝑢
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while

EℋE𝒢 𝑢𝑗 ↑ 𝐸
ℋ (

sup
𝑗
E𝒢 𝑢𝑗

)

= 𝐸ℋ𝐸𝒢 𝑢.

The other equality is similar.
■■

Problem 27.11 Solution: We know that

𝐿𝑝(𝒜𝑛) =

{ 𝑛
∑

𝑗=1
𝑐𝑗1[𝑗−1,𝑗) ∶ 𝑐𝑗 ∈ R

}

since 𝑐01[𝑛,∞) ∈ 𝐿𝑝 if, and only if, 𝑐0 = 0. Thus, 𝐸𝒜𝑛𝑢 is of the form

𝐸𝒜𝑛𝑢(𝑥) =
𝑛
∑

𝑗=1
𝑐𝑗1[𝑗−1,𝑗)(𝑥)

and integrating over [𝑘 − 1, 𝑘) yields

∫[𝑘−1,𝑘)
𝐸𝒜𝑛𝑢(𝑥) 𝑑𝑥 = 𝑐𝑘.

Since

∫[𝑘−1,𝑘)
𝐸𝒜𝑛𝑢(𝑥) 𝑑𝑥 = ⟨𝐸𝒜𝑛𝑢,1[𝑘−1,𝑘)⟩

= ⟨𝑢, 𝐸𝒜𝑛1[𝑘−1,𝑘)⟩

= ⟨𝑢,1[𝑘−1,𝑘)⟩

= ∫[𝑘−1,𝑘)
𝑢(𝑥) 𝑑𝑥

we get

𝐸𝒜𝑛𝑢(𝑥) =
𝑛
∑

𝑗=1
∫[𝑗−1,𝑗)

𝑢(𝑡) 𝑑𝑡1[𝑗−1,𝑗)(𝑥).

■■

Problem 27.12 Solution: For this problem it is helpful to distinguish between E𝒢 (defined on 𝐿2)
and the extension 𝐸𝒢 .
If 𝜇(𝑋) = ∞ and if𝒢 = {∅, 𝑋}, then𝐿1(𝒢 ) = {0}which means that𝐸𝒢 𝑢 = 0 for any 𝑢 ∈ 𝐿1(𝒜 ).
Thus for integrable functions 𝑢 > 0 and 𝜇|𝒢 not 𝜎-finite we can only have ‘⩽’.
If 𝜇|𝒢 is 𝜎-finite and if 𝐺𝑗 ↑ 𝑋, 𝐺𝑗 ∈ 𝒢 , 𝜇(𝐺𝑗) < ∞ is an exhausting sequence, we find for any
𝑢 ∈ 𝐿1

+(𝒜 )

∫ 𝐸𝒢 𝑢 𝑑𝜇 = sup
𝑗 ∫𝐺𝑗

𝐸𝒢 𝑢 𝑑𝜇

= sup
𝑗
⟨𝐸𝒢 𝑢,1𝐺𝑗 ⟩
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= sup
𝑗
⟨𝑢, 𝐸𝒢1𝐺𝑗 ⟩

= sup
𝑗
⟨𝑢,1𝐺𝑗 ⟩

= ⟨𝑢, 1⟩

= ∫ 𝑢 𝑑𝜇.

If 𝜇|𝒢 is not 𝜎-finite and if 𝑢 ⩾ 0, we perform a similar calculation with an exhausting sequence
𝐴𝑗 ∈ 𝒜 , 𝐴𝑗 ↑ 𝑋, 𝜇(𝐴𝑗) < ∞ (it is implicit that 𝜇|𝒜 is 𝜎-finite as otherwise the conditional
expectation would not be defined!):

∫ 𝐸𝒢 𝑢 𝑑𝜇 = sup
𝑗 ∫𝐴𝑗

𝐸𝒢 𝑢 𝑑𝜇

= sup
𝑗
⟨𝐸𝒢 𝑢,1𝐴𝑗 ⟩

= sup
𝑗
⟨𝑢, 𝐸𝒢1𝐴𝑗 ⟩

⩽ ⟨𝑢, 1⟩

= ∫ 𝑢 𝑑𝜇.

■■

Problem 27.13 Solution:

Proof of Corollary 27.14: Since

lim inf
𝑗→∞

𝑢𝑗 = sup
𝑘

inf
𝑗⩾𝑘

𝑢𝑗

we get

E𝒢 ( inf
𝑗⩾𝑘

𝑢𝑗
)

⩽ E𝒢 𝑢𝑚 ∀𝑚 ⩾ 𝑘

thus

E𝒢 ( inf
𝑗⩾𝑘

𝑢𝑗
)

⩽ inf
𝑚⩾𝑘

E𝒢 𝑢𝑚 ⩽ sup
𝑘

inf
𝑚⩾𝑘

E𝒢 𝑢𝑚 = lim inf
𝑚→∞

E𝒢 𝑢𝑚.

Since on the other hand the sequence inf 𝑗⩾𝑘 𝑢𝑗 increases, as 𝑘→ ∞, towards sup𝑘 inf 𝑗⩾𝑘 𝑢𝑗 we can
use the conditional Beppo Levi theorem 27.13 on the left-hand side and find

E𝒢 ( lim inf
𝑗→∞

𝑢𝑗
)

= E𝒢 ( sup
𝑘

inf
𝑗⩾𝑘

𝑢𝑗
)

= sup
𝑘
E𝒢 ( inf

𝑗⩾𝑘
𝑢𝑗
)

⩽ lim inf
𝑚→∞

E𝒢 𝑢𝑚.

The Corollary is proved.

Proof of Corollary 27.15: Since |𝑢𝑗| ⩽ 𝑤 we conclude that |𝑢| = lim𝑗 |𝑢𝑗| ⩽ 𝑤 and that 2𝑤 −
|𝑢 − 𝑢𝑗| ⩾ 0. Applying the conditional Fatou lemma 27.14 we find

E𝒢 (2𝑤) = E𝒢 ( lim inf
𝑗

2𝑤 − |𝑢 − 𝑢𝑗|
)
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⩽ lim inf
𝑗

E𝒢 (2𝑤 − |𝑢 − 𝑢𝑗|
)

= E𝒢 (2𝑤) − lim sup
𝑗

E𝒢 (|𝑢 − 𝑢𝑗|)

which shows that

lim sup
𝑗

E𝒢 (|𝑢 − 𝑢𝑗|) = 0 ⇐⇒ lim
𝑗
E𝒢 (|𝑢 − 𝑢𝑗|) = 0.

Since, however,
|

|

|

E𝒢 𝑢𝑗 − E𝒢 𝑢||
|

= |

|

|

E𝒢 (𝑢𝑗 − 𝑢)
|

|

|

⩽ E𝒢
|𝑢𝑗 − 𝑢| ←←←←←←←←←←←←←←←←←←←←→𝑗→∞

0

the claim follows.
■■

Problem 27.14 Solution: (i) ⇐⇒ (ii): Let 𝐴 ∈ 𝒜∞ be such that 𝜇(𝐴) < ∞. Then, by Hölder’s
inequality with 1∕𝑝 + 1∕𝑞 = 1,

|

|

|

|

∫𝐴
𝑢𝑗 𝑑𝜇 − ∫𝐴

𝑢 𝑑𝜇
|

|

|

|

⩽ ∫𝐴
|𝑢𝑗 − 𝑢| 𝑑𝜇 ⩽ ‖𝑢𝑗 − 𝑢‖𝑝 𝜇(𝐴)1∕𝑞 ←←←←←←←←←←←←←←←←←←←←→𝑗→∞

0.

Thus, if 𝑢∞ ∶= E𝒜∞𝑢, we find by the martingale property for all 𝑘 > 𝑗 and 𝐴 ∈ 𝒜𝑗 such that
𝜇(𝐴) <∞

∫𝐴
𝑢𝑗 𝑑𝜇 = ∫𝐴

𝑢𝑘 𝑑𝜇 = lim
𝑘→∞∫𝐴

𝑢𝑘 𝑑𝜇 = ∫𝐴
𝑢 𝑑𝜇 = ∫𝐴

𝑢∞ 𝑑𝜇,

and since we are in a 𝜎-finite setting, we can apply Theorem 27.12(i) and find that 𝑢𝑗 = E𝒜𝑗𝑢∞.

(ii) ⇐⇒ (iii): Assume first that 𝑢∞ ∈ 𝐿1 ∩𝐿𝑝. Then 𝑢𝑗 = E𝒜𝑗𝑢∞ ∈ 𝐿1 ∩𝐿𝑝 and Theorem 27.19(i)
shows that 𝑢𝑗 ←←←←←←←←←←←←←←←←←←←←→𝑗→∞

𝑢∞ both in 𝐿1 and a.e. In particular, we get

⟨𝑢∞ − 𝑢𝑗 , 𝜙⟩ ⩽ ‖𝑢∞ − 𝑢𝑗‖1‖𝜙‖∞ → 0 ∀𝜙 ∈ 𝐿∞.

In the general case where 𝑢∞ ∈ 𝐿𝑝(𝒜∞) we find for every 𝜖 > 0 an element 𝑢𝜖∞ ∈ 𝐿1(𝒜∞) ∩
𝐿𝑝(𝒜∞) such that

‖𝑢∞ − 𝑢𝜖∞‖𝑝 ⩽ 𝜖

(indeed, since we are working in a 𝜎-finite filtered measure space, there is an exhaustion 𝐴𝑘 ↑ 𝑋
such that 𝐴𝑘 ∈ 𝒜∞ and for large enough 𝑘 = 𝑘𝜖 the function 𝑢𝜖∞ ∶= 𝑢∞1𝐴𝑘 will to the job).
Similarly, we can approximate any fixed 𝜙 ∈ 𝐿𝑞 by 𝜙𝜖 ∈ 𝐿𝑞 ∩ 𝐿1 such that ‖𝜙 − 𝜙𝜖‖𝑞 ⩽ 𝜖.
Now we set 𝑢𝜖𝑗 ∶= E𝒜𝑗𝑢𝜖∞ and observe that

‖𝑢𝑗 − 𝑢𝜖𝑗‖𝑝 = ‖E𝒜𝑗𝑢∞ − E𝒜𝑗𝑢𝜖∞‖𝑝 ⩽ ‖𝑢∞ − 𝑢𝜖∞‖𝑝 ⩽ 𝜖.

Thus, for any 𝜙 ∈ 𝐿𝑞,

⟨𝑢𝑗 − 𝑢∞, 𝜙⟩
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= ⟨𝑢𝑗 − 𝑢𝜖𝑗 − 𝑢∞ + 𝑢𝜖∞, 𝜙⟩ + ⟨𝑢𝜖𝑗 − 𝑢
𝜖
∞, 𝜙⟩

= ⟨𝑢𝑗 − 𝑢𝜖𝑗 − 𝑢∞ + 𝑢𝜖∞, 𝜙⟩ + ⟨𝑢𝜖𝑗 − 𝑢
𝜖
∞, 𝜙 − 𝜙𝜖⟩ + ⟨𝑢𝜖𝑗 − 𝑢

𝜖
∞, 𝜙

𝜖
⟩

⩽
(

‖𝑢𝑗 − 𝑢𝜖𝑗‖𝑝 + ‖𝑢∞ − 𝑢𝜖∞‖𝑝
)

‖𝜙‖𝑞

+ ‖𝑢𝜖𝑗 − 𝑢
𝜖
∞‖𝑝‖𝜙 − 𝜙𝜖‖𝑞 + ⟨𝑢𝜖𝑗 − 𝑢

𝜖
∞, 𝜙

𝜖
⟩

⩽ 2𝜖 ‖𝜙‖𝑞 + 𝜖 ‖𝑢𝜖𝑗 − 𝑢
𝜖
∞‖𝑝

⏟⏞⏞⏞⏟⏞⏞⏞⏟
⩽2‖𝑢𝜖∞‖𝑝⩽2(𝜖+‖𝑢∞‖𝑝)

+ ⟨𝑢𝜖𝑗 − 𝑢
𝜖
∞, 𝜙

𝜖
⟩

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
←←←←←←←←←←←←←←←←←←←←→
𝑗→∞

0

⩽ const.𝜖

for sufficiently large 𝑗’s, and the claim follows.

(iii) ⇐⇒ (ii): Let 𝑢𝑛(𝑗) be a subsequence converging weakly to some 𝑢 ∈ 𝐿𝑝, i.e.,

lim
𝑘
⟨𝑢𝑛(𝑘) − 𝑢, 𝜙⟩ = 0 ∀𝜙 ∈ 𝐿𝑞.

Then, in particular,

lim
𝑘
⟨𝑢𝑛(𝑘) − 𝑢,E𝒜𝑛𝜙⟩ = 0 ∀𝜙 ∈ 𝐿𝑞, 𝑛 ∈ N

or

lim
𝑘
⟨E𝒜𝑛𝑢𝑛(𝑘) − E𝒜𝑛𝑢, 𝜙⟩ = 0 ∀𝜙 ∈ 𝐿𝑞, 𝑛 ∈ N.

Since 𝑢𝑗 is a martingale, we find that E𝒜𝑛𝑢𝑛(𝑘) if 𝑛 < 𝑛(𝑘), i.e.,

⟨𝑢𝑛 − E𝒜𝑛𝑢, 𝜙⟩ = 0 ∀𝜙 ∈ 𝐿𝑞, 𝑛 ∈ N.

and we conclude that 𝑢𝑛 = E𝒜𝑛𝑢. Because of the tower property we can always replace 𝑢 by
𝑢∞ ∶= E𝒜∞𝑢:

𝑢𝑛 = E𝒜𝑛𝑢 = E𝒜𝑛E𝒜∞𝑢 = E𝒜𝑛𝑢∞

and the claim follows.

(ii) ⇐⇒ (i): We show that we can take 𝑢 = 𝑢∞. First, if 𝑢∞ ∈ 𝐿1 ∩𝐿∞ we find by the closability of
martingales, Theorem 27.19(i), that

lim
𝑗
‖𝑢𝑗 − 𝑢‖1 = 0.

Moreover, using that |𝑎 − 𝑏|𝑟 ⩽ (|𝑎| + |𝑏|)𝑟 ⩽ 2𝑟(|𝑎|𝑟 + |𝑏|𝑟), we find

‖𝑢𝑗 − 𝑢‖𝑝𝑝 = ∫ |𝑢𝑗 − 𝑢|𝑝 𝑑𝜇

= ∫ |𝑢𝑗 − 𝑢| ⋅ |𝑢𝑗 − 𝑢|𝑝−1 𝑑𝜇

⩽ 2𝑝−1(‖𝑢𝑗‖𝑝−1∞ + ‖𝑢‖𝑝−1∞ )∫ |𝑢𝑗 − 𝑢| 𝑑𝜇

⩽ 2𝑝‖𝑢‖𝑝−1∞ ⋅ ‖𝑢𝑗 − 𝑢‖1
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←←←←←←←←←←←←←←←←←←←←→
𝑗→∞

0

where we use that
‖𝑢𝑗‖∞ = ‖E𝒜

𝑗 𝑢‖∞ ⩽ E𝒜
𝑗
(

‖𝑢‖∞
)

⩽ ‖𝑢‖∞.

Now for the general case where 𝑢∞ ∈ 𝐿𝑝. Since we are in a 𝜎-finite setting, we can set 𝑢𝜖 ∶=
(𝑢 ⋅1𝐴𝑗 ) ∧ 𝑗, 𝑗 = 𝑗(𝜖) sufficiently large and 𝐴𝑗 → 𝑋 an exhausting sequence of sets from 𝒜∞, and
can guarantee that

‖𝑢 − 𝑢𝜖‖𝑝 ⩽ 𝜖.

At the same time, we get for 𝑢𝜖𝑗 ∶= E𝒜𝑗𝑢𝜖 ∈ 𝐿1 ∩ 𝐿∞ that
‖𝑢𝑗 − 𝑢𝜖𝑗‖𝑝 = ‖E𝒜𝑗𝑢 − E𝒜𝑗𝑢𝜖‖𝑝 ⩽ ‖𝑢 − 𝑢𝜖‖𝑝 ⩽ 𝜖.

Thus, by the consideration for the special case where 𝑢𝜖 ∈ 𝐿1 ∩ 𝐿∞,
‖𝑢𝑗 − 𝑢‖𝑝 ⩽ ‖𝑢𝑗 − 𝑢𝜖𝑗‖𝑝 + ‖𝑢𝜖𝑗 − 𝑢

𝜖
‖𝑝 + ‖𝑢𝜖 − 𝑢‖𝑝

⩽ 𝜖 + ‖𝑢𝜖𝑗 − 𝑢
𝜖
‖𝑝 + 𝜖

←←←←←←←←←←←←←←←←←←←←→
𝑗→∞

2𝜖 ←←←←←←←←←←←←←←←←←→
𝜖→0

0.

■■

Problem 27.15 Solution: Obviously,
𝑚𝑘 = 𝑚𝑘−1 + (𝑢𝑘 − 𝐸𝒜𝑘−1𝑢𝑘).

Since𝑚1 = 𝑢1 ∈ 𝐿1𝒜1, this shows, by induction, that𝑚𝑘 ∈ 𝐿1(𝒜𝑘). Applying𝐸𝒜𝑘−1 to both sides
of the displayed equality yields

𝐸𝒜𝑘−1𝑚𝑘 = 𝐸𝒜𝑘−1𝑚𝑘−1 + 𝐸𝒜𝑘−1(𝑢𝑘 − 𝐸𝒜𝑘−1𝑢𝑘)

= 𝑚𝑘−1 + 𝐸𝒜𝑘−1𝑢𝑘 − 𝐸𝒜𝑘−1𝑢𝑘

= 𝑚𝑘−1

which shows that 𝑚𝑘 is indeed a martingale.
■■

Problem 27.16 Solution: Problem 27.15 shows that 𝑠𝑘 is a martingale, so that 𝑠2𝑘 is a sub-martingale
(use Jensen’s inequality for conditional expectations). Now

∫ 𝑠2𝑘 𝑑𝜇 =
∑

𝑗 ∫ 𝑢2𝑘 𝑑𝜇 + 2
∑

𝑗<𝑘
∫ 𝑢𝑗𝑢𝑘 𝑑𝜇

and if 𝑗 < 𝑘

∫ 𝑢𝑗𝑢𝑘 𝑑𝜇 = ∫ 𝐸𝒜𝑗 (𝑢𝑗𝑢𝑘) 𝑑𝜇 = ∫ 𝑢𝑗 𝐸
𝒜𝑗 (𝑢𝑘)

⏟⏟⏟
=0

𝑑𝜇 = 0.

■■
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Problem 27.17 Solution: Problem 27.15 shows that 𝑚𝑗 is a martingale.
Since 𝑎1 = 𝐸𝒜0𝑢1 − 𝑢0 = 𝐸{∅,𝑋}𝑢1 = ∫ 𝑢1 𝑑𝜇 is constant, i.e., 𝒜0-measurable, the recursion
formula

𝑎𝑗+1 = 𝑎𝑗 + 𝐸𝒜𝑗𝑢𝑗+1 − 𝑢𝑗

implies that 𝑎𝑗+1 is 𝒜𝑗-measurable.
Since 𝑢𝑗 is a submartingale, we get

𝐸𝒜𝑗𝑢𝑗+1 ⩾ 𝑢𝑗 ⇐⇒ 𝑎𝑗+1 − 𝑎𝑗 ⩾ 0

i.e., the sequence 𝑎𝑗 increases.
Finally, if 𝑚𝑗 + 𝑎𝑗 = 𝑢𝑗 = 𝑚̃𝑗 + 𝑎𝑗 are two such decompositions we find that 𝑚𝑗 − 𝑚̃𝑗 = 𝑎𝑗 − 𝑎𝑗 is
𝒜𝑗−1 measurable. Using the martingale property we find

𝑚𝑗 − 𝑚̃𝑗 = 𝐸𝒜𝑗−1(𝑚𝑗 − 𝑚̃𝑗)
Martingale

= 𝑚𝑗−1 − 𝑚̃𝑗−1

and applying this recursively for 𝑗 = 1, 2, 3,… yields

𝑚1 − 𝑚̃1 = 0, 𝑚2 − 𝑚̃2 = 0, 𝑚3 − 𝑚̃3 = 0,…

so that 𝑚𝑗 = 𝑚̃𝑗 and, consequently, 𝑎𝑗 = 𝑎𝑗 .
■■

Problem 27.18 Solution: Assume that 𝑀𝑘 = 𝐸𝒜𝑘𝑀 . Then we know from Theorem 27.19 that
𝑀 = lim𝑘𝑀𝑘 exists a.e. and in 𝐿1. Moreover, ∫ 𝑀𝑘 𝑑𝑃 = 1 so that 𝑀 cannot be trivial. On the
other hand,

𝑃 (𝑀 > 0) ⩽ 𝑃 (𝑀𝑘 > 0) = 𝑃 (𝑋𝑗 > 0 ∀𝑗 = 1, 2,… , 𝑘) = 2−𝑘 ←←←←←←←←←←←←←←←←←←←←→
𝑘→∞

0

which yields a contradiction.
■■

Problem 27.19 Solution: (Compare this problem with Problem 22.16.) Recall that in finite measure
spaces uniform integrability follows from (and is actually equivalent to)

lim
𝑅→∞

sup
𝑛 ∫{|𝑢𝑛|>𝑅}

|𝑢𝑛| 𝑑𝜇 = 0;

this is true since in a finite measure space the constant function 𝑤 ≡ 𝑅 is integrable.
Observe now that

∫{|𝑢𝑛|>𝑅}
|𝑢𝑛| 𝑑𝜇 ⩽ ∫{|𝑢𝑛|>𝑅}

𝐸𝒜𝑛𝑓 𝑑𝜇

= ∫{|𝑢𝑛|>𝑅}
𝑓 𝑑𝜇
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= ∫{|𝑢𝑛|>𝑅}∩{𝑓⩽𝑅∕2}
𝑓 𝑑𝜇 + ∫{|𝑢𝑛|>𝑅}∩{𝑓>𝑅∕2}

𝑓 𝑑𝜇

⩽ ∫{|𝑢𝑛|>𝑅}∩{𝑓⩽𝑅∕2}

1
2
|𝑢𝑛| 𝑑𝜇 + ∫{|𝑢𝑛|>𝑅}∩{𝑓>𝑅∕2}

𝑓 𝑑𝜇

⩽ ∫{|𝑢𝑛|>𝑅}

1
2
|𝑢𝑛| 𝑑𝜇 + ∫{𝑓>𝑅∕2}

𝑓 𝑑𝜇

This shows that
1
2 ∫{|𝑢𝑛|>𝑅}

|𝑢𝑛| 𝑑𝜇 ⩽ ∫{𝑓>𝑅∕2}
𝑓 𝑑𝜇

𝑅→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→uniformly for all 𝑛 0.

■■
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28 Orthonormal systems and their

convergence behaviour.

Solutions to Problems 28.1–28.11

Problem 28.1 Solution: Since 𝐽 (𝛼,𝛽)
𝑘 is a polynomial of degree 𝑘, it is enough to show that 𝐽 (𝛼,𝛽)

𝑘 is
orthogonal in 𝐿2(𝐼, 𝜌(𝑥) 𝑑𝑥) to any polynomial 𝑝(𝑥) of degree 𝑗 < 𝑘. We write 𝜕𝑘 for 𝑑𝑘

𝑑𝑥𝑘
and

𝑢(𝑥) = (𝑥 − 1)𝑘+𝛼(𝑥 + 1)𝑘+𝛽 . Then we get by repeatedly integrating by parts

∫

1

−1
𝐽 (𝛼,𝛽)
𝑘 (𝑥)𝑝(𝑥)(𝑥 − 1)𝛼(𝑥 + 1)𝛽 𝑑𝑥

= (−1)𝑘

𝑘! 2𝑘 ∫

1

−1
𝑝(𝑥)𝜕𝑘𝑢(𝑥) 𝑑𝑥

=
[

𝑝(𝑥) ⋅ 𝜕𝑘−1𝑢(𝑥) − 𝜕1𝑝(𝑥) ⋅ 𝜕𝑘−2𝑢(𝑥) +⋯ + (−1)𝑘−1𝜕𝑘−1𝑝(𝑥) ⋅ 𝑢(𝑥)
]1

−1

+ (−1)𝑘 ∫

1

−1
𝑢(𝑥)𝜕𝑘𝑝(𝑥) 𝑑𝑥.

Obviously, 𝜕𝓁𝑢(−1) = 𝜕𝓁𝑢(1) = 0 for all 0 ⩽ 𝓁 ⩽ 𝑘 − 1 and 𝜕𝑘𝑝 ≡ 0 since 𝑝 is a polynomial of
degree 𝑗 < 𝑘.

■■

Problem 28.2 Solution: It is pretty obvious how to go about this problem. The calculations them-
selves are quite tedious and therefore omitted.

■■

Problem 28.3 Solution: Theorem 28.6: The polynomials are dense in 𝐶[𝑎, 𝑏] with respect to uniform
convergence.

Proof 1: mimic the proof of 28.6 with the obvious changes;
Proof 2: Let 𝑓 ∈ 𝐶[𝑎, 𝑏]. Then 𝑓 (𝑦) ∶= 𝑓 (𝑎 + (𝑏 − 𝑎)𝑦), 𝑦 ∈ [0, 1] satisfies 𝑓 ∈ 𝐶[0, 1] and,
because of Theorem 28.6, there is a sequence of polynomials 𝑝𝑛 such that

lim
𝑛→∞

sup
𝑦∈[0,1]

|𝑓 (𝑦) − 𝑝𝑛(𝑦)| = 0.

Define 𝑝𝑛(𝑥) ∶= 𝑝𝑛
(𝑥−𝑎
𝑏−𝑎

)

, 𝑥 ∈ [𝑎, 𝑏]. Clearly 𝑝𝑛 is a polynomial and we have

sup
𝑥∈[𝑎,𝑏]

|𝑝𝑛(𝑥) − 𝑓 (𝑥)| = sup
𝑦∈[0,1]

|𝑝𝑛(𝑦) − 𝑓 (𝑦)|.
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Corollary 28.8: The monomials are complete in 𝐿1([𝑎, 𝑏], 𝑑𝑡).

Proof 1: mimic the proof of 28.8 with the obvious changes;
Proof 2: assume that for all 𝑗 ∈ N0 we have

∫

𝑏

𝑎
𝑢(𝑥)𝑥𝑗 𝑑𝑥 = 0.

Since

∫

1

0
𝑢((𝑏 − 𝑎)𝑡 + 𝑎)𝑡𝑗 𝑑𝑥 = ∫

𝑏

𝑎
𝑢(𝑥)

[

𝑥 − 𝑎
𝑏 − 𝑎

]𝑗

𝑑𝑥

=
𝑗
∑

𝑘=0
𝑐𝑘 ∫

𝑏

𝑎
𝑢(𝑥)𝑥𝑘 𝑑𝑥

= 0

we get from Corollary 28.8 that
𝑢((𝑏 − 𝑎)𝑡 + 𝑎) = 0 Lebesgue almost everywhere on [0, 1]

and since the map [0, 1] ∋ 𝑡 → 𝑥 = (𝑏 − 𝑎)𝑡 + 𝑎 ∈ [𝑎, 𝑏] is continuous, bijective and with a
continuous inverse, we also get

𝑢(𝑥) = 0 Lebesgue almost everywhere on [𝑎, 𝑏].

■■

Problem 28.4 Solution: Observe that
Re

(

𝑒𝑖(𝑥−𝑦) − 𝑒𝑖(𝑥+𝑦)
)

= Re
[

𝑒𝑖𝑥
(

𝑒−𝑖𝑦 − 𝑒𝑖𝑦
)]

= Re
[

− 2𝑖𝑒𝑖𝑥 sin 𝑦
]

= 2 sin 𝑥 sin 𝑦,

and that
Re

(

𝑒𝑖(𝑥+𝑦) + 𝑒𝑖(𝑥−𝑦)
)

= Re
[

𝑒𝑖𝑥
(

𝑒𝑖𝑦 + 𝑒−𝑖𝑦
)]

= Re
[

2𝑒𝑖𝑥 cos 𝑦
]

= 2 cos 𝑥 cos 𝑦.

Moreover, we see that for 𝑁 ∈ N0

∫

𝜋

−𝜋
𝑒𝑖𝑁𝑥 𝑑𝑥 =

⎧

⎪

⎨

⎪

⎩

𝑒𝑖𝑁𝑥

𝑖𝑁
|

|

|

𝜋

−𝜋
= 0, if 𝑁 ≠ 0;

2𝜋, if 𝑁 = 0.

Thus, if 𝑘 ≠ 𝓁

∫

𝜋

−𝜋
2 cos 𝑘𝑥 cos𝓁𝑥 𝑑𝑥 = Re

(

∫

𝜋

−𝜋
𝑒𝑖(𝑘+𝓁)𝑥 𝑑𝑥 + ∫

𝜋

−𝜋
𝑒𝑖(𝑘+𝓁)𝑥 𝑑𝑥

)

= 0
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and if 𝑘 = 𝓁 ⩾ 1

∫

𝜋

−𝜋
2 cos 𝑘𝑥 cos 𝑘𝑥 𝑑𝑥 = Re

(

∫

𝜋

−𝜋
𝑒2𝑖𝑘𝑥 𝑑𝑥 + ∫

𝜋

−𝜋
1 𝑑𝑥

)

= 2𝜋

and if 𝑘 = 𝓁 = 0,

∫

𝜋

−𝜋
2 cos 𝑘𝑥 cos 𝑘𝑥 𝑑𝑥 = ∫ 2 𝑑𝑥 = 4𝜋.

The proof for the pure sines integral is similar while for the mixed sine-cosine integrals the integ-
rand

𝑥 → cos 𝑘𝑥 sin𝓁𝑥

is always an odd function, the integral over the symmetric (w.r.t. the origin) interval (−𝜋, 𝜋) is
always zero.

■■

Problem 28.5 Solution:

(i) We have

2𝑘 cos𝑘(𝑥) = 2𝑘
(𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2

)𝑘

=
(𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2

)𝑘

=
𝑘
∑

𝑗=0

(

𝑘
𝑗

)

𝑒𝑖𝑗𝑥𝑒−𝑖(𝑘−𝑗)𝑥

=
𝑘
∑

𝑗=0

(

𝑘
𝑗

)

𝑒𝑖(2𝑗−𝑘)𝑥

Adding the first and last terms, second and penultimate terms, term no. 𝑗 and 𝑘−𝑗, etc. under
the sum gives, since the binomial coefficients satisfy (𝑘

𝑗

)

=
( 𝑘
𝑘−𝑗

),
– if 𝑘 = 2𝑛 is even

22𝑛 cos2𝑛(𝑥) =
𝑛−1
∑

𝑗=0

(

2𝑛
𝑗

)

(𝑒𝑖(2𝑗−2𝑛)𝑥 + 𝑒𝑖(2𝑛−2𝑗)𝑥) +
(

2𝑛
𝑛

)

=
𝑛
∑

𝑗=0

(

2𝑛
𝑗

)

2 cos(2𝑗 − 2𝑛) +
(

2𝑛
𝑛

)

– if 𝑘 = 2𝑛 − 1 is odd

22𝑛−1 cos2𝑛−1(𝑥) =
𝑛−1
∑

𝑗=0

(

2𝑛 − 1
𝑗

)

(𝑒𝑖(2𝑗−2𝑛+1)𝑥 + 𝑒𝑖(2𝑛−2𝑗−1)𝑥)

=
𝑛−1
∑

𝑗=0

(

2𝑛 − 1
𝑗

)

2 cos(2𝑛 − 2𝑗 − 1)𝑥.
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In a similar way we compute sin𝑘 𝑥:

2𝑘 sin𝑘(𝑥) = 2𝑘
(𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖

)𝑘

= 𝑖−𝑘
(𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2

)𝑘

= 𝑖−𝑘
𝑘
∑

𝑗=0

(

𝑘
𝑗

)

(−1)𝑘−𝑗𝑒𝑖𝑗𝑥𝑒−𝑖(𝑘−𝑗)𝑥

= 𝑖−𝑘
𝑘
∑

𝑗=0

(

𝑘
𝑗

)

(−1)𝑘−𝑗𝑒𝑖(2𝑗−𝑘)𝑥.

Adding the first and last terms, second and penultimate terms, term no. 𝑗 and 𝑘−𝑗, etc. under
the sum gives, since the binomial coefficients satisfy (𝑘

𝑗

)

=
( 𝑘
𝑘−𝑗

),
– if 𝑘 = 2𝑛 is even

22𝑛 sin2𝑛(𝑥)

= (−1)𝑛
𝑛−1
∑

𝑗=0

(

2𝑛
𝑗

)

(

(−1)2𝑛−𝑗𝑒𝑖(2𝑗−2𝑛)𝑥 + (−1)𝑗𝑒𝑖(2𝑛−2𝑗)
)

+
(

2𝑛
𝑛

)

=
𝑛−1
∑

𝑗=0

(

2𝑛
𝑗

)

(−1)𝑛−𝑗
(

𝑒𝑖(2𝑗−2𝑛)𝑥 + 𝑒𝑖(2𝑛−2𝑗)
)

+
(

2𝑛
𝑛

)

=
𝑛−1
∑

𝑗=0

(

2𝑛
𝑗

)

(−1)𝑛−𝑗2 cos(2𝑛 − 2𝑗)𝑥 +
(

2𝑛
𝑛

)

– if 𝑘 = 2𝑛 − 1 is odd
22𝑛−1 sin2𝑛−1(𝑥)

= 𝑖(−1)𝑛
𝑛−1
∑

𝑗=0

(

2𝑛 − 1
𝑗

)

(

(−1)2𝑛−1−𝑗𝑒𝑖(2𝑗−2𝑛+1)𝑥 + (−1)−𝑗𝑒𝑖(2𝑛−2𝑗−1)
)

= 𝑖
𝑛−1
∑

𝑗=0

(

2𝑛 − 1
𝑗

)

(−1)𝑛−𝑗
(

− 𝑒𝑖(2𝑗−2𝑛+1)𝑥 + 𝑒𝑖(2𝑛−2𝑗−1)
)

= 𝑖
𝑛−1
∑

𝑗=0

(

2𝑛 − 1
𝑗

)

(−1)𝑛−𝑗2𝑖 sin(2𝑛 − 2𝑗 + 1)𝑥

=
𝑛−1
∑

𝑗=0

(

2𝑛 − 1
𝑗

)

(−1)𝑛−𝑗−12 sin(2𝑛 − 2𝑗 + 1)𝑥.

(ii) We have

cos 𝑘𝑥 + 𝑖 sin 𝑘𝑥 = 𝑒𝑖𝑘𝑥 =
(

𝑒𝑖𝑥
)𝑘 =

(

cos 𝑥 + 𝑖 sin 𝑥
)𝑘

and we find, using the binomial formula,

cos 𝑘𝑥 + 𝑖 sin 𝑘𝑥 =
𝑘
∑

𝑗=0

(

𝑘
𝑗

)

cos𝑗 𝑥 ⋅ 𝑖𝑘−𝑗 sin𝑘−𝑗 𝑥

and the claim follows by separating real and imaginary parts.
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(iii) Since a trigonometric polynomial is of the form

𝑇𝑛(𝑥) = 𝑎0 +
𝑛
∑

𝑘=1

(

𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥
)

it is a matter of double summation and part (ii) to see that 𝑇𝑛(𝑥) can be written like 𝑈𝑛(𝑥).
Conversely, part (i) enables us to rewrite any expression of the form 𝑈𝑛(𝑥) as 𝑇𝑛(𝑥).

■■

Problem 28.6 Solution: By definition,

𝐷𝑁 (𝑥) =
1
2
+

𝑁
∑

𝑗=1
cos 𝑗𝑥.

Multiplying both sides by sin 𝑥
2 and using the formula

cos 𝑎𝑥 sin 𝑏𝑥 = 1
2

(

sin (𝑎 + 𝑏)𝑥
2

− sin (𝑎 − 𝑏)𝑥
2

)

where 𝑗 = (𝑎 + 𝑏)∕2 and 1∕2 = (𝑎 − 𝑏)∕2, i.e. 𝑎 = (2𝑗 + 1)∕2 and 𝑏 = (2𝑗 − 1)∕2 we arrive at

𝐷𝑁 (𝑥) sin
𝑥
2 = 1

2 sin
𝑥
2 +

1
2

𝑁
∑

𝑗=1

(

sin (2𝑗+1)𝑥
2 − sin (2𝑗−1)𝑥

2

)

= sin (2𝑁+1)𝑥
2 .

■■

Problem 28.7 Solution: We have

| sin 𝑥 | = 2
𝜋
− 4
𝜋

(

cos 2𝑥
1 ⋅ 3

+ cos 4𝑥
3 ⋅ 5

+ cos 6𝑥
5 ⋅ 7

+⋯
)

.

Indeed, let us calculate the Fourier coefficients 28.8. First,

𝑏𝑘 =
1
𝜋 ∫

𝜋

−𝜋
| sin 𝑥| sin 𝑘𝑥 𝑑𝑥 = 0, 𝑘 ∈ N,

since the integrand is an odd function. So no sines appear in the Fourier series expansion. Further,
using the symmetry properties of the sine function

𝑎0∕2 = 1
2𝜋 ∫

𝜋

−𝜋
| sin 𝑥| 𝑑𝑥

= 1
𝜋 ∫

𝜋

0
| sin 𝑥| 𝑑𝑥

= 1
𝜋
(− cos 𝑥)||

|

𝜋

0

= 2
𝜋

and using the elementary formula 2 sin 𝑎 cos 𝑏 = sin(𝑎 − 𝑏) + sin(𝑎 + 𝑏) we get

𝑎𝑗 =
1
𝜋 ∫

𝜋

−𝜋
| sin 𝑥| cos 𝑗𝑥 𝑑𝑥
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= 2
𝜋 ∫

𝜋

0
sin 𝑥 cos 𝑗𝑥 𝑑𝑥

= 2
𝜋 ∫

𝜋

0

1
2
(

sin((𝑗 + 1)𝑥) − sin((𝑗 − 1)𝑥)
)

𝑑𝑥

= 1
𝜋

[

cos((𝑗 − 1)𝑥)
𝑗 − 1

− cos((𝑗 + 1)𝑥)
𝑗 + 1

]𝜋

0

= 1
𝜋

[

cos((𝑗 − 1)𝜋)
𝑗 − 1

− cos((𝑗 + 1)𝜋)
𝑗 + 1

− 1
𝑗 − 1

+ 1
𝑗 + 1

]

.

If 𝑗 is odd, we get 𝑎𝑗 = 0 and if 𝑗 is even, we have

𝑎𝑗 =
1
𝜋

[

−1
𝑗 − 1

− −1
𝑗 + 1

− 1
𝑗 − 1

+ 1
𝑗 + 1

]

= −4
𝜋

1
(𝑗 − 1)(𝑗 + 1)

.

This shows that we have only evenly indexed cosines in the Fourier series.
■■

Problem 28.8 Solution: This is not as trivial as it looks in the first place! Since 𝑢 is itself a Haar
function, we have

𝑠𝑁 (𝑢, 𝑥) = 𝑢(𝑥) ∀𝑁 ∈ N

(it is actually the first Haar function) so that 𝑠𝑁 converges in any 𝐿𝑝-norm, 1 ⩽ 𝑝 <∞ to 𝑢.
The same applies to the right tail of the Haar wavelet expansion. The left tail, however, converges
only for 1 < 𝑝 < ∞ in 𝐿𝑝. The reason is the calculation of Step 5 in the proof of Theorem 28.20
which goes in the case 𝑝 = 1:

E𝒜Δ
−𝑀𝑢 = 2−𝑀 ∫[−2𝑀 ,0)

𝑢(𝑥) 𝑑𝑥1[−2𝑀 ,0) + 2−𝑀 ∫[0,2𝑀 )
𝑢(𝑥) 𝑑𝑥1[0,2𝑀 )

= 2−𝑀1[0,2𝑀 ),

but this is not 𝐿1-convergent to 0 as it would be required. For 𝑝 > 1 all is fine, though....
■■

Problem 28.9 Solution: Assume that 𝑢 is uniformly continuous (𝐶𝑐 and 𝐶∞-functions are!). Since

𝑠𝑛(𝑢; 𝑥) = E𝒜𝐻
𝑛 𝑢(𝑥)

is the projection onto the sets in 𝒜𝐻
𝑛 , see e.g. Step 2 in the proof of Theorem 28.17, we have

𝑠𝑛(𝑢; 𝑥) =
1
𝜆(𝐼) ∫𝐼

𝑢(𝑦) 𝑑𝑥1𝐼 (𝑥)

where 𝐼 is an dyadic interval from the generator of 𝒜𝐻
𝑛 as in Step 2 of the proof of Theorem 28.17.

Thus, if 𝑥 is from 𝐼 we get

|𝑠𝑛(𝑢; 𝑥) − 𝑢(𝑥)| =
|

|

|

|

1
𝜆(𝐼) ∫𝐼

(𝑢(𝑦) − 𝑢(𝑥)) 𝑑𝑥
|

|

|

|

⩽ 1
𝜆(𝐼) ∫𝐼

|𝑢(𝑦) − 𝑢(𝑥)| 𝑑𝑥
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⩽ 1
𝜆(𝐼) ∫𝐼

𝜖 𝑑𝑥

= 𝜖

if 𝜆(𝐼) < 𝛿 for small enough 𝛿 > 0. This follows from uniform continuity: for given 𝜖 > 0 there
is some 𝛿 > 0 such that for 𝑥, 𝑦 ∈ 𝐼 (this entails |𝑥 − 𝑦| ⩽ 𝛿!) we have |𝑢(𝑥) − 𝑢(𝑦)| ⩽ 𝜖.
The above calculation holds uniformly for all 𝑥 and we are done.

■■

Problem 28.10 Solution: The calculation for the right tail is more or less the same as in Problem
28.9. Only the left tail differs. Here we argue as in Step 5 of the proof of Theorem 28.20: if
𝑢 ∈ 𝐶𝑐(R) we can assume that supp 𝑢 ⊂ [−𝑅,𝑅] and we see

E𝒜Δ
−𝑀𝑢(𝑥) = 2−𝑀 ∫[−𝑅,0]

𝑢(𝑥) 𝑑𝑥1[−2𝑀 ,0) + 2−𝑀 ∫[0,𝑅]
𝑢(𝑥) 𝑑𝑥1[0,2𝑀 )

⩽ 2−𝑀𝑅 ‖𝑢‖∞1[−2𝑀 ,0) + 2−𝑀𝑅 ‖𝑢‖∞1[0,2𝑀 )

= 2−𝑀𝑅 ‖𝑢‖∞1[−2𝑀 ,2𝑀 )

⩽ 2−𝑀𝑅 ‖𝑢‖∞
𝑀→∞

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→uniformly for all 𝑥 0

If 𝑢 ∈ 𝐶∞ we can use the fact that 𝐶𝑐 is dense in 𝐶∞, i.e. we can find for every 𝜖 > 0 functions
𝑣 = 𝑣𝜖 ∈ 𝐶𝑐 and 𝑤 = 𝑤𝜖 ∈ 𝐶∞ such that

𝑢 = 𝑣 +𝑤 and ‖𝑤‖∞ ⩽ 𝜖.

Then
|

|

|

E𝒜Δ
−𝑀𝑢(𝑥)||

|

⩽ |

|

|

E𝒜Δ
−𝑀𝑣(𝑥)||

|

+ |

|

|

E𝒜Δ
−𝑀𝑤(𝑥)||

|

⩽ |

|

|

E𝒜Δ
−𝑀𝑣(𝑥)||

|

+ E𝒜Δ
−𝑀

‖𝑤‖∞

⩽ |

|

|

E𝒜Δ
−𝑀𝑣(𝑥)||

|

+ 𝜖

and, by the first calculation for 𝐶𝑐-functions, the right-hand side converges, since 𝑣 ∈ 𝐶𝑐 , to 0 + 𝜖
uniformly for all 𝑥, and letting 𝜖 → 0 we conclude the proof.

■■

Problem 28.11 Solution: See the picture at the end of this solution. Since the function 𝑢(𝑥) ∶=
1[0,1∕3)(𝑥) is piecewise constant, and since for each Haar function ∫ 𝜒𝑘,𝑗 𝑑𝑥 = 0 unless 𝑗 = 𝑘 = 1,
we see that only a single Haar function contributes to the value of 𝑠𝑁 (𝑢; 13 ), namely where 1

3 ∈
supp𝜒𝑛,𝑗 .
The idea of the proof is now pretty clear: take values 𝑁 where 𝑥 = 1

3 is in the left ‘half’ of 𝜒𝑁,𝑘,
i.e. where 𝜒𝑁,𝑘(13 ) = 1 and values 𝑀 such that 𝑥 = 1

3 is in the opposite, negative ‘half’ of 𝜒𝑀,𝓁,
i.e. where 𝜒𝑀,𝓁(

1
3 ) = −1. Of course, 𝑘,𝓁 depend on 𝑥,𝑁 and 𝑀 respectively. One should expect

that the partial sums for these different positions lead to different limits, hence different upper and
lower limits.

343



R.L. Schilling: Measures, Integrals & Martingales

The problem is to pick 𝑁’s and 𝑀’s. We begin with the simple observation that the dyadic (i.e.
base-2) representation of 1∕3 is the periodic, infinite dyadic fraction

1
3
= 0.01010101⋯ =

∞
∑

𝑘=1

1
22𝑘

and that the finite fractions

𝑑𝑛 ∶= 0. 0101⋯ 01
⏟⏞⏞⏞⏟⏞⏞⏞⏟

2𝑛

=
𝑛
∑

𝑘=1

1
22𝑘

approximate 1∕3 from the left in such a way that
1
3
− 𝑑𝑛 =

∞
∑

𝑘=𝑛+1

1
22𝑘

<
∞
∑

𝓁=2𝑛+2

1
2𝓁

= 1
22𝑛+2

1
1 − 1

2

= 1
22𝑛+1

Now consider those Haar functions whose support consists of intervals of the length 2−2𝑛, i.e.
the 𝜒2𝑛,𝑗’s and agree that 𝑗 = 𝑗(1∕3, 𝑛) is the one value where 1

3 ∈ supp𝜒2𝑛,𝑗 . By construction
supp𝜒2𝑛,𝑗 = [𝑑𝑛, 𝑑𝑛 + 1∕22𝑛] and we get for the Haar-Fourier partial sum

𝑠2𝑛(𝑢,
1
3 ) −

1
3
= ∫

1∕3

𝑑𝑛
2𝑛𝑑𝑥 ⋅ 𝜒2𝑛,𝑗(

1
3 )

= 22𝑛
(1
3 − 𝑑𝑛

)

= 4𝑛
∞
∑

𝑘=𝑛+1

1
22𝑘

= 4𝑛
∞
∑

𝑘=𝑛+1

1
4𝑘

= 4𝑛4−𝑛−1 1
1 − 1

4

= 1
3
.

The shift by−1∕3 comes from the starting ‘atypical’ Haar function𝜒0,0 since ⟨𝑢, 𝜒0,0⟩ = ∫ 1∕3
0 𝑑𝑥 =

1
3 .
Using the next smaller Haar functions with support of length 2−2𝑛−1, i.e. the 𝜒2𝑛+1,𝑘’s, we see that
with 𝑗 as above 𝜒2𝑛+1,2𝑗−1(13 ) = −1 (since twice as many Haar functions appear in the run-up to
𝑑𝑛) and that

𝑠2𝑛+1(𝑢,
1
3 ) −

1
3

=
[

∫

𝑑𝑛+1∕22𝑛+2

𝑑𝑛
2𝑛+1𝑑𝑥 − ∫

1∕3

𝑑𝑛+1∕22𝑛+2
2𝑛+1𝑑𝑥

]

⋅ 𝜒2𝑛+1,2𝑗−1(
1
3 )

=
[

𝑑𝑛 +
1

22𝑛+2
− 𝑑𝑛 −

1
3
+ 𝑑𝑛 +

1
22𝑛+2

]

2𝑛+1 ⋅ (−2𝑛+1)

=
[

𝑑𝑛 −
1
3
+ 2

22𝑛+2

]

⋅ (−22𝑛+2)
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= 4 ⋅ 22𝑛
(1
3
− 𝑑𝑛

)

− 2

= 4 ⋅ 1
3
− 2 (using the result above)

= −2
3

This shows that

𝑠2𝑛(𝑢;
1
3 ) =

2
3
> −1

3
= 𝑠2𝑛+1(𝑢,

1
3 )

and the claim follows since because of the above inequality,

lim inf
𝑁

𝑠𝑁 (𝑢;
1
3 ) ⩽ −1

3
⩽ 2

3
⩽ lim sup

𝑁
𝑠𝑁 (𝑢;

1
3 ).

■■
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✻

✲

dn dn +
1

22n+1
dn +

1
22n

2
2n
2

2
2n+1
2

dn+1
1
3

�2n,j and �2n+1,2j−1
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