Contents

	Prefa	ice pa	ge xxiii
	User	's Guide	XXV
	List o	of Topics and Phenomena	xxviii
1	A Pa	norama of Lebesgue Integration	1
	1.1	Modern Integration. 'Also zuerst: Was hat man unter	
		$\int_a^b f(x) dx$ zu verstehen?'	1
	1.2	The Idea Behind Lebesgue Integration	4
	1.3	Lebesgue Essentials – Measures and σ -Algebras	6
	1.4	Lebesgue Essentials – Integrals and Measurable Functions	10
	1.5	Spaces of Integrable Functions	13
	1.6	Convergence Theorems	17
	1.7	Product Measure, Fubini and Tonelli	21
	1.8	Transformation Theorems	24
	1.9	Extension of Set Functions and Measures	27
	1.10	Signed Measures and Radon–Nikodým	29
	1.11	A Historical Aperçu From the Beginnings Until 1854	31
	1.12	Appendix: H. Lebesgue's Seminal Paper	33
2	A Re	efresher of Topology and Ordinal Numbers	36
	2.1	A Modicum of Point-Set Topology	36
	2.2	The Axiom of Choice and Its Relatives	41
	2.3	Cardinal and Ordinal Numbers	43
	2.4	The Ordinal Space	46
	2.5	The Cantor Set: A Nowhere Dense, Perfect Set	47
	2.6	The Cantor Function and Its Inverse	49
3	Rien	nann Is Not Enough	55
	3.1	The Riemann-Darboux upper integral is not additive	57

vi Contents

	3.2	Why one should define Riemann integrals on bounded	
		intervals	58
	3.3	There are no unbounded Riemann integrable functions	58
	3.4	A function which is not Riemann integrable	59
	3.5	Yet another function which is not Riemann integrable	59
	3.6	A non-Riemann integrable function where a sequence of	
		Riemann sums is convergent	60
	3.7	A Riemann integrable function without a primitive	61
	3.8	A Riemann integrable function whose discontinuity	
		points are dense	62
	3.9	Semicontinuity does not imply Riemann integrability	63
	3.10		
		is not Riemann integrable	64
	3.11	A Lipschitz continuous function g and a Riemann integ-	
		rable function f such that $f \circ g$ is not Riemann integrable	65
	3.12	The composition of Riemann integrable functions need	
		not be Riemann integrable	65
	3.13	An increasing sequence of Riemann integrable functions	
		$0 \le f_n \le 1$ such that $\sup_n f_n$ is not Riemann integrable	65
	3.14	• • • • • • • • • • • • • • • • • • • •	
		$0 \le f_n \le 1$ such that $\inf_n f_n$ is not Riemann integrable	65
	3.15		66
	3.16	The space of Riemann integrable functions is not complete	67
	3.17	An example where integration by substitution goes wrong	68
	3.18	A Riemann integrable function which is not Borel meas-	
		urable	68
	3.19	A non-Riemann integrable function f which coincides	
		a.e. with a continuous function	69
	3.20	A Riemann integrable function on \mathbb{R}^2 whose iterated	
		integrals are not Riemann integrable	69
	3.21	Upper and lower integrals do not work for the Riemann-	
		Stieltjes integral	71
	3.22	The Riemann-Stieltjes integral does not exist if integrand	
		and integrator have a common discontinuity	72
4	Fam	ilies of Sets	73
	4.1	A Dynkin system which is not a σ -algebra	76
	4.2	A monotone class which is not a σ -algebra	77
	4.3	A σ -algebra which contains all singletons but no non-	
		trivial interval	77

		Contents	vii
	4.4	There is no σ -algebra with $\# \mathscr{A} = \# \mathbb{N}$	78
	4.5	A σ -algebra which has no non-empty atoms	78
	4.6	An increasing family of σ -algebras whose union fails to be	
		a σ -algebra	79
	4.7	The union of countably many strictly increasing	
		σ -algebras is never a σ -algebra	80
	4.8	A countably generated σ -algebra containing a	
		sub- σ -algebra which is not countably generated	81
	4.9	Two countably generated σ -algebras whose intersection is	
		not countably generated	82
	4.10	A Borel σ -algebra which is not countably generated	83
	4.11	$\sigma(\mathcal{G})$ can only separate points if \mathcal{G} does	84
	4.12	•	
		subset of \mathbb{R} but $\sigma(\mathcal{G}) \subsetneq \mathcal{B}(\mathbb{R})$	84
	4.13	Intersection and the σ -operation do not commute:	
		$\sigma\left(\bigcap_{n\in\mathbb{N}}\mathscr{G}_n\right)\subsetneq\bigcap_{n\in\mathbb{N}}\sigma\left(\mathscr{G}_n\right)$	84
	4.14	A metric space such that the σ -algebra generated by the	
		open balls is smaller than the Borel σ -algebra	85
	4.15		
		than the Borel σ -algebra (compact sets need not be Borel	
		sets)	85
	4.16	The σ -algebra generated by the compact sets can be	
		smaller than the Borel σ -algebra	86
	4.17	1 65 5 1 5	
		uncountably many elements	87
	4.18	A metrizable and a non-metrizable topology having the	
		same Borel sets	87
	4.19		89
	4.20	· ·	
		Lebesgue sets	91
	4.21		91
	4.22	The Borel sets can be constructed by transfinite induction	95
	4.23	(Non-)equivalent characterizations of the Baire σ -algebra	96
	4.24	The Baire σ -algebra can be strictly smaller than the Borel	
		σ -algebra	98
5	Set F	unctions and Measures	100
	5.1	A class of measures where the $\mu(\emptyset) = 0$ is not needed in	
		the definition	102
	5.2	A set function which is additive but not σ -additive	102

viii Contents

	5.3	A finite set function which is additive but not σ -additive	103
	5.4	Another finite set function which is additive but not	
		σ-additive	104
	5.5	A set function with infinitely many extensions	105
	5.6	A measure that cannot be further extended	105
	5.7	A measure defined on the open balls which cannot be	
		extended to the Borel sets	106
	5.8	A signed pre-measure on an algebra $\mathcal R$ which cannot be	
		extended to a signed measure on $\sigma(\mathcal{R})$	106
	5.9	A measure defined on a non-measurable set	107
	5.10		108
	5.11	A σ -finite measure which is not σ -finite on a smaller	
		σ -algebra	108
	5.12	, , , , , , , , , , , , , , , , , , , ,	
		every non-trivial interval	108
	5.13	A σ-finite measure μ on $\mathcal{B}(\mathbb{R})$ which is not a Lebesgue–	
		Stieltjes measure	108
	5.14	Infinite sums of finite measures need not be σ -finite	109
	5.15	The image measure of a σ -finite measure is not necessarily	
		σ -finite	109
	5.16	A locally finite measure need not be σ -finite	109
	5.17	Two measures on $\sigma(\mathcal{G})$ such that $\mu _{\mathcal{G}} \leqslant \nu _{\mathcal{G}}$ but $\mu \leqslant \nu$ fails	110
	5.18	Two measures on $\sigma(\mathcal{G})$ such that $\mu _{\mathcal{G}} = \nu _{\mathcal{G}}$ but $\mu \neq \nu$	110
	5.19	Two measures $\mu \neq \nu$ such that $\int p d\mu = \int p d\nu$ for all	
		polynomials	111
	5.20	Two finite measures $\mu \neq \nu$ whose Fourier transforms	
		coincide on an interval containing zero	113
	5.21	(Non)Equivalent definitions of the convolution of measures	114
	5.22	The convolution of σ -finite measures need not be σ -finite	115
	5.23	$\mu * \nu = \mu$ does not imply $\nu = \delta_0$	116
	5.24	The push forward 'disaster' (image measures behaving	
		badly)	117
	5.25	The pull-back of a measure need not be a measure	118
	5.26	•	119
		A translation-invariant Borel measure which is not a	
		multiple of Lebesgue measure	120
	5.28	There is no Lebesgue measure in infinite dimension	121
6	Ran	ge and Support of a Measure	123
	6.1	A measure where supp $\mu \neq \bigcap \{B; \ \mu(B^c) = 0\}$	124

ix

6.2	A measure which has no minimal closed support	124
6.3	Measures may have very small support	125
6.4	A measure μ such that the support of $\mu _{\text{supp }\mu}$ is strictly	
	smaller than supp μ	125
6.5	A measure with supp $\mu = \{c\}$ but $\mu \neq \delta_c$	126
6.6	Measures such that supp $\mu + \text{supp } \nu \subsetneq \text{supp } \mu * \nu$	126
6.7	Measures such that supp $\mu * \nu \subsetneq \overline{\text{supp } \mu + \text{supp } \nu}$	127
6.8	A signed measure such that supp $\mu^+ = \text{supp } \mu^-$	128
6.9	A two-valued measure which is not a point mass	128
6.10	A two-valued measure on a countably generated σ -algebra	
	must be a point mass	129
6.11	(Non-)equivalent characterizations of atoms of a measure	130
6.12	A purely atomic measure such that $\mu \neq \sum_{x} \mu(\{x\}) \delta_{x}$	131
6.13	A measure such that every set with positive measure is an	
	atom	131
6.14	An infinite sum of atomic measures which is non-atomic	131
6.15	Any non-atomic finite σ -additive measure defined on	
	$\mathcal{P}(\mathbb{R})$ is identically zero	132
6.16	A measure on a discrete space which attains all values in	
	$[0,\infty]$	133
6.17	A measure whose range is not a closed set	133
6.18	A measure with countable range	134
6.19	A vector measure which is non-atomic but whose range is	
	not convex	134
6.20	A non-trivial measure which assigns measure zero to all	
	open balls	135
6.21	A signed measure $\mu: \mathcal{A} \to (-\infty, \infty]$ is uniformly	
	bounded below	136
Meas	surable and Non-Measurable Sets	138
7.1	A dense open set in $(0,1)$ with arbitrarily small Lebesgue	
	measure	139
7.2	A set of positive Lebesgue measure which does not contain	
	any interval	140
7.3	A Cantor-like set with arbitrary measure	140
7.4	An uncountable set of zero measure	141
7.5	A Lebesgue null set $A \subseteq \mathbb{R}$ such that for every $\delta \in [0,1]$	
	there exist $x, y \in A$ with $\delta = x - y $	141
7.6	A dense open set whose complement has positive measure	144

x Contents

	7.7	A compact set whose boundary has positive Lebesgue	
		measure	144
	7.8	A set of first category in $[0,1]$ with measure one	144
	7.9	A set of second category with measure zero	145
	7.10	An uncountable, dense set of measure zero such that the	
		complement is of first category	145
	7.11	A null set which is not an F_{σ} -set	145
	7.12	A Borel set which is neither F_{σ} nor G_{δ}	146
	7.13	Each Borel set is the union of a null set and a set of first category	147
	7.14		147
	7.15	A Borel set $B \subseteq \mathbb{R}$ such that $\lambda(B \cap I) > 0$ and $\lambda(B^c \cap I) > 0$ for all open intervals $I \neq \emptyset$	148
	7.16	There is no Borel set B with $\lambda(B \cap I) = \frac{1}{2}\lambda(I)$ for all intervals I	148
	7.17	<u> </u>	
		compact set K	149
	7.18		149
		A Souslin set which is not Borel	150
	7.20		153
	7.21		153
		A non-Lebesgue measurable set	153
	7.23	_	
		Borel measurable	155
	7.24	The image of a Borel set under a continuous mapping	
		need not be Borel	155
	7.25	The image of a Lebesgue set under a continuous mapping	
		need not be Lebesgue measurable	157
	7.26	The Minkowski sum $A + B$ of two Borel sets is not	
		necessarily Borel	158
	7.27	A Lebesgue null set <i>B</i> such that $B + B = \mathbb{R}$	158
	7.28		159
	7.29	The sum of scaled Cantor sets is sometimes an interval	161
	7.30	The difference of fat Cantor sets is exactly $[-1, 1]$	161
	7.31	The Banach–Tarski paradox	162
8	Meas	surable Maps and Functions	164
-	8.1	A measurable space where every map is measurable	165
	8.2	A measurable space where only constant functions are	
		measurable	165

~	
Contents	V1
Comens	Al

8.3	A non-measurable function whose modulus $ f $ is meas-	
	urable	165
8.4	A non-measurable function whose level sets	
	$\{x \; ; \; f(x) = \alpha\}$ are measurable	165
8.5	A measurable function which is not μ -a.e. constant on	
	any atom	165
8.6	A function $f(x, y)$ which is Borel measurable in each	
	variable, but fails to be jointly measurable	166
8.7	Another function $f(x, y)$ which is Borel measurable in	
	each variable, but fails to be jointly measurable	167
8.8	A function $f = (f_1, f_2)$ which is not measurable but	
	whose components are measurable	168
8.9	The set of continuity points of any function f is Borel	
	measurable	168
8.10	A set <i>D</i> for which there exists no function having <i>D</i> as its	
	discontinuity set	170
8.11	A bijective measurable function f such that f^{-1} is not	
	measurable	171
8.12	A continuous bijective function $f:[0,1] \rightarrow [0,1]$ which	
	is not Lebesgue measurable	171
8.13	A Lebesgue measurable bijective map $f: \mathbb{R} \to \mathbb{R}$ whose	
	inverse is not Lebesgue measurable	172
8.14	Borel measurable bijective maps have Borel measurable	
	inverses	173
8.15	Sums and products of measurable functions need not be	
	measurable	173
8.16	The limit of a sequence of measurable functions need not	
	be measurable	174
8.17	A sequence of measurable functions such that the set	
	$\{x \; ; \; \lim_{n\to\infty} f_n(x) \text{ exists} \}$ is not measurable	175
8.18	The supremum of measurable functions need to be meas-	
	urable	175
8.19	Measurability is not preserved under convolutions	176
8.20	The factorization lemma fails for general measurable	
	spaces	177
8.21	A Lebesgue measurable function $f: \mathbb{R} \to \mathbb{R}$ for which	
	there is no Borel measurable function $g: \mathbb{R} \to \mathbb{R}$ such	
0.55	that $f \leq g$	178
8.22	A positive Borel measurable function which cannot be	4-0
	approximated a.e. from below by step functions	179

xii Contents

	8.23	$\mathbb{1}_{\mathbb{R}\setminus\mathbb{Q}}$ cannot be the pointwise limit of continuous functions	180
9	Inne	er and Outer Measure	182
	9.1	An explicit construction of a non-measurable set	185
	9.2	A set which is not Lebesgue measurable with strictly	
		positive outer and zero inner measure	186
	9.3	A decreasing sequence $A_n \downarrow \emptyset$ such that $\lambda^*(A_n) = 1$	186
	9.4	A set such that $\lambda_*(E) = 0$ and $\lambda^*(E \cap B) = \lambda(B) = \lambda^*(B \setminus E)$	
		for all $B \in \mathcal{B}(\mathbb{R})$	187
	9.5	Lebesgue measure beyond the Lebesgue sets	188
	9.6	The Carathéodory extension λ^* of $\lambda _{[0,1)}$ is not continuous	
		from above	189
	9.7	An outer measure which is not continuous from below	189
	9.8	A measure μ such that its outer measure μ^* is not additive	190
	9.9	A measure space such that $(X, \mathcal{A}^*, \mu^* _{\mathcal{A}^*})$ is not the	
		completion of (X, \mathcal{A}, μ)	190
	9.10	A measure space where $\mu_*(E) = \mu^*(E)$ does not imply	
		measurability of E	190
	9.11	A non-Lebesgue measurable set with identical inner and	
		outer measure	191
	9.12	A measure such that every set is μ^* measurable	191
	9.13	A measure μ relative to δ such that every non-empty set	
		in $\mathcal S$ fails to be μ^* measurable	192
	9.14	An additive set function μ on a semi-ring such that μ^* is	
		not an extension of μ	193
	9.15	An outer measure constructed on the intervals $[a, b)$ such	
		that not all Borel sets are measurable	193
	9.16	There exist non- μ^* measurable sets if, and only if, μ^* is	
		not additive on $\mathcal{P}(X)$	194
	9.17	An outer regular measure which is not inner compact	
		regular	195
	9.18	An inner compact regular measure which is neither inner	
		nor outer regular	195
	9.19	A measure which is neither inner nor outer regular	196
	9.20	A measure which is inner regular but not inner compact	
		regular	197
	9.21	The regularity of a measure depends on the topology	197
	9.22	A regular Borel measure whose restriction to a Borel set is	
		not regular	198

		Contents	xiii
10	Integ	grable Functions	202
	_	An integrable function which is unbounded in every interval	203
		$\lim_{ x \to\infty} f(x) \neq 0$	204
	10.3	A continuous function vanishing at infinity which is not	
		in L^p for any $p > 0$	205
	10.4	A non-integrable function such that	
		$\lim_{r \to \infty} r\mu(\{ f > r\}) = 0$	205
	10.5	Characterizing integrability in terms of series	206
	10.6	A non-integrable function such that $f(x - 1/n)$ is integ-	
		rable for all $n \in \mathbb{N}$	207
	10.7	An integrable function such that $f(x - 1/n)$ fails to be	
		integrable for all $n \in \mathbb{N}$	208
	10.8	An improperly Riemann integrable function which is not	
		Lebesgue integrable	208
	10.9	A function such that $\lim_{n\to\infty} \int_0^n f d\lambda$ exists and is finite	
		but $\int_0^\infty f d\lambda$ does not exist	209
		A function which is nowhere locally integrable	210
		Integrable functions f , g such that $f \cdot g$ is not integrable	210
	10.12	A function such that $f \notin L^p$ for all $p \in [1, \infty)$ but $fg \in L^1$	
		for all $g \in L^q$, $q \geqslant 1$	210
		$f \in L^p$ for all $p < q$ does not imply $f \in L^q$	211
		A function such that $f \in L^p$ for all $p < \infty$ but $f \notin L^\infty$	211
		A function such that $f \in L^{\infty}$ but $f \notin L^p$ for all $p < \infty$	212
		A function which is in exactly one space L^p	212
		Convolution is not associative	213
		An example where integration by substitution goes wrong	214
	10.19	There is no non-constant function such that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$	
	10.00	$\int_{\mathbb{R}^d \setminus \{0\}} \int_{\mathbb{R}^d} f(x+y) - f(x) y ^{-d-1} dx dy < \infty$	215
	10.20	A measure space which has no strictly positive function	017
	10.01	$f \in L^1$	217
	10.21	In infinite measure spaces there is no function $f > 0$ with	217
	10.22	$f \in L^1$ and $1/f \in L^1$ There is no continuous function $f > 0$ with $f \in L^1$	217
	10.22	There is no continuous function $f \ge 0$ with $\int f^n d\lambda = 1$	210
	10.22	for all $n \in \mathbb{N}$	218
	10.23	A measure space where $\int_A f d\mu = \int_A g d\mu$ (for all A) does	210
	10.24	not entail $f = g$ a.e. A vector function which is weakly but not strongly integrable	219
	10.24	A vector function which is weakly but not strongly integrable	220

xiv Contents

11	Mod	es of Convergence	221
	11.1	Classical counterexamples to a.e. convergence vs. conver-	
		gence in probability	222
	11.2	Pointwise convergence does not imply convergence in	
		measure	223
	11.3	L^p -convergence does not imply L^r -convergence for $r \neq p$	224
	11.4	Classical counterexamples related to weak convergence in	
		L^p	224
	11.5	The convergence tables	225
	11.6	The limit in probability is not necessarily unique	225
	11.7	A sequence converging in probability without having an	
		a.e. converging subsequence	227
	11.8	A sequence converging in probability without having any	
		subsequence converging in measure	228
	11.9	A sequence such that $\int f_n(x) dx \to 0$ but $(f_n)_{n \in \mathbb{N}}$ has no	
		convergent subsequence	229
	11.10	A sequence converging a.e. and in measure but not almost	
		uniformly	229
		Egorov's theorem fails for infinite measures	229
	11.12	Egorov's theorem does not hold for nets	229
	11.13	A uniformly convergent sequence of L^1 -functions which	
		is not convergent in L^1	231
	11.14	Convergence in measure is not stable under products	231
	11.15	A measure space where convergence in measure and	
		uniform convergence coincide	232
	11.16	A measure space where strong and weak convergence of	
		sequences in L^1 coincide	233
	11.17	Convergence a.e. is not metrizable	233
12	Conv	vergence Theorems	235
	12.1	Classical counterexamples to dominated convergence	236
	12.2	Fatou's lemma may fail for non-positive integrands	236
	12.3	Fatou's lemma may lead to a strict inequality	237
	12.4	The monotone convergence theorem needs a lower integ-	
		rable bound	237
	12.5	A series of functions such that integration and summation	
		do not interchange	238
	12.6	Riesz's convergence theorem fails for $p = \infty$	239
		A sequence such that $f_n \to 0$ pointwise but	
		$\int_I f_n d\lambda \to \lambda(I)$ for all intervals	239

Contents	XV
----------	----

	12.8	$\int_I f_n d\lambda \rightarrow \int_I f d\lambda$ for all intervals I does not imply	
		$\int_B f_n d\lambda \to \int_B f d\lambda$ for all Borel sets B	240
	12.9	The classical convergence theorems fail for nets	242
	12.10	The continuity lemma 'only' proves sequential continuity	243
	12.11	A sequence f_n converging to 0 in L^1 without integrable	
		envelope – the 'sliding hump'	244
	12.12	A sequence $(f_n)_{n\in\mathbb{N}}$ which is uniformly integrable but	
		$\sup_{n} f_{n} $ is not integrable	244
	12.13	A sequence which is not uniformly integrable but $f_n \to 0$	
		and $\int f_n d\lambda \to 0$	245
	12.14	An L^1 -bounded sequence which is not uniformly integrable	245
	12.15	A uniformly integrable sequence which does not converge	
		$\operatorname{in} L^1$	245
	12.16	An L^1 -bounded sequence which fails to be uniformly	
		integrable on any set of positive measure	246
13	Cont	inuity and a.e. Continuity	247
		An a.e. continuous function which does not coincide a.e.	
		with any continuous function	248
	13.2	A nowhere continuous function which equals a.e. a	
		continuous function	248
	13.3	A function f such that every g with $f = g$ a.e. is nowhere	
		continuous	248
	13.4	A function which is everywhere sequentially continuous	
		but nowhere continuous	249
	13.5	An a.e. continuous function whose discontinuity points	
		are dense	249
	13.6	An a.e. discontinuous function whose continuity points	
		are dense	249
	13.7	The composition of two a.e. continuous functions which	
		is nowhere continuous	250
		An a.e. continuous function which is not Borel measurable	251
	13.9	A bounded Borel measurable function such that	
		$f(x + 1/n) \rightarrow f(x)$ fails to hold on a set of positive measure	251
	13.10	A nowhere constant function which is a.e. continuous	
		and has countable range	252
	13.11	A continuous function such that $f(x) \in \mathbb{Q}$ a.e. and f is	
	10.11	not constant on any interval	252
	13.12	A continuous function which is strictly positive on Q but	252
		fails to be strictly positive almost everywhere	253

xvi Contents

	13.13	A measurable function which is zero almost everywhere but whose graph is dense	254
	13 14	A continuous function $f: [0,1] \to \mathbb{R}^2$ whose image has	234
	13.17	positive Lebesgue measure	255
	13.15	The image of a Lebesgue null set under a continuous	
		bijective mapping need not have Lebesgue measure zero	257
	13.16	Lusin's theorem fails for non-regular measures	257
		The convolution of two integrable functions may be	
		discontinuous	258
14	Integ	gration and Differentiation	261
	14.1	A non-Riemann integrable function f which has a primitive	262
	14.2	A function f which is differentiable, but f' is not integrable	263
	14.3	Volterra's version of Example 14.2	264
	14.4	A continuous function such that f' exists almost every-	
		where and is integrable but the fundamental theorem of	
		calculus fails	265
	14.5	A continuous strictly increasing function with $f' = 0$	
		Lebesgue almost everywhere	266
	14.6	A continuous function f such that $f' > 1$ a.e. but f is not	
		increasing on any interval	266
	14.7	A function which is Lebesgue almost everywhere dif-	
		ferentiable but f' does not exist on a dense subset of	
		R	268
	14.8	$f_n \to f$ and $f'_n \to g$ pointwise does not imply $f' = g$ a.e.	268
	14.9	A function $f(t,x)$ for which $\partial_t \int f(t,x) dx$ and $\int \partial_t f(t,x) dx$	0.71
	1410	exist but are not equal	271
	14.10	A function such that $\partial_t \int f(t,x) dx$ exists but $\int \partial_t f(t,x) dx$ does not	271
	1111		271
	14.11	A function such that $\int \partial_t f(t, x) dx$ exists but $\partial_t \int f(t, x) dx$ does not	272
	14 12		212
	14.12	A bounded function such that $t \mapsto f(t, x)$ is continuous but $t \mapsto \int f(t, x) \mu(dx)$ is not continuous	272
	1// 13	An increasing continuous function ϕ and a continuous	212
	14.13	function f such that $\int_0^1 f(x) d\alpha(x) \neq \int_0^1 f(x) \alpha'(x) dx$	272
	1/11/	A nowhere continuous function whose Lebesgue points	212
	17.14	are dense	273
	14 15	A discontinuous function such that every point is a	413
	11.13	Lebesgue point	273
		υ r · ·	

		Contents	xvii
	14.16	An integrable function f such that $x \mapsto \int_0^x f(t) dt$ is differentiable at $x = x_0$ but x_0 is not a Lebesgue point of f	274
	14.17	Lebesgue points of f need not be Lebesgue points of f^2	275
		Functions $f \in L^p$, $0 , without Lebesgue points$	275
		Lebesgue's differentiation theorem fails for sets which are	
		not shrinking nicely	276
	14.20	A measure for which Lebesgue's differentiation theorem	
		fails	278
15	Meas	surability on Product Spaces	280
	15.1	A function which is Borel measurable but not Lebesgue	
		measurable	281
	15.2	The product of complete σ -algebras need not be complete	281
	15.3	$\mathcal{L}(\mathbb{R}) \otimes \mathcal{L}(\mathbb{R}) \subsetneq \mathcal{L}(\mathbb{R}^2)$	282
	15.4	Sigma algebras $\mathcal{A} = \sigma(\mathcal{G})$ and $\mathcal{B} = \sigma(\mathcal{H})$ such that	
		$\sigma(\mathcal{G} \times \mathcal{H})$ is strictly smaller than $\mathcal{A} \otimes \mathcal{B}$	282
	15.5	An example where $\mathcal{P}(X) \otimes \mathcal{P}(X) \neq \mathcal{P}(X \times X)$	283
	15.6	The product of Borel σ -algebras is not always the Borel	
		σ -algebra of the product	284
	15.7	Topological spaces X , Y such that $\mathfrak{B}(X) = \mathfrak{B}(Y)$ but	20.5
	150	$\mathcal{B}(X \times X) \neq \mathcal{B}(Y \times Y)$	285
	15.8	$\mathcal{B}(X)^{\otimes I}$ is strictly smaller than $\mathcal{B}(X^I)$ for uncountable I	286
	15.9	The diagonal $\Delta = \{(x, x); x \in X\}$ need not be measurable A metric which is not jointly measurable	288 289
		A non-measurable set whose projections are measurable	289
		A measurable set whose projection is not measurable	289
		A non-measurable set whose slices are measurable	290
		A measurable function with a non-measurable graph	291
		A non-measurable function with a measurable graph	291
		A function $f(x, y)$ which is measurable in each variable	-/-
		but fails to be jointly measurable	291
	15.17	A function $f(x, y)$ which is separately continuous in each	
		variable but fails to be Borel measurable	292
	15.18	An $\mathcal{A} \otimes \mathcal{B}$ measurable function $f \geqslant 0$ which cannot be	
		approximated from below by simple functions of product	
		form	293
16	Prod	uct Measures	295
	16.1	Non-uniqueness of product measures	298
	16.2	A measure on a product space which is not a product	
		measure	299

xviii Contents

16.3	The product of complete measure spaces need not be	
	complete	299
16.4	A Lebesgue null set in $[0,1]^2$ which intersects any set	
	$A \times B$ whose Lebesgue measure is positive	299
16.5	A set $A \subseteq \mathbb{R}^2$ of positive Lebesgue measure which does	
	not contain any rectangle	300
16.6	A set $A \subseteq \mathbb{R}^2$ of positive Lebesgue measure such that the	
	intersection of every non-degenerate rectangle with A^c	
	has positive measure	300
16.7	A set $A \subseteq \mathbb{R}^2$ of positive Lebesgue measure which is not a	
	countable union of rectangles	302
16.8	A jointly measurable function such that $x \mapsto \int f(x, y) \mu(dy)$	
	is not measurable	302
16.9	A function $f(x, y)$ such that $f(\cdot, y)$ is \mathcal{A} measurable but	
	$\int f(\cdot, y) dy$ is not \mathcal{A} measurable	302
16.10	Tonelli's theorem fails for non-positive integrands	304
	A positive function with $f(x, y) = f(y, x)$ such that the	
10111	iterated integrals do not coincide	305
16.12	A positive function $f(x, y)$ whose iterated integrals do not	
10112	coincide	305
16 13	A finite measure μ and a Borel set B such that	
10.10	If $\mathbb{1}_B(x+y)\mu(dx)\lambda(dy) \neq \iint \mathbb{1}_B(x+y)\lambda(dy)\mu(dx)$	306
16 14	A non-measurable function $f(x, y)$ such that the iterated	500
10.11	integral $\iint f(x,y) dx dy$ exists and is finite	307
16 15	A function $f(x, y)$ whose iterated integrals exist but do	307
10.13	not coincide	308
16 16	A function $f(x, y)$ which is not integrable but whose	300
10.10	iterated integrals exist and coincide	309
16 17	Yet another example where the iterated integrals exist, but	307
10.17	the double integral doesn't	310
16 18	An a.e. continuous function $f(x, y)$ where only one	310
10.10	iterated integral exists	311
16 10	Classical integration by parts fails for Lebesgue–Stieltjes	311
10.19	integrals	311
16 20	A function which is $K(x, dy)$ -integrable but fails to be	311
10.20	$\mu K(dy)$ -integrable	313
16 21	A consistent family of marginals which does not admit a	213
10.41	projective limit	315
	projective minit	σ_{IJ}

Contents	xix

17	Rado	on–Nikodým and Related Results	317
	17.1	An absolutely continuous measure without a density	317
	17.2	Another absolutely continuous measure without density	318
		Yet another absolutely continuous measure without density	318
		A not-absolutely continuous measure given by a density	319
		A measure $\mu \ll \lambda$ such that $\lambda(A_n) \to 0$ does not imply	
		$\mu(A_n) \to 0$	320
	17.6	A measure μ which is absolutely continuous w.r.t.	
		Lebesgue measure and $\mu(a,b) = \infty$ for any $(a,b) \neq \emptyset$	320
	17.7	A continuous measure which is not absolutely continuous	321
	17.8	An absolutely continuous function whose inverse is not	
		absolutely continuous	321
	17.9	A continuous measure with atoms	321
	17.10	The Radon–Nikodým density $f = d\nu/d\mu$ does not	
		necessarily satisfy $f(x) = \lim_{r \downarrow 0} \nu(B_r(x)) / \mu(B_r(x))$	322
	17.11	Lebesgue's decomposition theorem fails without σ -finiteness	322
	17.12	Two mutually singular measures which have the same	
		support	322
	17.13	A probability measure μ with full support such that μ and	
		$\mu(c.)$ are mutually singular for $c \neq 1$	322
	17.14	The convolution of two singular measures may be abso-	
		lutely continuous	324
	17.15	Singular measures with full support – the case of Bernoulli	
		convolutions	325
	17.16	The maximum of two measures need not be the maximum	
		of its values	329
18	Func	ction Spaces	330
		Relations between L^r, L^s, L^t if $r < s < t$	332
	18.2	One may have $\ell^p(\mu) \subseteq \ell^q(\mu)$, or $\ell^p(\mu) \supseteq \ell^q(\mu)$, or no	
		inclusion at all	334
	18.3	A measure space where $L^p = \{0\}$ for all $0 \le p < \infty$	336
	18.4	A measure space where all spaces L^p , $1 \le p \le \infty$ coincide	336
	18.5	A measure space where $L^1 \subsetneq L^{\infty}$	337
	18.6	$L^1(\mu) = L^{\infty}(\mu)$ if, and only if, $1 \le \dim(L^1(\mu)) < \infty$	337
	18.7	A function where $\sup_{x \in U} f(x) \neq f _{L^{\infty}(U)}$ for any open	
		set U	340
	18.8	One cannot compare L^p -norms on $C[0,1]$	341
	18.9	The spaces L^p with $0 are only quasi-normed spaces$	341
	18.10	The spaces L^p with $0 are not locally convex$	343

xx Contents

	18.11	The dual of $L^p(\lambda)$ with $0 is trivial$	344
	18.12	Functions $f \in L^p$, $0 , need not be locally integrable$	345
	18.13	The spaces L^q with $q < 0$ are not linear spaces	346
	18.14	A measure space where L^p is not separable	346
	18.15	Separability of the space L^{∞}	347
	18.16	$C_b(X)$ need not be dense in $L^p(\mu)$	349
	18.17	A subset of L^p which is dense in L^r , $r < p$, but not dense	
		$\operatorname{in} L^p$	350
	18.18	L^p is not an inner product space unless $p = 2$ or $\dim(L^p) \le 1$	351
	18.19	The condition $\sup_{\ g\ _{L^q} \le 1} \int fg d\mu < \infty$ need not imply	
		that $f \in L^p(\mu)$	352
		Identifying the dual of L^p with L^q is a tricky business	354
	18.21	The dual of L^1 can be larger than L^{∞}	355
	18.22	The dual of L^1 can be isometrically isomorphic to a space	
		which is strictly smaller than L^{∞}	357
	18.23	A measure space such that the dual of L^1 is L^1	358
	18.24	The dual of L^{∞} can be larger than L^1	358
		A measure space where the dual of L^{∞} is L^{1}	359
		Non-uniqueness in the Riesz representation theorem	360
		Non-uniqueness in the Riesz representation theorem II	360
	18.28	A measure space where L^{∞} is not weakly sequentially	
		complete	361
	18.29	Uniform boundedness does not imply weak compactness	
		$\operatorname{in} L^1$	363
		The algebra $L^1(\lambda^d)$ does not have a unit element	364
		The algebra $L^1(\lambda^d)$ contains non-trivial divisors of zero	364
		Uniform convexity/rotundity of L^p	365
	18.33	An absolutely continuous measure such that the transla-	
		tion operator is not continuous in L^1	366
	18.34	There is no Bochner integral in spaces which are not	
		locally convex	367
19	Conv	ergence of Measures	370
	19.1	Classical counterexamples related to vague and weak	
		convergence	373
	19.2	Vague convergence does not preserve mass	375
	19.3	Vague convergence of positive measures $\mu_n \to \mu$ does not	
		imply $ \mu_n - \mu \to 0$	375
	19.4	Vague convergence $\mu_n \to 0$ does not entail vague conver-	
		gence $ \mu_n \to 0$	375

Contents	3/3/1
Contents	XX1

19.5 Vague convergence does not imply $\mu_n(B) \to \mu(B)$ for all	
Borel sets	376
19.6 A sequence of absolutely continuous measures which	
converges weakly to λ on $[0,1]$ but $\mu_n(B) \to \lambda(B)$ fails for	
some Borel set $B \subseteq [0,1]$	376
19.7 A sequence of measures μ_n such that $\lim_{n\to\infty} \int f d\mu_n$	
exists, but is not of the form $\int f d\mu$	376
19.8 Weakly convergent sequences need not be tight	377
19.9 Signed measures μ_n such that $\int f d\mu_n \to \int f d\mu$ for all	
$f \in C(\mathbb{R})$ but $\mu_n(B) \to \mu(B)$ fails for sets with $\mu(\partial B) = 0$	377
19.10 Signed measures μ_n such that $\int f d\mu_n \to \int f d\mu$ for all	
bounded uniformly continuous functions f but μ_n does	
not converge weakly to μ	378
19.11 A sequence of measures which does not converge weakly	
but whose Fourier transforms converge pointwise	378
19.12 Lévy's continuity theorem fails for nets	379
19.13 A sequence of non-atomic measures converging weakly to	
a purely atomic measure	380
19.14 A sequence of purely atomic measures converging weakly	
to a non-atomic measure	380
19.15 A net of Dirac measures converging weakly to a non-Dirac	
measure	381
19.16 $f_n \mu \to f \mu$ weakly does not imply $f_n \to f$ in probability	381
19.17 $f_n \mu \to f \mu$ weakly does not imply $f_n \to f$ weakly in $L^1(\mu)$	382
19.18 $f_n \rightarrow f$ weakly in $L^p(\mu)$ for $p > 1$ does not imply	
$f_n \mu \to f \mu$ weakly	383
References	385
Index	394