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Acknowledgement. I am grateful to Björn Böttcher, David Berger, Katharina Fischer, Julian
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1 Robert Brown’s new thing

Problem 1.1. Solution:

a) We show the result for Rd-valued random variables. Let ξ, η ∈ Rd. By assumption,

lim
n→∞

E exp [i ⟨(ξ
η
),(Xn

Yn
)⟩] = E exp [i ⟨(ξ

η
),(X

Y
)⟩]

⇐⇒ lim
n→∞

E exp [i⟨ξ,Xn⟩ + i⟨η, Yn⟩] = E exp [i⟨ξ,X⟩ + i⟨η, Y ⟩]

If we take ξ = 0 and η = 0, respectively, we see that

lim
n→∞

E exp [i⟨η, Yn⟩] = E exp [i⟨η, Y ⟩] or Yn
dÐ→ Y

lim
n→∞

E exp [i⟨ξ,Xn⟩] = E exp [i⟨ξ,X⟩] or Xn
dÐ→X.

Since Xn á Yn we find

E exp [i⟨ξ,X⟩ + i⟨η, Y ⟩] = lim
n→∞

E exp [i⟨ξ,Xn⟩ + i⟨η, Yn⟩]

= lim
n→∞

E exp [i⟨ξ,Xn⟩]E exp [i⟨η, Yn⟩]

= lim
n→∞

E exp [i⟨ξ,Xn⟩] lim
n→∞

E exp [i⟨η, Yn⟩]

= E exp [i⟨ξ,X⟩] E exp [i⟨η, Y ⟩]

and this shows that X á Y .

b) We have

Xn =X + 1

n

almost surelyÐÐÐÐÐÐÐ→
n→∞

X Ô⇒ Xn
dÐ→X

Yn = 1 −Xn = 1 − 1

n
−X almost surelyÐÐÐÐÐÐÐ→

n→∞
1 −X Ô⇒ Yn

dÐ→ 1 −X

Xn + Yn = 1
almost surelyÐÐÐÐÐÐÐ→

n→∞
1 Ô⇒ Xn + Yn

dÐ→ 1.

A simple direct calculation shows that 1 −X ∼ 1
2(δ0 + δ1) ∼ Y . Thus,

Xn
dÐ→X, Yn

dÐ→ Y ∼ 1 −X, Xn + Yn
dÐ→ 1.

Assume that (Xn, Yn)
dÐ→ (X,Y ). Since X á Y , we find for the distribution of X +Y :

X + Y ∼ 1
2(δ0 + δ1) ∗ 1

2(δ0 + δ1) = 1
4(δ0 ∗ δ0 + 2δ1 ∗ δ0 + δ1 ∗ δ1) = 1

4(δ0 + 2δ1 + δ2).

Thus, X + Y /∼ δ0 ∼ 1 = limn(Xn + Yn) and this shows that we cannot have that

(Xn, Yn)
dÐ→ (X,Y ).
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c) If Xn á Yn and X á Y , then we have Xn + Yn
dÐ→ X + Y : this follows since we have

for all ξ ∈ R:

lim
n→∞

E eiξ(Xn+Yn) = lim
n→∞

E eiξXn E eiξYn

= lim
n→∞

E eiξXn lim
n→∞

E eiξYn

= E eiξX E eiξY
a)= E [eiξXeiξY ]

= E eiξ(X+Y ).

A similar (even easier) argument works if (Xn, Yn)
dÐ→ (X,Y ). Then we have

f(x, y) ∶= eiξ(x+y)

is bounded and continuous, i.e. we get directly

lim
n→∞

E eiξ(Xn+Yn) lim
n→∞

E f(Xn, Yn) = E f(X,Y ) = E eiξ(X+Y ).

For a counterexample (if Xn and Yn are not independent), see part b).

Notice that the independence and d-convergence of the sequences Xn, Yn already

implies X á Y and the d-convergence of the bivariate sequence (Xn, Yn). This is a

consequence of the following

Lemma. Let (Xn)n⩾1 and (Yn)n⩾1 be sequences of random variables (or random

vectors) on the same probability space (Ω,A ,P). If

Xn á Yn for all n ⩾ 1 and Xn
dÐÐÐ→

n→∞
X and Yn

dÐÐÐ→
n→∞

Y,

then (Xn, Yn)
dÐÐÐ→

n→∞
(X,Y ) and X á Y .

Proof. Write φX , φY , φX,Y for the characteristic functions of X, Y and the pair

(X,Y ). By assumption

lim
n→∞

φXn(ξ) = lim
n→∞

E eiξXn = E eiξX = φX(ξ).

A similar statement is true for Yn and Y . For the pair we get, because of independence

lim
n→∞

φXn,Yn(ξ, η) = lim
n→∞

E eiξXn+iηYn

= lim
n→∞

E eiξXn E eiηYn

= lim
n→∞

E eiξXn lim
n→∞

E eiηYn

= E eiξX E eiηY

= φX(ξ)φY (η).
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Thus, φXn,Yn(ξ, η) → h(ξ, η) = φX(ξ)φY (η). Since h is continuous at the origin

(ξ, η) = 0 and h(0,0) = 1, we conclude from Lévy’s continuity theorem that h is a

(bivariate) characteristic function and that (Xn, Yn)
dÐ→ (X,Y ). Moreover,

h(ξ, η) = φX,Y (ξ, η) = φX(ξ)φY (η)

which shows that X á Y .

∎∎

Problem 1.2. Solution: Using the elementary estimate

∣eiz − 1∣ = ∣∫
iz

0
eζ dζ∣ ⩽ sup

∣y∣⩽∣z∣
∣eiy ∣ ∣z∣ = ∣z∣ (*)

we see that the function t↦ ei⟨ξ,t⟩, ξ, t ∈ Rd is locally Lipschitz continuous:

∣ei⟨ξ,t⟩ − ei⟨ξ,s⟩∣ = ∣ei⟨ξ,t−s⟩ − 1∣ ⩽ ∣⟨ξ, t − s⟩∣ ⩽ ∣ξ∣ ⋅ ∣t − s∣ for all ξ, t, s ∈ Rd,

Thus,

E ei⟨ξ,Yn⟩ = E [ei⟨ξ,Yn−Xn⟩ei⟨ξ,Xn⟩]

= E [(ei⟨ξ,Yn−Xn⟩ − 1)ei⟨ξ,Xn⟩] +E ei⟨ξ,Xn⟩.

Since limn→∞E ei⟨ξ,Xn⟩ = E ei⟨ξ,X⟩, we are done if we can show that the first term in the

last line of the displayed formula tends to zero. To see this, we use the Lipschitz continuity

of the exponential function. Fix ξ ∈ Rd.

∣E [(ei⟨ξ,Yn−Xn⟩ − 1)ei⟨ξ,Xn⟩]∣

⩽ E ∣(ei⟨ξ,Yn−Xn⟩ − 1)ei⟨ξ,Xn⟩∣

= E ∣ei⟨ξ,Yn−Xn⟩ − 1∣

= ∫∣Yn−Xn∣⩽δ
∣ei⟨ξ,Yn−Xn⟩ − 1∣ dP+∫∣Yn−Xn∣>δ

∣ei⟨ξ,Yn−Xn⟩ − 1∣ dP
(*)

⩽ δ ∣ξ∣ + ∫∣Yn−Xn∣>δ
2dP

= δ ∣ξ∣ + 2 P (∣Yn −Xn∣ > δ)

ÐÐÐ→
n→∞

δ ∣ξ∣ÐÐ→
δ→0

0,

where we used in the last step the fact that Xn − Yn
PÐ→ 0.

∎∎

Problem 1.3. Solution: Recall that Yn
dÐ→ Y with Y = c a.s., i.e. where Y ∼ δc for some

constant c ∈ R. Since the d-limit is trivial, this implies Yn
PÐ→ Y . This means that both

“is this still true”-questions can be answered in the affirmative.
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We will show that (Xn, Yn)
dÐ→ (Xn, c) holds – without assuming anything on the joint

distribution of the random vector (Xn, Yn), i.e. we do not make assumption on the corre-

lation structure of Xn and Yn. Since the maps x↦ x + y and x↦ x ⋅ y are continuous, we

see that

lim
n→∞

E f(Xn, Yn) = E f(X, c) ∀f ∈ Cb(R ×R)

implies both

lim
n→∞

E g(XnYn) = E g(Xc) ∀g ∈ Cb(R)

and

lim
n→∞

Eh(Xn + Yn) = Eh(X + c) ∀h ∈ Cb(R).

This proves (a) and (b).

In order to show that (Xn, Yn) converges in distribution, we use Lévy’s characterization of

distributional convergence, i.e. the pointwise convergence of the characteristic functions.

This means that we take f(x, y) = ei(ξx+ηy) for any ξ, η ∈ R:

∣E ei(ξXn+ηYn) −E ei(ξX+ηc)∣ ⩽ ∣E ei(ξXn+ηYn) −E ei(ξXn+ηc)∣ + ∣E ei(ξXn+ηc) −E ei(ξX+ηc)∣

⩽ E ∣ei(ξXn+ηYn) −E ei(ξXn+ηc)∣ + ∣E ei(ξXn+ηc) −E ei(ξX+ηc)∣

⩽ E ∣eiηYn − eiηc∣ + ∣E eiξXn −E eiξX ∣ .

The second expression on the right-hand side converges to zero as Xn
dÐ→ X. For fixed

η we have that y ↦ eiηy is uniformly continuous. Therefore, the first expression on the

right-hand side becomes, with any ε > 0 and a suitable choice of δ = δ(ε) > 0

E ∣eiηYn − eiηc∣ = E [∣eiηYn − eiηc∣1{∣Yn−c∣>δ}] +E [∣eiηYn − eiηc∣1{∣Yn−c∣⩽δ}]

⩽ 2E [1{∣Yn−c∣>δ}] +E [ε1{∣Yn−c∣⩽δ}]

⩽ 2P(∣Yn − c∣ > δ) + ε
P -convergence as δ,ε are fixedÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→

n→∞
εÐ→
ε↓0

0.

Remark. The direct approach to (a) is possible but relatively ugly. Part (b) has a

relatively simple direct proof:

Fix ξ ∈ R.

E eiξ(Xn+Yn) −E eiξX = (E eiξ(Xn+Yn) −E eiξXn) + (E eiξXn −E eiξX)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ÐÐÐ→
n→∞ 0 by d-convergence

.

For the first term on the right we find with the uniform-continuity argument from Prob-

lem 1.2 and any ε > 0 and suitable δ = δ(ε, ξ) that

∣E eiξ(Xn+Yn) −E eiξXn ∣ ⩽ E ∣eiξXn(eiξYn − 1)∣

= E ∣eiξYn − 1∣
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⩽ ε +P (∣Yn∣ > δ)
ε fixedÐÐÐ→
n→∞

εÐÐ→
ε→0

0

where we use P-convergence in the penultimate step.

∎∎

Problem 1.4. Solution: Let ξ, η ∈ R and note that f(x) = eiξx and g(y) = eiηy are bounded

and continuous functions. Thus we get

E e
i⟨(ξ

η
), (X

Y
)⟩ = E eiξXeiηY

= E f(X)g(Y )

= lim
n→∞

E f(Xn)g(Y )

= lim
n→∞

E eiξXneiηY

= lim
n→∞

E e
i⟨(ξ

η
), (Xn

Y
)⟩

and we see that (Xn, Y ) dÐ→ (X,Y ).

Assume now that X = φ(Y ) for some Borel function φ. Let f ∈ Cb and pick g ∶= f ○ φ.

Clearly, f ○ φ ∈ Bb and we get

E f(Xn)f(X) = E f(Xn)f(φ(Y ))

= E f(Xn)g(Y )

ÐÐÐ→
n→∞

E f(X)g(Y )

= E f(X)f(X)

= E f2(X).

Now observe that f ∈ Cb Ô⇒ f2 ∈ Cb and g ≡ 1 ∈ Bb. By assumption

E f2(Xn)ÐÐÐ→
n→∞

E f2(X).

Thus,

E (∣f(X) − f(Xn)∣2) = E f2(Xn) − 2E f(Xn)f(X) +E f2(X)

ÐÐÐ→
n→∞

E f2(X) − 2E f(X)f(X) +E f2(X) = 0,

i.e. f(Xn)
L2

Ð→ f(X).

Now fix ε > 0 and R > 0 and set f(x) = −R ∨ x ∧R. Clearly, f ∈ Cb. Then

P(∣Xn −X ∣ > ε)

⩽ P(∣Xn −X ∣ > ε, ∣X ∣ ⩽ R, ∣Xn∣ ⩽ R) +P(∣X ∣ ⩾ R) +P(∣Xn∣ ⩾ R)

= P(∣f(Xn) − f(X)∣ > ε, ∣X ∣ ⩽ R, ∣Xn∣ ⩽ R) +P(∣X ∣ ⩾ R) +P(∣f(Xn)∣ ⩾ R)
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⩽ P(∣f(Xn) − f(X)∣ > ε) +P(∣X ∣ ⩾ R) +P(∣f(Xn)∣ ⩾ R)

⩽ P(∣f(Xn) − f(X)∣ > ε) +P(∣X ∣ ⩾ R) +P(∣f(X)∣ ⩾ R/2) +P(∣f(Xn) − f(X)∣ ⩾ R/2)

where we used that {∣f(Xn)∣ ⩾ R} ⊂ {∣f(X)∣ ⩾ R/2} ∪ {∣f(Xn) − f(X)∣ ⩾ R/2} because of

the triangle inequality: ∣f(Xn)∣ ⩽ ∣f(X)∣ + ∣f(X) − f(Xn)∣

= P(∣f(Xn) − f(X)∣ > ε) +P(∣X ∣ ⩾ R/2) +P(∣X ∣ ⩾ R/2) +P(∣f(Xn) − f(X)∣ ⩾ R/2)

= P(∣f(Xn) − f(X)∣ > ε) + 2P(∣X ∣ ⩾ R/2) +P(∣f(Xn) − f(X)∣ ⩾ R/2)

⩽ ( 1

ε2
+ 4

R2
)E (∣f(X) − f(Xn)∣2) + 2P(∣X ∣ ⩾ R/2)

ε,R fixed and f=fR∈CbÐÐÐÐÐÐÐÐÐÐÐÐ→
n→∞

2P(∣X ∣ ⩾ R/2) X is a.s. R-valuedÐÐÐÐÐÐÐÐÐÐ→
R→∞

0.

∎∎

Problem 1.5. Solution: Note that E δj = 0 and V δj = E δ2
j = 1. Thus, ES⌊nt⌋ = 0 and

VS⌊nt⌋ = ⌊nt⌋.

a) We have, by the central limit theorem (CLT)

S⌊nt⌋√
n

=
√

⌊nt⌋
√
n

S⌊nt⌋√
⌊nt⌋

CLTÐÐÐ→
n→∞

√
tG1

where G1 ∼ N(0,1), hence Gt ∶=
√
tG1 ∼ N(0, t).

b) Let s < t. Since the δj are iid, we have, S⌊nt⌋ − S⌊ns⌋ ∼ S⌊nt⌋−⌊ns⌋, and by the central

limit theorem (CLT)

S⌊nt⌋−⌊ns⌋√
n

=
√

⌊nt⌋ − ⌊ns⌋
√
n

S⌊nt⌋−⌊ns⌋√
⌊nt⌋ − ⌊ns⌋

CLTÐÐÐ→
n→∞

√
t − sG1 ∼ Gt−s.

If we know that the bivariate random variable (S⌊ns⌋, S⌊nt⌋−S⌊ns⌋) converges in distri-

bution, we do get Gt ∼ Gs+Gt−s because of Problem 1.1. But this follows again from

the lemma which we prove in part d). This lemma shows that the limit has indepen-

dent coordinates, see also part c). This is as close as we can come to Gt −Gs ∼ Gt−s,
unless we have a realization of ALL the Gt on a good space. It is Brownian motion

which will achieve just this.

c) We know that the entries of the vector (Xn
tm −Xn

tm−1
, . . . ,Xn

t2 −X
n
t1 ,X

n
t1) are inde-

pendent (they depend on different blocks of the δj and the δj are iid) and, by the

one-dimensional argument of b) we see that

Xn
tk
−Xn

tk−1

dÐÐÐ→
n→∞

√
tk − tk−1G

k
1 ∼ Gktk−tk−1

for all k = 1, . . . ,m

where the Gk1, k = 1, . . . ,m are standard normal random vectors.

By the lemma in part d) of the solution we even see that

(Xn
tm −Xn

tm−1
, . . . ,Xn

t2 −X
n
t1 ,X

n
t1)

dÐÐÐ→
n→∞

(
√
t1G

1
1, . . . ,

√
tm − tm−1G

m
1 )
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and the Gk1, k = 1, . . . ,m are independent. Thus, by the second assertion of part b)

(
√
t1G

1
1, . . . ,

√
tm − tm−1G

m
1 ) ∼ (G1

t1 , . . . ,G
m
tm−tm−1

) ∼ (Gt1 , . . . ,Gtm −Gtm−1).

d) We have the following

Lemma. Let (Xn)n⩾1 and (Yn)n⩾1 be sequences of random variables (or random

vectors) on the same probability space (Ω,A ,P). If

Xn á Yn for all n ⩾ 1 and Xn
dÐÐÐ→

n→∞
X and Yn

dÐÐÐ→
n→∞

Y,

then (Xn, Yn)
dÐÐÐ→

n→∞
(X,Y ) and X á Y (for suitable versions of the rv’s).

Proof. Write φX , φY , φX,Y for the characteristic functions of X, Y and the pair

(X,Y ). By assumption

lim
n→∞

φXn(ξ) = lim
n→∞

E eiξXn = E eiξX = φX(ξ).

A similar statement is true for Yn and Y . For the pair we get, because of independence

lim
n→∞

φXn,Yn(ξ, η) = lim
n→∞

E eiξXn+iηYn

= lim
n→∞

E eiξXn E eiηYn

= lim
n→∞

E eiξXn lim
n→∞

E eiηYn

= E eiξX E eiηY

= φX(ξ)φY (η).

Thus, φXn,Yn(ξ, η) → h(ξ, η) = φX(ξ)φY (η). Since h is continuous at the origin

(ξ, η) = 0 and h(0,0) = 1, we conclude from Lévy’s continuity theorem that h is a

(bivariate) characteristic function and that (Xn, Yn)
dÐ→ (X,Y ). Moreover,

h(ξ, η) = φX,Y (ξ, η) = φX(ξ)φY (η)

which shows that X á Y .

∎∎

Problem 1.6. Solution: Necessity is clear. For sufficiency write

B(t) −B(s)√
t − s

= 1√
2

⎛
⎜
⎝
B(t) −B( s+t2 )

√
t−s
2

+
B( s+t2 ) −B(s)

√
t−s
2

⎞
⎟
⎠
=∶ 1√

2
(X + Y ) .

By assumption X ∼ Y , X á Y and X ∼ 1√
2
(X + Y ). This is already enough to guarantee

that X ∼ N(0,1), since VX = 1, cf. Rényi [14, Chapter VI.5, Theorem 2, pp. 324–325].
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Alternative Solution: Fix s < t and define tj ∶= s + j
n(t − s) for j = 0, . . . , n. Then

Bt −Bs =
√
tj − tj−1

n

∑
j=1

Btj −Btj−1√
tj − tj−1

=
√

t − s
n

n

∑
j=1

Btj −Btj−1√
tj − tj−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Gnj

By assumption, the random variables (Gnj )j,n are identically distributed (for all j, n) and

independent (in j). Moreover, E(Gnj ) = 0 and V(Gnj ) = 1. Applying the central limit

theorem (for triangular arrays) we obtain

1√
n

n

∑
j=1

Gnj
dÐ→ G1

where G1 ∼ N(0,1). Thus, Bt −Bs ∼ N(0, t − s).

∎∎

Problem 1.7. Solution: Let ξ, η ∈ R. Then

E (eiξΓ−eiηΓ+) = E(ei
ξ√
2
(G−G′)

e
i η√

2
(G+G′))

= E(ei
ξ+η√

2
G
e
i η−ξ√

2
G′

)

GáG′= E(ei
ξ+η√

2
G)E(ei

η−ξ√
2
G′

)

G,G′∼N(0,1)= e
− 1

2
[ ξ+η√

2
]2

e
− 1

2
[ η−ξ√

2
]2

= e−
1
2
ξ2

e−
1
2
η2

.

Taking η = 0 or ξ = 0 we find that Γ− ∼ N(0,1) and Γ+ ∼ N(0,1), respectively. Moreover,

since ξ, η are arbitrary, we conclude

E (eiξΓ−eiηΓ+) = E (eiξΓ−)E (eiηΓ+) Ô⇒ Γ− á Γ+.

In the last implication we used Kac’s characterization of independence by characteristic

functions.

∎∎

Problem 1.8. Solution:

a) Since the conditions (B0)–(B3) involve only finitely many of the random variables

Xt, it is clear from

P(Xt1 ∈ A1, . . . ,Xtn ∈ An)

= P({Xt1 ∈ A1} ∩ ⋅ ⋅ ⋅ ∩ {Xtn ∈ An})

= P({Xt1 ∈ A1} ∩ ⋅ ⋅ ⋅ ∩ {Xtn ∈ An} ∩Ω0) (use P(Ω0) = 1)

= P({Bt1 ∈ A1} ∩ ⋅ ⋅ ⋅ ∩ {Btn ∈ An} ∩Ω0)

= P({Bt1 ∈ A1} ∩ ⋅ ⋅ ⋅ ∩ {Btn ∈ An}) (use P(Ω0) = 1)
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that they remain valid for (Bt)t⩾0, too. Moreover, (B0) and (B4) are trivially satisfied

for B0 and t↦ Bt, respectively.

b) We have to show that (Ω0,A0,P0) is a probability space. Since Ω0 is measurable

and P(Ω0) = 1, this is a special case of Problem 9. The argument of the previous

part then shows that (Xt)t⩾0 satisfies the axioms of a Brownian motion.

Remark: Method (b) also works if Ω0 is not measurable, see Exercise 9.

∎∎

Problem 1.9. Solution: The family A0 is the trace σ-algebra and it is not difficult to see that

P0 is a measure, once we know that P0 is well-defined. In order to see this, assume that

Ω0 ∩A = Ω0 ∩B ≠ ∅ for A,B ∈ A . This entails that

Ω0 ⊂ Ac ∪B = (A ∩Bc)c = (A ∖B)c

i.e. we have because of the monotonicity of the outer measure

1 −P(A ∖B) = P((A ∖B)c) = P(Ac ∪B) = P∗(Ac ∪B) ⩾ P∗(Ω0) = 1;

this shows that P(A ∖B) = 0. Switching the roles of A and B also gives P(B ∖A) = 0,

and so

P(A) = P((A ∩B) ∪ (A ∖B)) = P((A ∩B)) +P(A ∖B)
=0

= P((B ∩A)) +P(B ∖A)
=0

= P((B ∩A) ∪ (B ∖A)) = P(B).

Thus, P0 is well-defined.

∎∎

Problem 1.10. Solution: The argument of Problem 9 shows that P′ is well-defined, i.e.

independent of the choice of A2. Indeed, if

A1 ⊂ A′ ⊂ A2, P(A2 ∖A1) = 0 and B1 ⊂ A′ ⊂ B2, P(B2 ∖B1) = 0.

Then we have B2 ⊃ A1 and so

P(A2) = P(A2 ∖B2) +P(A2 ∩B2) ⩽ P(A2 ∖A1) +P(A2 ∩B2) ⩽ 0 +P(B2).

Switching the roles of the Ai and Bi gives the opposite inequality, so P(A2) = P(B2),
showing that P′ is well-defined.

All that remains is to show that A ′ is a σ-algebra. Clearly, ∅ ∈ A ′. If A′ ∈ A ′ and if

A ⊂ A′ ⊂ B satisfy A,B ∈ A and P(B ∖A) = 0, then we get

Ac,Bc ∈ A , Bc ⊂ (A′)c ⊂ Ac, A ∖B = A ∩Bc = Bc ∩ (Ac)c = Bc ∖Ac

13
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which shows that (A′)c ∈ A ′. Finally, let A′
n ∈ A ′ with An ⊂ A′

n ⊂ Bn and An,Bn ∈ A

and P(Bn ∖An) = 0. Then

⋃
n
An ⊂⋃

n
A′
n ⊂⋃

n
Bn, ⋃

n
An, ⋃

n
Bn ∈ A

and

(⋃
n
Bn) ∖ (⋃

n
An) =⋃

n
(Bn ∖⋃

k

Ak) ⊂⋃
n
(Bn ∖An)

is a countable union of null sets, hence a null set. This shows that ⋃nA′
n ∈ A ′.

∎∎

14



2 Brownian motion as a Gaussian process

Problem 2.1. Solution: Let us check first that f(u, v) ∶= g(u)g(v)(1 − sinu sin v) is indeed a

probability density. Clearly, f(u, v) ⩾ 0. Since g(u) = (2π)−1/2 e−u2/2 is even and sinu is

odd, we get

∬ f(u, v)dudv = ∫ g(u)du∫ g(v)dv − ∫ g(u) sinudu∫ g(v) sin v dv = 1 − 0.

Moreover, the density fU(u) of U is

fU(u) = ∫ f(u, v)dv = g(u)∫ g(v)dv − g(u) sinu∫ g(v) sin v dv = g(u).

This, and a analogous argument show that U,V ∼ N(0,1).

Let us show that (U,V ) is not a normal random variable. Assume that (U,V ) is normal,

then U + V ∼ N(0, σ2), i.e.

E eiξ(U+V ) = e−
1
2
ξ2σ2

. (*)

On the other hand we calculate with f(u, v) that

E eiξ(U+V ) =∬ eiξu+iξvf(u, v)dudv

= (∫ eiξug(u)du)
2

− (∫ eiξug(u) sinudu)
2

= e−ξ2 − ( 1

2i
∫ eiξu(eiu − e−iu)g(u)du)

2

= e−ξ2 − ( 1

2i
∫ (ei(ξ+1)u − ei(ξ−1)u)g(u)du)

2

= e−ξ2 − ( 1

2i
(e−

1
2
(ξ+1)2 − e−

1
2
(ξ−1)2))

2

= e−ξ2 + 1

4
(e−

1
2
(ξ+1)2 − e−

1
2
(ξ−1)2)

2

= e−ξ2 + 1

4
e−1e−ξ

2(e−ξ − eξ)2
,

and this contradicts (*).

∎∎

Problem 2.2. Solution: We have because of (2.4)

E ei⟨ξ,AG⟩ = E ei⟨A⊺ξ,G⟩ = ei⟨A⊺ξ,m⟩− 1
2
⟨A⊺ξ,CA⊺ξ⟩ = ei⟨ξ,Am⟩− 1

2
⟨ξ,ACA⊺ξ⟩.

∎∎
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Problem 2.3. Solution: We have

X á Γ Ô⇒ (X
Γ
) ∼ normal

Ex. 2Ô⇒ (X − Γ

X + Γ
) =

⎛
⎝

1 −1

1 1

⎞
⎠
(X

Γ
) ∼ normal.

Thus, X ± Γ is normal as well as

E(X ± Γ) = EX ±EΓ = 0 and V(X ± Γ) XáΓ= VX +VΓ = 2t.

Since we also have

Cov(X − Γ,X + Γ) = E(X − Γ)(X + Γ) = E(X2 − Γ2) = t − t = 0

we can use the fact that uncorrelated Gaussian vectors already have independent coordi-

nates: X − Γ áX + Γ.

∎∎

Problem 2.4. Solution: We have for all ξ ∈ R

Gn
dÐ→ G ⇐⇒ E eiξGn → E eiξG ⇐⇒ e−

1
2
tnξ2 → E eiξG ⇐⇒ tn → t.

In particular, E eiξG = e− 1
2
tξ2

.

∎∎

Problem 2.5. Show that the covariance matrix C = (tj ∧ tk)j,k=1,...,n appearing in Theorem 2.6

is positive definite. Solution: Let (ξ1, . . . , ξn) ≠ (0, . . . ,0) and set t0 = 0. Then we find

from (2.12)
n

∑
j=1

n

∑
k=1

(tj ∧ tk) ξjξk =
n

∑
j=1

(tj − tj−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

(ξj +⋯ + ξn)2 ⩾ 0. (2.1)

Equality (= 0) occurs if, and only if, (ξj + ⋯ + ξn)2 = 0 for all j = 1, . . . , n. This implies

that ξ1 = . . . = ξn = 0.

Abstract alternative: Let (Xt)t∈I be a real-valued stochastic process which has a second

moment (such that the covariance is defined!), set µt = EXt. For any finite set S ⊂ I we

pick λs ∈ C, s ∈ S. Then

∑
s,t∈S

Cov(Xs,Xt)λsλ̄t = ∑
s,t∈S

E ((Xs − µs)(Xt − µt))λsλ̄t

= E
⎛
⎝ ∑s,t∈S

(Xs − µs)λs(Xt − µt)λt
⎞
⎠

= E(∑
s∈S

(Xs − µs)λs∑
t∈S

(Xt − µt)λt)

= E
⎛
⎝
∣∑
s∈S

(Xs − µs)λs∣
2⎞
⎠
⩾ 0.

Remark: Note that this alternative does not prove that the covariance is strictly positive

definite. A standard counterexample is to take Xs ≡X.

∎∎
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Problem 2.6. Solution: These are direct & straightforward calculations.

∎∎

Problem 2.7. Solution: Let ei = (0, . . . ,0,1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i

,0 . . .) ∈ Rn be the ith standard unit vector. Then

aii = ⟨Aei, ei⟩ = ⟨Bei, ei⟩ = bii.

Moreover, for i ≠ j, we get by the symmetry of A and B

⟨A(ei + ej), ei + ej⟩ = aii + ajj + 2bij

and

⟨B(ei + ej), ei + ej⟩ = bii + bjj + 2bij

which shows that aij = bij . Thus, A = B.

We have

Let A,B ∈ Rn×n be symmetric matrices. If ⟨Ax,x⟩ = ⟨Bx,x⟩ for all x ∈ Rn, then A = B.

∎∎

Problem 2.8. Solution:

a) Xt = 2Bt/4 is a BM1: scaling property with c = 1/4, cf. 2.16.

b) Yt = B2t −Bt is not a BM1, the independent increments is clearly violated:

E(Y2t − Yt)Yt = E(Y2tYt) −EY 2
t

= E(B4t −B2t)(B2t −Bt) −E(B2t −Bt)2

(B1)= E(B4t −B2t)E(B2t −Bt) −E(B2t −Bt)2

(B1)= −E(B2
t ) = −t ≠ 0.

c) Zt =
√
tB1 is not a BM1, the independent increments property is violated:

E(Zt −Zs)Zs = (
√
t −

√
s)

√
sEB2

1 = (
√
t −

√
s)

√
s ≠ 0.

∎∎

Problem 2.9. Solution: We use formula (2.10b).

a) fB(s),B(t)(x, y) =
1

2π
√
s(t − s)

exp [−1

2
(x

2

s
+ (y − x)2

t − s )] .

b)

fB(s),B(t)∣B(1)(x, y∣B(1) = z)

=
fB(s),B(t),B(1)(x, y, z)

fB(1)(z)

17
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= 1

(2π)3/2
√
s(t − s)(1 − t)

exp [−1

2
(x

2

s
+ (y − x)2

t − s + (z − y)2

1 − t )] (2π)1/2 exp [z
2

2
] .

Thus,

fB(s),B(t)∣B(1)(x, y ∣ B(1) = 0) = 1

2π
√
s(t − s)(1 − t)

exp [−1

2
(x

2

s
+ (y − x)2

t − s + y2

1 − t)] .

Note that

x2

s
+ (y − x)2

t − s + y2

1 − t =
t

s(t − s) (x − s
t
y)

2

+ y
2

t
+ y2

1 − t =
t

s(t − s) (x − s
t
y)

2

+ y2

t(1 − t) .

Therefore,

E(B(s)B(t) ∣ B(1) = 0)

=∬ xyfB(s),B(t)∣B(1)(x, y ∣ B(1) = 0)dxdy

= 1

2π
√
s(t − s)(1 − t) ∫

∞

y=−∞
y exp [−1

2

y2

t(1 − t)]×

× ∫
∞

x=−∞
x exp [−1

2

t

s(t − s) (x − s
t
y)

2

] dx
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=
√
s(t−s)√
t

√
2π s

t
y

dy

= 1√
2π

√
t(1 − t) ∫

∞

y=−∞
y2 s

t
exp [−1

2

y2

t(1 − t)] dy

= s
t
t(1 − t) = s(1 − t).

c) In analogy to part b) we get

fB(t2),B(t3)∣B(t1),B(t4)(x, y ∣ B(t1) = u,B(t4) = z)

=
fB(t1),B(t2),B(t3),B(t4)(u,x, y, z)

fB(t1),B(t4)(u, z)

= 1

2π
[ t1(t4 − t1)
t1(t2 − t1)(t3 − t2)(t4 − t3)

]
1
2

exp [−1

2
(u

2

t1
+ (x − u)2

t2 − t1
+ (y − x)2

t3 − t2
+ (z − y)2

t4 − t3
)]×

× exp [1

2
(u

2

t1
+ (z − u)2

t4 − t1
)] .

Thus,

fB(t2),B(t3)∣B(t1),B(t4)(x, y ∣ B(t1) = B(t4) = 0)

= 1

2π
[ t1(t4 − t1)
t1(t2 − t1)(t3 − t2)(t4 − t3)

]
1
2

exp [−1

2
( x2

t2 − t1
+ (y − x)2

t3 − t2
+ y2

t4 − t3
)] .

Observe that

x2

t2 − t1
+ (y − x)2

t3 − t2
+ y2

t4 − t3
= t3 − t1

(t2 − t1)(t3 − t2)
(x − t2 − t1

t3 − t1
y)

2

+ t4 − t1
(t3 − t1)(t4 − t3)

y2.
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Therefore, we get (using physicists’ notation: ∫ dy h(y) ∶= ∫ h(y)dy for easier read-

ability)

∬ xy fB(t2),B(t3)∣B(t1),B(t4)(x, y ∣ B(t1) = B(t4) = 0)dxdy

= 1

2π(t4 − t3) ∫
∞

y=−∞
dy exp [−1

2

t4 − t1
(t3 − t1)(t4 − t3)

y2]×

× y√
2π(t2 − t1)(t3 − t2)

∫
∞

x=−∞
x exp [−1

2
(x − t2 − t1

t3 − t1
y)

2 t3 − t1
(t2 − t1)(t3 − t2)

] dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= y2√

t3−t1
t2−t1
t3−t1

= t2 − t1
t3 − t1

(t4 − t3)(t3 − t1)
t4 − t1

= (t2 − t1)(t4 − t3)
t4 − t1

.

∎∎

Problem 2.10. Solution: Let s ⩽ t. Then

C(s, t) = E(XsXt)

= E(B2
s − s)(B2

t − t)

= E(B2
s − s)([Bt −Bs +Bs]2 − t)

= E(B2
s − s)(Bt −Bs)2 + 2E(B2

s − s)Bs(Bt −Bs) +E(B2
s − s)B2

s −E(B2
s − s)t

(B1)= E(B2
s − s)E(Bt −Bs)2 + 2E(B2

s − s)BsE(Bt −Bs) +E(B2
s − s)B2

s −E(B2
s − s)t

= 0 ⋅ (t − s) + 2E(B2
s − s)Bs ⋅ 0 +EB4

s − sEB2
s − 0

= 2s2 = 2(s2 ∧ t2) = 2(s ∧ t)2.

∎∎

Problem 2.11. Solution:

a) We have for s, t ⩾ 0

m(t) = EXt = e−αt/2EBeαt = 0.

C(s, t) = E(XsXt) = e−
α
2
(s+t)EBeαsBeαt = e−

α
2
(s+t)(eαs ∧ eαt) = e−

α
2
∣t−s∣.

b) We have

P(X(t1) ⩽ x1, . . . ,X(tn) ⩽ xn) = P (B(eαt1) ⩽ eαt1/2x1, . . . ,B(eαtn) ⩽ eαtn/2xn)

Thus, the density is

fX(t1),...,X(tn)(x1, . . . , xn)

=
n

∏
k=1

eαtk/2fB(eαt1),...,B(eαtn)(eαt1/2x1, . . . , e
αtn/2xn)

=
n

∏
k=1

eαtk/2(2π)−n/2 (
n

∏
k=1

(eαtk − eαtk−1))
−1/2

e−
1
2 ∑

n
k=1(eαtk/2xk−eαtk−1/2xk−1)2/(eαtk−eαtk−1)

19
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= (2π)−n/2 (
n

∏
k=1

(1 − e−α(tk−tk−1)))
−1/2

e−
1
2 ∑

n
k=1(xk−e−α(tk−tk−1)/2xk−1)2/(1−eα(tk−tk−1))

(we use the convention t0 = −∞ and x0 = 0).

Remark: the form of the density shows that the Ornstein–Uhlenbeck is strictly stationary,

i.e.

(X(t1 + h), . . . ,X(tn + h) ∼ (X(t1), . . . ,X(tn)) ∀h > 0.

∎∎

Problem 2.12. Solution: Set

Σ ∶= ⋃
J⊂[0,∞), J countable

σ(B(t) ∶ t ∈ J)

Clearly,

⋃
t⩾0

σ(Bt) ⊂ Σ ⊂ σ(Bt ∶ t ⩾ 0) def= FB
∞ (*)

The first inclusion follows from the fact that each Bt is measurable with respect to Σ.

Let us show that Σ is a σ-algebra. Obviously,

∅ ∈ Σ and F ∈ Σ Ô⇒ F c ∈ Σ.

Let (An)n ⊂ Σ. Then, for every n there is a countable set Jn such that An ∈ σ(B(t) ∶ t ∈
Jn). Since J = ⋃n Jn is still countable we see that An ∈ σ(B(t) ∶ t ∈ J) for all n. Since

the latter family is a σ-algebra, we find

⋃
n
An ∈ σ(B(t) ∶ t ∈ J) ⊂ Σ.

Since ⋃t σ(Bt) ⊂ Σ, we get—note: FB
∞ is, by definition, the smallest σ-algebra for which

all Bt are measurable—that

FB
∞ ⊂ Σ.

This shows that Σ = FB
∞.

∎∎

Problem 2.13. Solution: Assume that the indices t1, . . . , tm and s1, . . . , sn are given. Let

{u1, . . . , up} ∶= {s1, . . . , sn} ∪ {t1, . . . , tm}. By assumption,

(X(u1), . . . ,X(up)) á (Y (u1), . . . , Y (up)).

Thus, we may thin out the indices on each side without endangering independence:

{s1, . . . , sn} ⊂ {u1, . . . , up} and {t1, . . . , tm} ⊂ {u1, . . . , up}, and so

(X(s1), . . . ,X(sn)) á (Y (t1), . . . , Y (tm)).

∎∎

20



Solution Manual. Last update February 4, 2022

Problem 2.14. Solution: Since Ft ⊂ F∞ and Gt ⊂ G∞ it is clear that

F∞ á G∞ Ô⇒ Ft á Gt.

Conversely, since (Ft)t⩾0 and (Gt)t⩾0 are filtrations we find

∀F ∈ ⋃
t⩾0

Ft, ∀G ∈ ⋃
t⩾0

Gt, ∃t0 ∶ F ∈ Ft0 , G ∈ Gt0 .

By assumption: P(F ∩G) = P(F )P(G). Thus,

⋃
t⩾0

Ft á ⋃
t⩾0

Gt.

Since the families ⋃t⩾0 Ft and ⋃t⩾0 Gt are ∩-stable (use again the argument that we have

filtrations to find for F,F ′ ∈ ⋃t⩾0 Ft some t0 with F,F ′ ∈ Ft0 etc.), the σ-algebras gener-

ated by these families are independent:

F∞ = σ (⋃
t⩾0

Ft) á σ (⋃
t⩾0

Gt) = G∞.

∎∎

Problem 2.15. Solution: Let U ∈ Rd×d be an orthogonal matrix: UU⊺ = id and set Xt ∶= UBt
for a BMd (Bt)t⩾0. Then

E
⎛
⎝

exp

⎡⎢⎢⎢⎢⎣
i
n

∑
j=1

⟨ξj , X(tj) −X(tj−1)⟩
⎤⎥⎥⎥⎥⎦

⎞
⎠
= E

⎛
⎝

exp

⎡⎢⎢⎢⎢⎣
i
n

∑
j=1

⟨ξj , UB(tj) −UB(tj−1)⟩
⎤⎥⎥⎥⎥⎦

⎞
⎠

= E
⎛
⎝

exp

⎡⎢⎢⎢⎢⎣
i
n

∑
j=1

⟨U⊺ξj , B(tj) −B(tj−1)⟩
⎤⎥⎥⎥⎥⎦

⎞
⎠

= exp

⎡⎢⎢⎢⎢⎣
−1

2

n

∑
j=1

(tj − tj−1)⟨U⊺ξj , U
⊺ξj⟩

⎤⎥⎥⎥⎥⎦

= exp

⎡⎢⎢⎢⎢⎣
−1

2

n

∑
j=1

(tj − tj−1)∣ξj ∣2
⎤⎥⎥⎥⎥⎦
.

(Observe ⟨U⊺ξj , U⊺ξj⟩ = ⟨UU⊺ξj , ξj⟩ = ⟨ξj , ξj⟩ = ∣ξj ∣2). The claim follows.

∎∎

Problem 2.16. Solution: Note that the coordinate processes b and β are independent BM1.

a) Since b á β, the process Wt = (bt + βt)/
√

2 is a Gaussian process with continuous

sample paths. We determine its mean and covariance functions:

EWt =
1√
2
(E bt +Eβt) = 0;

Cov(Ws,Wt) = E(WsWt)

= 1

2
E(bs + βs)(bt + βt)

= 1

2
(E bsbt +Eβsbt +E bsβt +Eβsβt)
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= 1

2
(s ∧ t + 0 + 0 + s ∧ t) = s ∧ t

where we used that, by independence, E buβv = E buEβv = 0. Now the claim follows

from Corollary 2.7.

b) The process Xt = (Wt, βt) has the following properties

• W and β are BM1

• E(Wtbt) = 2−1/2E(bt+βt)βt = 2−1/2(E btEβt+Eβ2
t ) = t/

√
2 ≠ 0, i.e. W and β are

NOT independent.

This means that X is not a BM2, as its coordinates are not independent.

The process Yt can be written as

1√
2

⎛
⎝
bt + βt
bt − βt

⎞
⎠
= U

⎛
⎝
bt

βt

⎞
⎠
= 1√

2

⎛
⎝

1 1

1 −1

⎞
⎠
⎛
⎝
bt

βt

⎞
⎠
.

Clearly, UU⊺ = id, i.e. Problem 2.15 shows that (Yt)t⩾0 is a BM2.

∎∎

Problem 2.17. Solution: Observe that b á β since B is a BM2. Since

EXt = 0

Cov(Xt,Xs) = EXtXs

= E(λbs + µβs)(λbt + µβt)

= λ2E bsbt + λµE bsβt + λµE btβs + µ2βsβt

= λ2E bsbt + λµE bsEβt + λµE btEβs + µ2Eβsβt

= λ2(s ∧ t) + 0 + 0 + µ2s ∧ t = (λ2 + µ2)(s ∧ t).

Thus, by Corollary 2.7, X is a BM1 if, and only if, λ2 + µ2 = 1.

∎∎

Problem 2.18. Solution: Xt = (bt, βs−t − βt), 0 ⩽ t ⩽ s, is NOT a Brownian motion: X0 =
(0, βs) ≠ (0,0).

On the other hand, Yt = (bt, βs−t − βs), 0 ⩽ t ⩽ s, IS a Brownian motion, since bt and

βs−t − βs are independent BM1, cf. Time inversion 2.15 and Theorem 2.10.

∎∎

Problem 2.19. Solution: We have

Wt = UB⊺
t =

⎛
⎝

cosα sinα

− sinα cosα

⎞
⎠
⎛
⎝
bt

βt

⎞
⎠
.

The matrix U is a rotation, hence orthogonal and we see from Problem 2.15 that W is a

Brownian motion.
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Generalization: take U orthogonal.

∎∎

Problem 2.20. Solution: If G ∼ N(0,Q) then Q is the covariance matrix, i.e. Cov(Gj ,Gk) =
qjk. Thus, we get for s < t

Cov(Xj
s ,X

k
t ) = E(Xj

sX
k
t )

= EXj
s(Xk

t −Xk
s ) +E(Xj

sX
k
s )

= EXj
s E(Xk

t −Xk
s ) + sqjk

= (s ∧ t)qjk.

The characteristic function is

E ei⟨ξ,Xt⟩ = E ei⟨Σ⊺ξ,Bt⟩ = e− t2 ∣Σ⊺ξ∣2 = e− t2 ⟨ξ,ΣΣ⊺ξ⟩,

and the transition probability is, if Q is non-degenerate,

fQ(x) =
1√

(2πt)ndetQ
exp(− 1

2t
⟨x,Qx⟩) .

If Q is degenerate, there is an orthogonal matrix U ∈ Rn×n such that

UXt = (Y 1
t , . . . , Y

k
t ,0, . . . ,0´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n−k

)⊺

where k < n is the rank of Q. The k-dimensional vector has a nondegenerate normal

distribution in Rk.

∎∎

Problem 2.21. Solution:

“⇒” Assume that we have (B1). Observe that the family of sets

⋃
0⩽u1⩽⋯⩽un⩽s, n⩾1

σ(Bu1 , . . . ,Bun)

is a ∩-stable family. This means that it is enough to show that

Bt −Bs á (Bu1 , . . . ,Bun) for all t ⩾ s ⩾ 0.

By (B1) we know that

Bt −Bs á (Bu1 ,Bu2 −Bu1 , . . . ,Bun −Bun−1)

and so

Bt −Bs á

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0

⋮ ⋮ ⋮ ⋱ 0

1 1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Bu1

Bu2 −Bu1

Bu3 −Bu2

⋮
Bun −Bun−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Bu1

Bu2

Bu3

⋮
Bun

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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“⇐” Let 0 = t0 ⩽ t1 < t2 < . . . < tn <∞, n ⩾ 1. Then we find for all ξ1, . . . , ξn ∈ Rd

E (ei∑nk=1⟨ξk, B(tk)−B(tk−1)⟩) = E (ei⟨ξn, B(tn)−B(tn−1)⟩ ⋅ ei∑n−1
k=1 ⟨ξk, B(tk)−B(tk−1)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ftn−1 mble., hence áB(tn)−B(tn−1)

)

= E (ei⟨ξn, B(tn)−B(tn−1)⟩) ⋅E (ei∑n−1
k=1 ⟨ξk, B(tk)−B(tk−1)⟩)

⋮

=
n

∏
k=1

E (ei⟨ξk, B(tk)−B(tk−1)⟩).

This shows (B1).

∎∎

Problem 2.22. Solution: Reflection invariance of BM, cf. 2.12, shows

τa = inf{s ⩾ 0 ∶ Bs = a} ∼ inf{s ⩾ 0 ∶ −Bs = a} = inf{s ⩾ 0 ∶ Bs = −a} = τ−a.

The scaling property 2.16 of BM shows for c = 1/a2

τa = inf{s ⩾ 0 ∶ Bs = a} ∼ inf{s ⩾ 0 ∶ aBs/a2 = a}

= inf{a2r ⩾ 0 ∶ aBr = a}

= a2 inf{r ⩾ 0 ∶ Br = 1} = a2τ1.

∎∎

Problem 2.23. Solution:

a) Not stationary:

EW 2
t = C(t, t) = E(B2

t − t)2 = E(B4
t − 2tB2

t + t2) = 3t2 − 2t2 + t2 = 2t2 ≠ const.

b) Stationary. We have EXt = 0 and

EXsXt = e−α(t+s)/2EBeαsBeαt = e−α(t+s)/2(eαs ∧ eαt) = e−α∣t−s∣/2,

i.e. it is stationary with g(r) = e−α∣r∣/2.

c) Stationary. We have EYt = 0. Let s ⩽ t. Then we use EBsBt = s ∧ t to get

EYsYt = E(Bs+h −Bs)(Bt+h −Bt)

= EBs+hBt+h −EBs+hBt −EBsBt+h +EBsBt
= (s + h) ∧ (t + h) − (s + h) ∧ t − s ∧ (t + h) + s ∧ t

= (s + h) − (s + h) ∧ t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if t > s + h ⇐⇒ h < t − s

h − (t − s), if t ⩽ s + h ⇐⇒ h ⩾ t − s.

Swapping the roles of s and t finally gives: the process is stationary with g(t) =
(h − ∣t∣)+ = (h − ∣t∣) ∨ 0.
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d) Not stationary. Note that

EZ2
t = EB2

et = et ≠ const.

∎∎

Problem 2.24. Solution: Clearly, t↦Wt is continuous for t ≠ 1. If t = 1 we get

lim
t↑1

Wt(ω) =W1(ω) = B1(ω)

and

lim
t↓1

Wt(ω) = B1(ω) − lim
t↓1

tβ1/t(ω) − β1(ω) = B1(ω);

this proves continuity for t = 1.

Let us check that W is a Gaussian process with EWt = 0 and EWsWt = s ∧ t. By

Corollary 2.7, W is a BM1.

Pick n ⩾ 1 and t0 = 0 < t1 < . . . < tn.

Case 1: If tn ⩽ 1, there is nothing to show since (Bt)t∈[0,1] is a BM1.

Case 2: Assume that tn > 1. Then we have

⎛
⎜⎜⎜⎜⎜⎜
⎝

Wt1

Wt2

⋮
Wtn

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 t1 0 0 ⋯ 0 −1

1 0 t2 0 ⋯ 0 −1

⋮ ⋮ 0 t3 ⋯ ⋮ ⋮
1 0 0 0 ⋯ tn −1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1

β1/t1
⋮

β1/tn
β1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and since

B1 á (β1/t1 , . . . , β1/tn , β1)⊺

are both Gaussian, we see that (Wt1 , . . . ,Wtn) is Gaussian.

Further, let t ⩾ 1 and 1 ⩽ ti < tj :

EWt = EB1 + tEβ1/t −Eβ1 = 0

EWtiWtj = E(B1 + tiβ1/ti − β1)(B1 + tjβ1/tj − β1)

= 1 + titjt−1
j − tit−1

i − tjt−1
j + 1 = ti = ti ∧ tj .

Case 3: Assume that 0 < t1 < . . . < tk ⩽ 1 < tk+1 < . . . < tn. Then we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Wt1

Wt2

⋮
Wtk

⋮
Wtn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0

0 ⋱ 0

⋮ ⋱ ⋮
0 0 ⋯ 1

1 tk+1 0 ⋯ 0 −1

1 0 tk+2 0 −1

⋮ ⋮ ⋱ ⋮
1 0 ⋯ tn −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Bt1

⋮
⋮
Btk

B1

β1/tk+1

⋮
β1/tn
β1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Since

(Bt1 , . . . ,Btk ,B1) á (β1/tk+1
, . . . , β1/tn , β1)

are Gaussian vectors, (Wt1 , . . . ,Wtn) is also Gaussian and we find

EWt = 0

EWtiWtj = EBti(B1 + tjβ1/tj − β1) = ti = ti ∧ tj

for i ⩽ k < j.

∎∎

Problem 2.25. Solution: The process X(t) = B(et) has no memory since (cf. Problem 2.21)

σ(B(s) ∶ s ⩽ ea) á σ(B(s) −B(ea) ∶ s ⩾ ea)

and, therefore,

σ(X(t) ∶ t ⩽ a) = σ(B(s) ∶ 1 ⩽ s ⩽ ea) á σ(B(ea+s) −B(ea) ∶ s ⩾ 0)

= σ(X(t + a) −X(a) ∶ t ⩾ 0).

The process X(t) ∶= e−t/2B(et) is not memoryless. For example, X(a + a) −X(a) is not

independent of X(a):

E(X(2a) −X(a))X(a) = E (e−aB(e2a) − e−a/2B(ea))e−a/2B(ea) = e−3a/2ea − e−aea ≠ 0.

∎∎

Problem 2.26. Solution: The process Wt = Ba−t−Ba,0 ⩽ t ⩽ a clearly satisfies (B0) and (B4).

For 0 ⩽ s ⩽ t ⩽ a we find

Wt −Ws = Ba−t −Ba−s ∼ Ba−s −Ba−t ∼ Bt−s ∼ N(0, (t − s) id)

and this shows (B2) and (B3).

For 0 = t0 < t1 < . . . < tn ⩽ a we have

Wtj −Wtj−1 = Ba−tj −Ba−tj−1 ∼ Ba−tj−1 −Ba−tj ∀j

and this proves that W inherits (B1) from B.

∎∎

Problem 2.27. Solution: We know from Paragraph 2.17 that

lim
t↓0

tB(1/t) = 0 Ô⇒ lim
s↑∞

B(s)
s

= 0 a.s.

Moreover,

E(B(s)
s

)
2

= s

s2
= 1

s

s→∞ÐÐÐ→ 0
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i.e. we get also convergence in mean square.

Remark: a direct proof of the SLLN is a bit more tricky. Of course we have by the classical

SLLN that
Bn
n

=
∑nj=1(Bj −Bj−1)

n

SLLNÐÐÐ→
n→∞

0 a.s.

But then we have to make sure that Bs/s converges. This can be done in the following

way: fix s > 0. Then there is a unique interval (n,n + 1] such that s ∈ (n,n + 1]. Thus,

∣Bs
s

∣ ⩽ ∣Bs −Bn+1

s
∣ + ∣Bn+1

n + 1
∣ ⋅ n + 1

s
⩽ supn⩽s⩽n+1 ∣Bs −Bn+1∣

n
+ n + 1

n
∣Bn
n

∣

and we have to show that the expression with the sup tends to zero. This can be done

by showing, e.g., that the L2-limit of this expression goes to zero (using the reflection

principle) and with a subsequence argument.

∎∎

Problem 2.28. Solution: Throughout this solution we suppress the superscript α.

a) Assume that the first condition holds. Then

E(Bs −Bt)2 = E(BtBt) +E(BsBs) − 2E(BtBs)

= ∣t∣α + ∣s∣α − ∣s∣α − ∣t∣α + ∣s − t∣α.

Moreover E(B2
0) = E(B0B0) = 0, so B0 = 0.

Conversely, assume that the second set of conditions holds. Using B0 = 0 we have

2E(BsBt) = E(BsBs) +E(BtBt) −E[(Bs −Bt)(Bs −Bt)]

= E[(Bs −B0)(Bs −B0)] +E[(Bt −B0)(Bt −B0)] −E[(Bs −Bt)(Bs −Bt)]

= ∣s − 0∣α + ∣t − 0∣α − ∣s − t∣α

and the first condition follows.

b) Since (Bt1 , . . . ,Btn) has to be a Gaussian vector, it is enough to specify its mean and

its covariance function. We have

m = 0 ∈ Rn and C = 1

2
(∣ti∣α + ∣tk∣α − ∣ti − tk∣α)i,k=1,...,n .

In order to get the density, we have to invert C and then the density is given by the

formula (2.10a).

In order to get the existence of a fBM we need to appeal to Kolmogorov’s existence

theorem, see Theorem 4.8. In order to apply it, we have to show a compatibility

condition for the vectors, namely that the law of (Bt1 , . . . ,Btn) can be obtained by

projection from the law of (Bt1 , . . . ,Btn ,Btn+1). Note that t1, . . . , tn, tn+1 are arbitrary

and do not have any ordering.
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To do so, denote by Cn and Cn+1 the respective covariance matrices and write

(ξ, ξn+1) = (ξ1, . . . , ξn, ξn+1) ∈ Rn+1. Then we have to show that

⟨(ξ,0)⊺,Cn+1(ξ,0)⊺⟩ = ⟨ξ⊺,Cnξ⊺⟩

since these are the exponents (up to the factor 1
2) of the characteristic functions

of the vectors (Bt1 , . . . ,Btn ,Btn+1) and (Bt1 , . . . ,Btn); taking ξn+1 = 0 just means

projection. The latter identity is, however, clear as Cn appears as the largest principal

minor matrix (the top left n × n block) of Cn+1—just have a look at the definition.

c) If we take α = 1, we get E(BtBs) = s ∧ t, i.e. we have a Brownian motion with

two-sided index set: Bt = W ′
t if t ⩾ 0 and Bt = W ′′

−t if t ⩽ 0 where W ′,W ′′ are two

independent Brownian motions which are glued together back-to-back. In view of

the time inversion property (Paragraph 2.15) it is easy to see that (Bt −B−a)t⩾−a is

a BM for every a > 0.

If we take α = 2, we end up with a degenerate process Bt = tB1. This follows from

the fact that

E[(Bt − tB1)2] = E(B2
t ) − 2tE(BtB1) + t2E(B2

1) = t2 − 2
t

2
(t2 + 1 − (t − 1)2) + t2 = 0.

d) Let us check the second criterion for Wt ∶= c−HBct. EWt = 0 and W0 = 0 are clear.

We have

E[(Wt −Ws)2] = c−2H E[(Bct −Bcs)2] = c−2H ∣ct − cs∣α = ∣t − s∣α

since 2H = α.

e) The law of Bt −Bs depends only on E(Bt −Bs) = 0 and E[(Bt −Bs)2] = ∣t − s∣α and

both quantities depend only on the time-difference. Hence, Bt −Bs ∼ Bt+h −Bs+h.

f) Consider the increments Bt −Bs and Bs −B0 if 0 < s < t. Then

E[(Bt −Bs)Bs] = E(BtBs) −E(B2
s)

= 1

2
(tα + sα − (t − s)α) − sα

= 1

2
(tα − sα − (t − s)α)

and if you compare this with

E(Bt −Bs)EBs = 0

then you see that these two quantities conicide if, and only if, α = 1. Thus if α ≠ 1,

the increments are not even uncorrelated, hence not independent. (In the case α = 1,

uncorrelated gives independent, since (Bt −Bs,Bs) is jointly Gaussian!).

∎∎
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3 Constructions of Brownian motion

Problem 3.1. Solution: The partial sums

WN(t, ω) =
N−1

∑
n=0

Gn(ω)Sn(t), t ∈ [0,1],

converge as N → ∞ P-a.s. uniformly for t towards B(t, ω), t ∈ [0,1]—cf. Problem 3.3.

Therefore, the random variables

∫
1

0
WN(t)dt =

N−1

∑
n=0

Gn∫
1

0
Sn(t)dt

P -a.s.ÐÐÐ→
N→∞

X = ∫
1

0
B(t)dt.

This shows that ∫ 1
0 WN(t)dt is the sum of independent N(0,1)-random variables, hence

itself normal and so is its limit X.

From the definition of the Schauder functions (cf. Figure 3.2) we find

∫
1

0
S0(t)dt =

1

2

∫
1

0
S2j+k(t)dt =

1

4
2−

3
2
j , k = 0,1, . . . ,2j − 1, j ⩾ 0.

and this shows

∫
1

0
W2n+1(t)dt = 1

2
G0 +

1

4

n

∑
j=0

2j−1

∑
l=0

2−
3
2
jG2j+l.

Consequently, since the Gj are iid N(0,1) random variables,

E∫
1

0
W2n+1(t)dt = 0,

V∫
1

0
W2n+1(t)dt = 1

4
+ 1

16

n

∑
j=0

2j−1

∑
l=0

2−3j

= 1

4
+ 1

16

n

∑
j=0

2−2j

= 1

4
+ 1

16

1 − 2−2(n+1)

1 − 1
4

ÐÐÐ→
n→∞

1

4
+ 1

16

4

3
= 1

3
.

This means that

X = 1

2
G0 +

∞
∑
j=0

1

4
2−

3
2
j

2j−1

∑
l=0

G2j+l

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼N(0,2j)

where the series converges P-a.s. and in mean square, and X ∼ N(0, 1
3).

∎∎
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Problem 3.2. Solution: Denote by λ Lebesgue measure on [0,1].

a) By the independence of the random variables Gn ∼ N(0,1) and Parseval’s identity,

we have for M < N

E(∣WN(B) −WM(B)∣2) = E
⎡⎢⎢⎢⎢⎣

N−1

∑
m,n=M

GmGn⟨1B, φm⟩L2⟨1B, φn⟩L2

⎤⎥⎥⎥⎥⎦

=
N−1

∑
m,n=M

E(GmGn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0 (n≠m), or =1 (n=m)

⟨1B, φm⟩L2⟨1B, φn⟩L2

=
N−1

∑
n=M

⟨1B, φn⟩2
L2 ÐÐÐÐÐ→

M,N→∞
0.

This shows that W (B) = L2(P)-limN→∞WN(B) exists.

b) We have EW (A)W (B) = λ(A∩B). This can be seen as follows: Using the Cauchy-

Schwarz inequality, we find

E(∣WN(A)WN(B) −W (A)W (B)∣)

⩽ E(∣WN(A)(WN(B) −W (B))∣) +E(∣W (B)(WN(A) −W (A))∣)

⩽
√
E(∣WN(A)∣2)

√
E(∣WN(B) −W (B)∣2) +

√
E(∣W (B)∣2)

√
E(∣WN(A) −W (A)∣2)

By part a), W (A) = L2(P)-limN→∞WN(A) and W (B) = L2(P)-limN→∞WN(B),
and therefore this calculation shows W (A)W (B) = L1(P)-limN→∞WN(A)WN(B).
A similar calculation as in the first part yields

E(W (A)W (B)) = lim
N→∞

E(WN(A)WN(B))

= lim
N→∞

N−1

∑
m,n=0

E(GmGn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0 (n≠m), or =1 (n=m)

⟨1A, φm⟩L2⟨1B, φn⟩L2

= lim
N→∞

N−1

∑
n=0

⟨1A, φn⟩L2⟨1B, φn⟩L2

= λ(A ∩B)

where we used Parseval’s identity for the last step.

c) We have seen in part b) that

µ(B) ∶= E(∣W (B)∣2) = λ(B).

Consequently, µ is a measure. In contrast, the mapping B ↦ W (B) is not non-

negative (and random), hence it does not define a measure on [0,1]. In fact, it is

not even a signed measure: Since W (B) is a random variable (and an element of the

space L2 consisting of equivalence classes), it is only defined up to a null set, and

the null set can (and will) depend on B. This means that we run into difficulties

when we consider σ-additivity, since there are more than countably many ways to

represent a set B as a countable union of disjoint sets Bj . Thus, the exceptional null

sets may become uncontrollable . . .
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d) Let

f(t) =
l

∑
i=1

fi1Ai(t) =
m

∑
j=1

gj1Bj(t)

representations of a step function f ∈ S. Without loss of generality we may assume

[0,1] = ⋃li=1Ai = ⋃mj=1Bj . Choose a common disjoint refinement of A1, . . . ,Al and

B1, . . . ,Bm, i.e. disjoint sets C1, . . . ,Cn ∈ B[0,1] such that

Ai = ⊍
k∶Ck⊂Ai

Ck and Bj = ⊍
k∶Ck⊂Bj

Ck.

For

hk ∶= ∑
i∶Ck⊂Ai

fi = ∑
j∶Ck⊂Bj

gj

we have

f(t) =
l

∑
i=1

fi1Ai(t) =
m

∑
j=1

gj1Bj(t) =
n

∑
k=1

hk1Ck(t).

Since (all limits in the next calculation are L2(P)-limits)

W (A ∪B) = lim
N→∞

N−1

∑
n=0

Gn⟨1A + 1B, φn⟩L2

= lim
N→∞

N−1

∑
n=0

Gn⟨1A, φn⟩L2 + lim
N→∞

N−1

∑
n=0

Gn⟨1B, φn⟩L2

=W (A) +W (B)

for any two disjoint sets A,B ∈ B[0,1], we conclude

l

∑
i=1

fiW (Ai) =
l

∑
i=1

fiW
⎛
⎝ ⊍
k∶Ck⊂Ai

Ck
⎞
⎠

=
l

∑
i=1

∑
k∶Ck⊂Ai

fiW (Ck)

=
n

∑
k=1

∑
i∶Ck⊂Ai

fiW (Ck)

=
n

∑
k=1

dkW (Ck)

= . . . =
m

∑
j=1

gjW (Bj).

e) Let f ∈ S be given by

f(t) =
m

∑
j=1

cj1Bj(t)

where cj ∈ R, Bj ∈ B[0,1] for j = 1, . . . ,m. Using the definition of I, we get

E(∣I(f)∣2) =
m

∑
j=1

m

∑
k=1

cjckE(W (Bj)W (Bk))

31



R.L. Schilling: Brownian Motion (3rd edn)

b)=
m

∑
j=1

m

∑
k=1

cjckλ(Bj ∩Bk)

= ∫
1

0

⎛
⎝
m

∑
j=1

cj1Bj(t)
⎞
⎠

2

λ(dt) = ∫
1

0
∣f ∣2 dλ.

Since the family of step functions S is dense in L2([0,1], λ), the isometry allows us

to extend the operator I to L2([0,1], λ): Let f ∈ L2([0,1], λ), then there exists a

sequence (fn)n∈N ⊂ S such that fn → f in L2([0,1], λ). From

E(∣I(fn) − I(fm)∣2) = E(∣I(fn − fm)∣2) = ∫
1

0
∣fn − fm∣2 dλ

we see that the sequence (I(fn))n∈N is a Cauchy sequence in L2(P). Therefore, the

limit

I(f) ∶= L2(P)- lim
n→∞

I(fn)

exists. Note that the isometry implies that I(f) does not depend on the approxi-

mating sequence (fn)n∈N. Consequently, I is well-defined.

Remark: Using the results from Section 3.1 it is clear that Wt ∶=W ([0, t]), t ∈ [0,1], has

all properties of a Brownian motion. As usual, the continuity of the paths t ↦Wt is not

obvious and needs arguments along the lines of, say, the Lévy–Ciesielski construction in

Section 3.2.

∎∎

Problem 3.3. Solution:

a) From the definition of the Schauder functions Sn(t), n ⩾ 0, t ∈ [0,1], we find

0 ⩽ Sn(t) ∀n, t

S2j+k(t) ⩽ S2j+k((2k + 1)/2j+1) = 2−j/2/2j+1 = 1

2
2−j/2 ∀j, k, t

2j−1

∑
k=0

S2j+k(t) ⩽
1

2
2−j/2 (disjoint supports!)

By assumption,

∃C > 0, ∃ε ∈ (0, 1
2), ∀n ∶ ∣an∣ ⩽ C ⋅ nε.

Thus, we find

∞
∑
n=0

∣an∣Sn(t) ⩽ ∣a0∣ +
∞
∑
j=0

2j−1

∑
k=0

∣a2j+k∣S2j+k(t)

⩽ ∣a0∣ +
∞
∑
j=0

2j−1

∑
k=0

C ⋅ (2j+1)ε S2j+k(t)

⩽ ∣a0∣ +
∞
∑
j=0

C ⋅ 2(j+1)ε 1

2
2−j <∞.

(The series is convergent since ε < 1/2).

This shows that ∑∞
n=0 anSn(t) converges absolutely and uniformly for t ∈ [0,1].
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b) For C >
√

2 we find from

P (∣Gn∣ >
√

logn) ⩽
√

2

π

1

C
√

logn
e−

1
2
C2 logn ⩽

√
2

π

1

C
n−C

2/2 ∀n ⩾ 3

that the following series converges:

∞
∑
n=1

P (∣Gn∣ >
√

logn) <∞.

By the Borel–Cantelli Lemma we find that Gn(ω) = O(
√

logn) for almost all ω, thus

Gn(ω) = O(nε) for any ε ∈ (0,1/2).

From part a) we know that the series ∑∞
n=0Gn(ω)Sn(t) converges a.s. uniformly for

t ∈ [0,1].

∎∎

Problem 3.4. Solution: Set ∥f∥p ∶= (E ∣f ∣p)1/p

Solution 1: We observe that the space Lp(Ω,A ,P;S) = {X ∶ X ∈ S, ∥d(X,0)∥p < ∞} is

complete and that the condition stated in the problem just says that (Xn)n is a Cauchy

sequence in the space Lp(Ω,A ,P;S). A good reference for this is, for example, the

monograph by F. Trèves [23, Chapter 46]. You will find the ‘pedestrian’ approach as

Solution 2 below.

Solution 2: By assumption

∀k ⩾ 0 ∃Nk ⩾ 1 ∶ sup
m⩾Nk

∥d(XNk ,Xm)∥p ⩽ 2−k.

Without loss of generality we can assume that Nk ⩽ Nk+1. In particular

∥d(XNk ,XNk+1
)∥p ⩽ 2−k

∀l>kÔ⇒ ∥d(XNk ,XNl)∥p ⩽
l−1

∑
j=k

2−j ⩽ 2

2k
.

Fix m ⩾ 1. Then we see that

∥d(XNk ,Xm) − d(XNl ,Xm)∥p ⩽ ∥d(XNk ,XNl)∥p ÐÐÐ→
k,l→∞

0.

This means that that (d(XNk ,Xm))k⩾0 is a Cauchy sequence in Lp(P;R). By the com-

pleteness of the space Lp(P;R) there is some fm ∈ Lp(P;R) such that

d(XNk ,Xm) in LpÐÐÐ→
k→∞

fm

and, for a subsequence (nk) ⊂ (Nk)k we find

d(Xnk ,Xm) almost surelyÐÐÐÐÐÐÐ→
k→∞

fm.

The subsequence nk may also depend on m. Since (nk(m))k is still a subsequence of

(Nk), we still have d(Xnk(m),Xm+1) → fm+1 in Lp, hence we can find a subsequence
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(nk(m + 1))k ⊂ (nk(m))k such that d(Xnk(m+1),Xm+1) → fm+1 a.s. Iterating this we see

that we can assume that (nk)k does not depend on m.

In particular, we have almost surely

∀ε > 0 ∃L = L(ε) ⩾ 1 ∀k ⩾ L ∶ ∣d(Xnk ,Xm) − fm∣ ⩽ ε.

Moreover,

lim
m→∞

∥fm∥p = lim
m→∞

∥ lim
k→∞

d(Xnk ,Xm)∥p ⩽ lim
m→∞

lim
k→∞

∥d(Xnk ,Xm)∥p

⩽ lim
k→∞

sup
m⩾nk

∥d(Xnk ,Xm)∥p = 0.

Thus, fm → 0 in Lp and, for a subsequence mk we get

∀ε > 0 ∃K =K(ε) ⩾ 1 ∀r ⩾K ∶ ∣fmr ∣ ⩽ ε.

Therefore,

d(Xnk ,Xnl) ⩽ d(Xnk ,Xmr) + d(Xnk ,Xmr)

⩽ ∣d(Xnk ,Xmr) − fmr ∣ + ∣d(Xnk ,Xmr) − fmr ∣ + 2∣fmr ∣.

Fix ε > 0 and pick r >K. Then let k, l →∞. This gives

d(Xnk ,Xnl) ⩽ ∣d(Xnk ,Xmr) − fmr ∣ + ∣d(Xnk ,Xmr) − fmr ∣ + 2ε ⩽ 4ε ∀k, l ⩾ L(ε).

Since S is complete, this proves that (Xnk)k⩾0 converges to some X ∈ S almost surely.

Remark: If we replace the condition of the Problem by

lim
n→∞

E(sup
m⩾n

dp(Xn,Xm)) = 0

things become MUCH simpler:

This condition says that the sequence dn ∶= supm⩾n d
p(Xn,Xm) converges in Lp(P;R) to

zero. Hence there is a subsequence (nk)k such that

lim
k→∞

sup
m⩾nk

d(Xnk ,Xm) = 0

almost surely. This shows that d(Xnk ,Xnl)→ 0 as k, l →∞, i.e. we find by the complete-

ness of the space S that Xnk →X.

∎∎

Problem 3.5. Solution: Fix n ⩾ 1, 0 ⩽ t1 ⩽ . . . ⩽ tn and Borel sets A1, . . . ,An. By assumption,

we know that

P(Xt = Yt) = 1 ∀t ⩾ 0 Ô⇒ P(Xtj = Ytj j = 1, . . . , n) = P
⎛
⎝
n

⋂
j=1

{Xtj = Ytj}
⎞
⎠
= 1.
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Thus,

P
⎛
⎝
n

⋂
j=1

{Xtj ∈ Aj}
⎞
⎠
= P

⎛
⎝
n

⋂
j=1

{Xtj ∈ Aj} ∩
n

⋂
j=1

{Xtj = Ytj}
⎞
⎠

= P
⎛
⎝
n

⋂
j=1

{Xtj ∈ Aj} ∩ {Xtj = Ytj}
⎞
⎠

= P
⎛
⎝
n

⋂
j=1

{Ytj ∈ Aj} ∩ {Xtj = Ytj}
⎞
⎠

= P
⎛
⎝
n

⋂
j=1

{Ytj ∈ Aj}
⎞
⎠
.

∎∎

Problem 3.6. Solution: indistinguishable Ô⇒ modification:

P(Xt = Yt ∀t ⩾ 0) = 1 Ô⇒ ∀t ⩾ 0 ∶ P(Xt = Yt) = 1.

modification Ô⇒ equivalent: see the previous Problem 3.5

Now assume that I is countable or t↦Xt, t↦ Yt are (left or right) continuous.

modification Ô⇒ indistinquishable: By assumption, P(Xt ≠ Yt) = 0 for any t ∈ I. Let

D ⊂ I be any countable dense subset. Then

P
⎛
⎝⋃q∈D

{Xq ≠ Yq}
⎞
⎠
⩽ ∑
q∈D

P(Xq ≠ Yq) = 0

which means that P(Xq = Yq∀q ∈D) = 1. If I is countable, we are done. In the other case

we have, by the density of D,

P(Xt = Yt ∀t ∈ I) = P(lim
D∋q

Xq = lim
D∋q

Yq ∀t ∈ I) ⩾ P (Xq = Yq ∀q ∈D) = 1.

equivalent /Ô⇒ modification: To see this let (Bt)t⩾0 and (Wt)t⩾0 be two independent

one-dimensional Brownian motions defined on the same probability space. Clearly,

these processes have the same finite-dimensional distributions, i.e. they are equivalent.

On the other hand, for any t > 0

P(Bt =Wt) = ∫
∞

−∞
P(Bt = y) P(Wt ∈ dy) = ∫

∞

−∞
0 P(Wt ∈ dy) = 0.

∎∎

Problem 3.7. Solution: We use the characterization from Lemma 2.8. Its proof shows that

we can derive (2.15)

E

⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
i
n

∑
j=1

⟨ξj ,Xqj −Xqj−1⟩ + i⟨ξ0,Xq0⟩
⎞
⎠

⎤⎥⎥⎥⎥⎦
= exp

⎛
⎝
−1

2

n

∑
j=1

∣ξj ∣2(qj − qj−1)
⎞
⎠
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on the basis of (B0)–(B3) for (Bq)q∈Q∩[0,∞) and q0 = 0, q1 . . . , qn ∈ Q ∩ [0,∞).

Now set t0 = q0 = 0 and pick t1, . . . , tn ∈ R and approximate each tj by a rational sequence

q
(k)
j , k ⩾ 1. Since (2.15) holds for q

(k)
j , j = 0, . . . , n and every k ⩾ 0, we can easily perform

the limit k → ∞ on both sides (on the left we use dominated convergence!) since Bt is

continuous.

This proves (2.15) for (Bt)t⩾0, and since (Bt)t⩾0 has continuous paths, Lemma 2.8 proves

that (Bt)t⩾0 is a BM1.

∎∎

Problem 3.8. Solution: Without loss of generality, we assume that all random variables

have values in Rd. We use Kac’s characterization of independent random variables (Kac’s

theorem). Fix ξ, η, ζ ∈ Rd. Then

E ei⟨ξ,X
′⟩+i⟨η,X′′⟩+i⟨ζ,Z⟩ (X′,X′′)áZ= E ei⟨ξ,X

′⟩+i⟨η,X′′⟩E ei⟨ζ,Z⟩

X′áX′′
= E ei⟨ξ,X

′⟩E ei⟨η,X′′⟩E ei⟨ζ,Z⟩.

∎∎

Problem 3.9. Solution: The joint density of (W (t0),W (t),W (t1)) is

ft0,t,t1(x0, x, x1) =
1

(2π)3/2
1√

(t1 − t)(t − t0)t0
exp(−1

2
[(x1 − x)2

t1 − t
+ (x − x0)2

t − t0
+ x

2
0

t0
])

while the joint density of (W (t0),W (t1)) is

ft0,t1(x0, x1) =
1

(2π)
1√

(t1 − t0)t0
exp(−1

2
[(x1 − x0)2

t1 − t0
+ x

2
0

t0
]) .

The conditional density of W (t) given (W (t0),W (t1)) is

ft∣t0,t1(x ∣ x1, x2)

= ft0,t,t1(x0, x, x1)
ft0,t1(x0, x1)

=
1

(2π)3/2 1√
(t1−t)(t−t0)t0

exp(−1
2 [ (x1−x)2

t1−t + (x−x0)2

t−t0 + x2
0

t0
])

1
(2π)

1√
(t1−t0)t0

exp(−1
2 [ (x1−x0)2

t1−t0 + x2
0

t0
])

= 1√
2π

¿
ÁÁÀ (t1 − t0)

(t1 − t)(t − t0)
exp(−1

2
[(x1 − x)2

t1 − t
+ (x − x0)2

t − t0
− (x1 − x0)2

t1 − t0
])

= 1√
2π

¿
ÁÁÀ (t1 − t0)

(t1 − t)(t − t0)
exp(−1

2
[(t − t0)(x1 − x)2 + (t1 − t)(x − x0)2

(t1 − t)(t − t0)
− (x1 − x0)2

t1 − t0
])

Now consider the argument in the square brackets [⋯] of the exp-function

[(t − t0)(x1 − x)2 + (t1 − t)(x − x0)2

(t1 − t)(t − t0)
− (x1 − x0)2

t1 − t0
]
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= (t1 − t0)
(t1 − t)(t − t0)

[ t − t0
t1 − t0

(x1 − x)2 + t1 − t
t1 − t0

(x − x0)2 − (t1 − t)(t − t0)
(t1 − t0)2

(x1 − x0)2]

= (t1 − t0)
(t1 − t)(t − t0)

[ ( t − t0
t1 − t0

+ t1 − t
t1 − t0

)x2 + ( t − t0
t1 − t0

− (t1 − t)(t − t0)
(t1 − t0)2

)x2
1

+ ( t1 − t
t1 − t0

− (t1 − t)(t − t0)
(t1 − t0)2

)x2
0

− 2
t − t0
t1 − t0

x1x − 2
t1 − t
t1 − t0

xx0 + 2
(t1 − t)(t − t0)

(t1 − t0)2
x1x0]

= (t1 − t0)
(t1 − t)(t − t0)

[x2 + (t − t0)2

(t1 − t0)2
x2

1 +
(t1 − t)2

(t1 − t0)2
x2

0

− 2
t − t0
t1 − t0

x1x − 2
t1 − t
t1 − t0

xx0 + 2
(t1 − t)(t − t0)

(t1 − t0)2
x1x0]

= (t1 − t0)
(t1 − t)(t − t0)

[x − t − t0
t1 − t0

x1 −
t1 − t
t1 − t0

x0]
2

= (t1 − t0)
(t1 − t)(t − t0)

[x − ( t − t0
t1 − t0

x1 +
t1 − t
t1 − t0

x0)]
2

.

Set

σ2 = (t1 − t)(t − t0)
(t1 − t0)

and m = t − t0
t1 − t0

x1 +
t1 − t
t1 − t0

x0

then our calculation shows that

ft∣t0,t1(x ∣ x1, x2) =
1√
2π σ

exp((x −m)2

2σ2
) .

∎∎

Problem 3.10. Solution: Following the hint we first construct two independent Brownian

motions (wlog on the same probability space), say (B′
t)t⩾0 and (B′′

t )t⩾0 and define a new

process for any t ∈ R by

Wt ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

B′
t, t ⩾ 0,

B′′
−t, t < 0.

Obviously, W0 = 0 a.s., t↦Wt is continuous a.s. If s, t ⩾ 0 or s, t ⩽ 0, the properties (B2),

(B3) are clear. Thus, assume that s < 0 < t. Then, by the independence of B′ and B′′

Wt −Ws = (B′
t −B′

0) + (B′′
0 −B′′

−s) ∼ N(0, t)⊗d ∗N(0,−s)⊗d = N(0, t − s)⊗d.

This proves (B2), (B3).

Finally, assume that −∞ < sm < sm−1 < ⋅ ⋅ ⋅ < s1 ⩽ 0 ⩽ t1 < ⋅ ⋅ ⋅ < tn < ∞. We introduce,

artificially, s0 = 0 = t0. Then the increments of the W -process are given by

Wsm−1 −Wsm , . . .Ws1 −Ws2 ,

Wt1 −Ws1 = (Wt1 −Wt0) + (Ws0 −Ws1),

Wt2 −Wt1 , . . .Wtn −Wtn−1
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and, by definition, these are

B′′
−sm−1

−B′′
−sm , . . .B

′′
−s1 −B

′′
−s2 ,

B′
t1 −B

′′
−s1 = (B′

t1 −B
′
t0) + (B′′

−s0 −B
′′
−s1),

B′
t2 −B

′
t1 , . . .B

′
tn −B

′
tn−1

and it is clear from this representation that the increments of W are independent, since

B′ á B′′ and since the increments of B′ and B′′ are independent.

∎∎
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4 The canonical model

Problem 4.1. Solution: Let F ∶ R→ [0,1] be a distribution function. We begin with a general

lemma: F has a unique generalized monotone increasing right continuous inverse:

F−1(u) = G(u) = inf{x ∶ F (x) > u}

[ = sup{x ∶ F (x) ⩽ u}].
(4.1)

We have F (G(u)) = u if F (t) is continuous in t = G(u), otherwise, F (G(u)) ⩾ u.

Indeed: For those t where F is strictly increasing and continuous, there is nothing to show.

Let us look at the two problem cases: F jumps and F is flat.

G(u)
u

G(v−) G(v)

v

G(w)

w

w+

w−

F (t)

t

G(u)

u

1

Figure 4.1: An illustration of the problem cases

If F (t) jumps, we have G(w) = G(w+) = G(w−) and if F (t) is flat, we take the right

endpoint of the ‘flatness interval’ [G(v−),G(v)] to define G (this leads to right continuity

of G)

a) Let (Ω,A ,P) = ([0,1],B[0,1], du) (du stands for Lebesgue measure) and define

X = G (G = F −1 as before). Then

P({ω ∈ Ω ∶ X(ω) ⩽ x})

= λ({u ∈ [0,1] ∶ G(u) ⩽ x})

(the discontinuities of F are countable, i.e. a Lebesgue null set)
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= λ({t ∈ [0,1] ∶ t ⩽ F (x)})

= λ([0, F (x)]) = F (x).

Measurability is clear because of monotonicity.

b) Use the product construction and part a). To be precise, we do the construction for

two random variables. Let X ∶ Ω → R and Y ∶ Ω′ → R be two iid copies. We define

on the product space

(Ω ×Ω′,A ⊗A ′,P×P′)

the new random variables ξ(ω,ω′) ∶=X(ω) and η(ω,ω′) ∶= Y (ω′). Then we have

• ξ, η live on the same probability space

• ξ ∼X, η ∼ Y

P×P′(ξ ∈ A) = P×P′({(ω,ω′) ∈ Ω ×Ω′ ∶ ξ(ω,ω′) ∈ A})

= P×P′({(ω,ω′) ∈ Ω ×Ω′ ∶ X(ω) ∈ A})

= P×P′({ω ∈ Ω ∶ X(ω) ∈ A} ×Ω′)

= P({ω ∈ Ω ∶ X(ω) ∈ A})

= P(X ∈ A).

and a similar argument works for η.

• ξ á η

P×P′(ξ ∈ A,η ∈ B) = P×P′({(ω,ω′) ∈ Ω ×Ω′ ∶ ξ(ω,ω′) ∈ A,η(ω,ω′) ∈ B})

= P×P′({(ω,ω′) ∈ Ω ×Ω′ ∶ X(ω) ∈ A,Y (ω′) ∈ B})

= P×P′({ω ∈ Ω ∶ X(ω) ∈ A} × {ω ∈ Ω′ ∶ Y (ω′) ∈ B})

= P({ω ∈ Ω ∶ X(ω) ∈ A})P′({ω ∈ Ω′ ∶ Y (ω′) ∈ B})

= P(X ∈ A)P(Y ∈ B)

= P×P′(ξ ∈ A)P×P′(η ∈ B)

The same type of argument works for arbitrary products, since independence is

always defined for any finite-dimensional subfamily. In the infinite case, we have

to invoke the theorem on the existence of infinite product measures (which are

constructed via their finite marginals) and which can be seen as a particular case

of Kolmogorov’s theorem, cf. Theorem 4.8 and Theorem A.2 in the appendix.

c) The statements are the same if one uses the same construction as above. A difficulty

is to identify a multidimensional distribution function F (x). Roughly speaking, these

are functions of the form

F (x) = P (X ∈ (−∞, x1] ×⋯ × (−∞, xn])

where X = (X1, . . . ,Xn) and x = (x1, . . . , xn), i.e. x is the ‘upper right’ endpoint of

an infinite rectancle. An abstract characterisation is the following
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• F ∶ Rn → [0,1]

• xj ↦ F (x) is monotone increasing

• xj ↦ F (x) is right continuous

• F (x) = 0 if at least one entry xj = −∞

• F (x) = 1 if all entries xj = +∞

• ∑(−1)∑nk=1 εkF(ε1a1+(1−ε1)b1, . . . , εnan+(1−εn)bn) ⩾ 0 where −∞ < aj < bj <∞
and where the outer sum runs over all tuples (ε1, . . . , εn) ∈ {0,1}n

The last property is equivalent to

• ∆
(1)
h1
⋯∆

(n)
hn
F (x) ⩾ 0 ∀h1, . . . , hn ⩾ 0 where ∆

(k)
h F (x) = F (x + hek) − F (x) and

ek is the kth standard unit vector of Rn.

In principle we can construct such a multidimensional F from its marginals using

the theory of copulas, in particular, Sklar’s theorem etc. etc. etc.

Another way would be to take (Ω,A ,P) = (Rn,B(Rn), µ) where µ is the probability

measure induced by F (x). Then the random variables Xn are just the identity maps!

The independent copies are then obtained by the usual product construction.

∎∎

Problem 4.2. Solution: Step 1: Let us first show that P(lims→tXs exists) < 1.

Since Xr áXs and Xs ∼ −Xs we get

Xr −Xs ∼Xr +Xs ∼ N(0, s + r) ∼
√
s + rN(0,1).

Thus,

P(∣Xr −Xs∣ > ε) = P (∣X1∣ >
ε√
s + r

)ÐÐÐ→
r,s→t

P (∣X1∣ >
ε√
2t

) ≠ 0.

This proves that Xs is not a Cauchy sequence in probability, i.e. it does not even converge

in probability towards a limit, so a.e. convergence is impossible.

In fact we have

{ω ∶ lim
s→t

Xs(ω) does not exist} ⊃
∞
⋂
k=1

{ sup
s,r∈[t−1/k,t+1/k]

∣Xs −Xr ∣ > 0}

and so we find with the above calculation

P ( lim
s→t

Xs does not exist) ⩾ lim
k
P ( sup

s,r∈[t−1/k,t+1/k]
∣Xs −Xr ∣ > 0) ⩾ P (∣X1∣ >

ε√
2t

)

This shows, in particular that for any sequence tn → t we have

P ( lim
n→∞

Xtn exists) < q < 1.

where q = q(t) (but independent of the sequence).
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Step 2: Fix t > 0, fix a sequence (tn)n with tn → t, and set

A = {ω ∈ Ω ∶ lim
s→t

Xs(ω) exists} and A(tn) = {ω ∈ Ω ∶ lim
n→∞

Xtn(ω) exists}.

Clearly, A ⊂ A(tn) for any such sequence. Moreover, take two sequences (sn)n, (tn)n such

that sn → t and tn → t and which have no points in common; then we get by independence

and step 1

(Xs1 ,Xs2 ,Xs3 . . .) á (Xt1 ,Xt2 ,Xt3 . . .) Ô⇒ A(tn) á A(sn)

and so, P(A) ⩽ P(A(sn) ∩A(tn)) = P(A(sn))P(A(tn)) = q2.

By Step 1, q < 1. Since there are infinitely many sequences having all no points in common,

we get 0 ⩽ P(A) ⩽ limk→∞ q
k = 0.

∎∎

Problem 4.3. Solution: Write Σ ∶= ⋃{σ(C) ∶ C ⊂ E, C is countable}.

If C ⊂ E we get σ(C) ⊂ σ(E), and so Σ ⊂ σ(E).

Conversely, it is clear that E ⊂ Σ, just take C ∶= CE ∶= {E} for each E ∈ E. If we can show

that Σ is a σ-algebra we get σ(E) ⊂ σ(Σ) = Σ and equality follows.

• Clearly, ∅ ∈ Σ.

• If S ∈ Σ, then S ∈ σ(CS) for some countable CS ⊂ E. Moreover, Sc ∈ σ(CS), i.e. Sc ∈
Σ.

• If (Sn)n⩾0 ⊂ Σ are countably many sets, then Sn ∈ σ(Cn) for some countable Cn ⊂ E

and each n ⩾ 0. Set C ∶= ⋃n Cn. This is again countable and we get Sn ∈ σ(C) for all

n, hence ⋃n Sn ∈ σ(C) and so ⋃n Sn ∈ Σ.

∎∎

Problem 4.4. Solution:

a) Following the hint, we use E = ⋃{π−1
K (A) ∶ A ∈ BK(E), K ⊂ I, #K < ∞}, i.e. the

cylinder sets. By definition, σ(E) = BI(E). If C ⊂ E is a countable set, then there

is a countable index set J ⊂ I such that C ⊂ π−1
J (BJ(E)), and since the right-hand

side is a σ-algebra, σ(C) ⊂ π−1
J (BJ(E)). This proves the claim.

b) The previous part shows that every B ∈ BI(E) is of the form B = π−1
J (A) with

A ∈ BJ(E), i.e. it is a cylinder with a countable base. All other indices (and since I

is not countable, there are uncountably many left) are E. Since E contains at least

two points, we see that B ≠ ∅ is uncountable.

c) Use the fact that the open cylinders π−1
K (U), where U ⊂ EK is open and #K < ∞,

are open sets in EI and (a).

d) Let e ∈ E; then F ∶= {e} is a non-void compact set. By Tychonov’s theorem F I ⊂ EI

is compact and as such it is contained in the Borel σ-algebra B(EI). But F I contains

exactly one point, i.e. it is countable. By part (b) it cannot be in BI(E).
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e) Assume that I is countable. Then B(EI) is generated by countably many sets,

namely π−1
K (B(q, r)∩E) where K ⊂ I is finite and B(q, r) are open balls with rational

radii r > 0 and rational centres q ∈ E. (Note: There are only countably many

finite sets contained in a countable set I! Here the argument would break down

for uncountable index sets.) These are but the cylinder sets, i.e. they also generate

BI(E), and this proves B(EI) ⊂ BI(E).

∎∎

Problem 4.5. Solution: Xt(ω) is a ‘random’ path starting at the randomly chosen point ω

and moving uniformly with constant speed ∣v∣ in the direction v/∣v∣. Note that only the

starting point is random and it is ‘drawn’ using the law µ or δx, i.e. in the latter case we

start a.s. at x.

The finite-dimensional distributions are for 0 ⩽ t1 < t2 < . . . < tn given by

Pµ(Xt1 ∈ dy1,Xt2 ∈ dy2, . . . ,Xtn ∈ dyn)

= ∫
Rd
µ(dx) δx+t1v(dy1)⊗ δx+t2v(dy2)⊗⋯⊗ δx+tnv(dyn).

∎∎

Problem 4.6. Solution:

a) We have to show that any linear combination ∑nj=1 ξjWtj , ξ1, . . . , ξn ∈ R, is a normal

distribution. But since we can re-write this as a linear combination ∑nj=1 ξjBtj −
∑nj=1 tξjB1, so the claim follows from the fact that B = (Bt)t∈[0,1] is a Gaussian

process. Mean-zero is trivial as EWt = EBt − tEB1 = 0. The covariance function is

given by

E [(Bs − sB1)(Bt − tB1)] = E [BsBt + stB2
1 − sB1Bt − tB1Bts]

= s ∧ t + st − s(t ∧ 1) − t(s ∧ 1)

= s ∧ t + st − 2st = s ∧ t − st.

b) Let 0 = t0 < ⋅ ⋅ ⋅ < tn < 1 and set t′k ∶= 1− tk and Xt ∶=Wt/(1− t). As linear combination

of Gaussian random variables the vector ∆ = (Xtk−Xtk−1
)k=1,...,n is Gaussian. Clearly,

the mean is zero, and the covariance is given by

E(Xtk −Xtk−1
)(Xtj −Xtj−1) = E( Wtk

1 − tk
− Wtk−1

1 − tk−1
)(

Wtj

1 − tj
−
Wtj−1

1 − tj−1
)

where we assume, without loss of generality, that tj−1 < tj ⩽ tk−1 < tk

= E
WtkWtj

(1 − tk)(1 − tj)
−E

WtkWtj−1

(1 − tk)(1 − tj−1)
−E

Wtk−1
Wtj

(1 − tk−1)(1 − tj)
+E

Wtk−1
Wtj−1

(1 − tk−1)(1 − tj−1)

= tj − tktj
(1 − tk)(1 − tj)

− tj−1 − tktj−1

(1 − tk)(1 − tj−1)
− tj − tk−1tj

(1 − tk−1)(1 − tj)
+ tj−1 − tk−1tj−1

(1 − tk−1)(1 − tj−1)
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= tj

1 − tj
− tj−1

1 − tj−1
− tj

1 − tj
+ tj−1

1 − tj−1
= 0.

Therefore, the entries of the Gaussian vector ∆ are uncorrelated, hence independent.

Formally taking tk = tj = t and tk−1 = tj−1 = s, a very similar calculation shows that

Xt −Xs ∼ N(0, (t − s)/(t′s′)) with s < t and t′ = 1 − t, s′ = 1 − s.

Now let f ∶ Rn → R be any bounded measurable function. We need to calculate

E f(Wt1 , . . . ,Wtn) = E f(t′1Xt1 , . . . , t
′
nXtn) = E f(D(Xt1 , . . . ,Xtn)⊺)

with the diagonal matrix D with diagonal entries (t′1, . . . , t′n). Thus,

E f(Wt1 , . . . ,Wtn) = ∫
Rn
f(Dx)g(x)dx = 1

detD
∫
Rn
f(y)g(D−1y)dy.

The density g(y) is the density of the vector (Xt1 , . . . ,Xtn). Using the fact that

Xt −Xs ∼ N(0, (t − s)/(t′s′)), the argument used for Brownian motion for the proof

of (2.10) reveals that

g(y) = 1

(2π)n/2
√
∏n
k=1

(tk−tk−1)
t′
k
t′
k−1

exp(−1

2

n

∑
k=1

t′kt
′
k−1(yk − yk−1)2

(tk − tk−1)
) .

Therefore, we get

g(D−1y)
detD

= 1

(2π)n/2∏n
k=1 t

′
k

√
∏n
k=1

(tk−tk−1)
t′
k
t′
k−1

exp
⎛
⎜
⎝
−1

2

n

∑
k=1

t′kt
′
k−1( 1

t′
k
yk − 1

t′
k−1
yk−1)2

(tk − tk−1)
⎞
⎟
⎠

= 1

(2π)n/2
√
t′n

√
∏n
k=1(tk − tk−1)

exp
⎛
⎜
⎝
−1

2

n

∑
k=1

t′kt
′
k−1( 1

t′
k
yk − 1

t′
k−1
yk−1)2

(tk − tk−1)
⎞
⎟
⎠
.

Let us now simplify the sum in the exponential function. We have

t′kt
′
k−1( 1

t′
k
yk − 1

t′
k−1
yk−1)2

(tk − tk−1)
= (yk − yk−1)2

tk − tk−1
+

t′k−1

t′
k
− 1

tk − tk−1
y2
k +

t′k
t′
k−1

− 1

tk − tk−1
y2
k−1

= (yk − yk−1)2

tk − tk−1
+ y2

k

1 − tk
− y2

k−1

1 − tk−1

If we sum this expressional over k = 1, . . . , n we get ∑nk=1
(yk−yk−1)2

tk−tk−1
+ y2

n

1−tn , and so

g(D−1y)
detD

= 1√
t′n

1

(2π)n/2
√
∏n
k=1(tk − tk−1)

exp(−1

2
[
n

∑
k=1

(yk − yk−1)2

tk − tk−1
+ y2

n

1 − tn
])

= 2π√
2πt′n

exp(− y2
n

2(1 − tn)
) 1

(2π)n/2
√
∏n
k=1(tk − tk−1)

exp(−1

2

n

∑
k=1

(yk − yk−1)2

tk − tk−1
)

which is the formula claimed in the statement.

c) We have fX ∣Y (x, y) = f(X,Y )(x, y)/fY (y), X = (Bt1 , . . . ,Btn) and Y = B1. Now

observe that

√
2πgt1(x1) ⋅ gt2−t1(x2 − x1) ⋅ . . . ⋅ gtn−tn−1(xn − xn−1) ⋅ g1−tn(xn − xn+1)
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= gt1(x1) ⋅ gt2−t1(x2 − x1) ⋅ . . . ⋅ gtn−tn−1(xn − xn−1) ⋅ g1−tn(xn)
g1(xn+1)

∣
xn+1=0

= fX,Y (x, y)
fY (y) ∣

y=0

= fX ∣Y =0(x,0).

d) Note that W ′ is again Gaussian – the time reversal does not change the argument

which we have used in the first part of this problem – with mean zero. W ∼W ′ since

they have the same covariance function. Indeed, let s < t, so 1 − t < 1 − s

EW1−tW1−s = (1 − t) ∧ (1 − s) − (1 − s)(1 − t) = (1 − t) − (1 − s)(1 − t)

= s(1 − t) = s ∧ t − st = EWsWt.

∎∎

Problem 4.7. Solution:

a) By the definition of Bt and θh, we have for all w ∈ C

Bt(θhw) def. B= (θhw)(t) def. θ= w(t + h) def. B= Bt+h(w).

Thus,

θ−1
h ({Bt ∈ C}) = {θ−1

h (w) ∶ Bt(w) ∈ C}

= {v ∶ Bt(θhv) ∈ C}

= {v ∶ Bt+h(v) ∈ C}

= {Bt+h ∈ C}.

b) We have to show that for all F ∈ Ft we have θ−1
h (F ) ∈ Ft+h. It is enough to do this

for a generator of Ft, and we choose the generator whose sets are of the form

{Bt1 ∈ C1, . . . ,Btn ∈ Cn} =
n

⋂
k=1

{Btk ∈ Ck} ,

n ∈N, 0 ⩽ t1 < ⋅ ⋅ ⋅ < tn ⩽ t, C1, . . . ,Cn ∈ B(R).

The calculation of the first part shows

θ−1
h {Bt1 ∈ C1, . . . ,Btn ∈ Cn} = {Bt1+h ∈ C1, . . . ,Btn+h ∈ Cn} ∈ F[h,t+h] ⊂ Ft+h.

The F[t+h,∞)/F[t,∞) measurability is shown in a similar way, considering now in-

stances t ⩽ t1 < t2 < ⋅ ⋅ ⋅ < tn <∞.

c) We set τ = τC . We have, by definition

θhτ(w) def= τ(θhw)
def= inf {s ⩾ 0 ∶ Bs(θhw) ∈ C}

= inf {s ⩾ 0 ∶ Bs+h(w) ∈ C}
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= inf {s + h ⩾ h ∶ Bs+h(w) ∈ C} − h

= inf {t ⩾ h ∶ Bt(w) ∈ C} − h.

If we happen to know that τ ⩾ h, then inf {t ⩾ h ∶ Bt(w) ∈ C} = τ .

We will see later, in Chapter 5.2, that for certain sets C the random times τC are

measurable, i.e. random variables.

∎∎

Problem 4.8. Solution:

a) We should first talk about the spaces and σ-algebras involved here: w ∈ C and the

σ-algebra is B(C). Write Φ ∶ w ↦ B(⋅,w). We want to work with a generator of

B(C), i.e. sets of the built Γ = {w ∶ w(t1) ∈ C1, . . . ,w(tn) ∈ Cn} where the Ci are

Borel sets in R and 0 ⩽ t1 < t2 < ⋅ ⋅ ⋅ < tn, n ∈N. Since we have

Φ−1(Γ) = {w ∈ C ∶ (Bt(w))t⩾0 ∈ C}

= {w ∈ C ∶ w(t1) ∈ C1, . . . ,w(tn) ∈ Cn}

=
n

⋂
k=1

{Btk ∈ Ck} ∈ B(C)

we see that Φ is measurable.

b) Let us write Px ∶= Pδx . Then the process described by Px is a (Wt)t⩾0 Brownian

motion which does not visit the sets C1, . . . ,Cn at the times t1, . . . , tn but the shifted

sets C1 − x, . . . ,Cn − x. This means that Bt = x +Wt. From this insight it is clear

that B behaves again like a Brownian motion.

c) π is the “initial distribution” of B, i.e. the law of B0. This is immediately seen from

the definition of Pπ upon taking n = 0, t0 = 0. Another way to think about this is to

take a standard BM1 W = (Wt)t⩾0) (starting at W0 = 0), a random variable X ∼ π
being independent of W and setting Bt ∶=X +Wt.

∎∎

Problem 4.9. Solution: (I owe this solution to Dr. Franziska Kühn) Since we are on the

canonical path space Ω = C(o), the following “stopping operators” exist and satisfy

atω(s) ∶= (atω)(s) ∶= ω(t ∧ s) Ô⇒ Bs(atω) = Bt∧s(ω).

We claim that Ft = a−1
t (F∞).

Indeed: We show first that a−1
t (F∞) ⊂ Ft, i.e. at is Ft/F∞ measurable. Since F∞ =

σ(Bs, s ⩾ 0), it is enough to show that Bs ○ at ∶ Ω → R is Ft/B(R) measurable for each

s ⩾ 0. This follows from

{Bs ○ at ∈ A} = {Bs∧t ∈ A} ∈ Fs∧t ⊂ Ft.
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For the converse, it is enough to show that Bs is Gt ∶= a−1
t (F∞) measurable for any s ⩽ t.

But this follows from

{Bs ∈ A} = {Bt∧s ∈ A} = {Bs ○ at ∈ A} = {at ∈ B−1
s (A)} ∈ a−1

t (F∞),

which holds for any Borel set A ∈ B(R).

Now we can turn to the question at hand.

a)⇒b): Fix t > 0 and take F ∈ Ft. Using the claim, we find some Γ ∈ F∞ such that

F = a−1
t (Γ). Assume that ω ∈ F and ω′ ∈ Ω are such that Bs(ω) = Bs(ω′) for all s ⩽ t.

Then we have ω∣[0,t] = ω′∣[0,t], i.e. atω = atω′. This shows that

1F (ω′) = 1a−1
t (Γ)(ω′) = 1Γ(atω′) = 1Γ(atω) = 1F (ω) = 1,

i.e. we have ω′ ∈ F .

b)⇒a): The assumption says that ω ∈ F ⇐⇒ atω ∈ F . Thus,

1F (ω) = 1F (atω) = 1a−1
t (F )(ω) Ô⇒ F = a−1

t (F ) Ô⇒ F ∈ Ft.

∎∎
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5 Brownian motion as a martingale

Problem 5.1. Solution:

a) We have

FB
t ⊂ σ(σ(X), FB

t ) = σ(X,Bs ∶ s ⩽ t) = F̃t.

Let s ⩽ t. Then σ(Bt −Bs), FB
s and σ(X) are independent, thus σ(Bt −Bs) is inde-

pendent of σ(σ(X),FB
s ) = F̃s. This shows that (F̃t)t⩾0

is an admissible filtration

for (Bt)t⩾0.

b) Set N ∶= {N ∶ ∃M ∈ A such that N ⊂M,P(M) = 0}. Then we have

FB
t ⊂ σ(FB

t ,N ) = F
B
t .

From measure theory we know that (Ω,A ,P) can be completed to (Ω,A ∗,P∗) where

A ∗ ∶= {A ∪N ∶ A ∈ A ,N ∈ N },

P∗(A∗) ∶= P(A) for A∗ = A ∪N ∈ A ∗.

We find for all A ∈ B(Rd), F ∈ Fs, N ∈ N

P∗({Bt −Bs ∈ A} ∩ (F ∪N)) =P∗(({Bt −Bs ∈ A} ∩ F )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈A

∪ ({Bt −Bs ∈ A} ∩N)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈N

)

= P({Bt −Bs ∈ A} ∩ F )

= P(Bt −Bs ∈ A)P(F )

= P∗(Bt −Bs ∈ A)P∗(F ∪N).

Therefore F
B
t is admissible.

∎∎

Problem 5.2. Solution: Let t = t0 < . . . < tn, and consider the random variables

B(t1) −B(t0), . . . ,B(tn) −B(tn−1).

Using the argument of Problem 21 we see for any F ∈ Ft

E (ei∑nk=1⟨ξk, B(tk)−B(tk−1)⟩1F ) = E (ei⟨ξn, B(tn)−B(tn−1)⟩ ⋅ ei∑n−1
k=1 ⟨ξk, B(tk)−B(tk−1)⟩1F

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ftn−1 mble., hence áB(tn)−B(tn−1)

)

= E (ei⟨ξn, B(tn)−B(tn−1)⟩) ⋅E (ei∑n−1
k=1 ⟨ξk, B(tk)−B(tk−1)⟩1F )
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⋮

=
n

∏
k=1

E (ei⟨ξk, B(tk)−B(tk−1)⟩)E1F .

This shows that the increments are independent among themselves (use F = Ω) and that

they are all together independent of Ft (use the above calculation and the fact that

the increments are among themselves independent to combine again the ∏n
1 under the

expected value)

Thus,

Ft á σ(B(tk) −B(tk−1) ∶ k = 1, . . . , n)

Therefore the statement is implied by

Ft á ⋃
t<t1<...<tn

n⩾1

σ(B(tk) −B(t) ∶ k = 1, . . . , n).

∎∎

Problem 5.3. Solution:

a) i) E ∣Xt∣ <∞, since the expectation does not depend on the filtration.

ii) Xt is Ft measurable and Ft ⊂ F ∗
t . Thus Xt is F ∗

t measurable.

iii) Let N denote the set of all sets which are subsets of P-null sets. Denote by

P∗ the measure of the completion of (Ω,A ,P) (compare with the solution to

Exercise 1.b)).

Let t ⩾ s. For all F ∗ ∈ F ∗
s there exist F ∈ Fs, N ∈ N such that F ∗ = F ∪N and

∫
F ∗Xs dP

∗ = ∫
F
Xs dP = ∫

F
Xt dP = ∫

F ∗Xt dP
∗ .

Since F ∗ is arbitrary this implies that E(Xt ∣ F ∗
s ) =Xs.

b) i) E ∣Yt∣ = E ∣Xt∣ <∞.

ii) Note that {Xt ≠ Yt}, its complement and any of its subsets is in F ∗
t . Let

B ∈ B(Rd). Then we get

{Yt ∈ B} = ({Xt ∈ B}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Ft

∩{Xt ≠ Yt}c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈F∗
t

) ∪ {Yt ∈ B,Xt ≠ Yt}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈F∗
t

.

iii) Similar to part a-iii). For each F ∗ ∈ F ∗
s we get

∫
F ∗ Ys dP

∗ = ∫
F ∗Xs dP

∗ a)= ∫
F ∗Xt dP

∗ = ∫
F ∗ Yt dP

∗,

i.e. E(Yt ∣F ∗
s ) = Ys.

∎∎
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Problem 5.4. Solution: Let s < t and pick sn ↓ s such that s < sn < t. Then

E(Xt ∣ Fs+)
sub-MG←ÐÐÐÐ
sn↓s

E(X(t) ∣ Fsn) ⩾X(sn)
a.e.ÐÐÐ→
n→∞

X(s+) continuous=
paths

X(s).

The convergence on the left side follows from the (sub-)martingale convergence theorem

(Lévy’s downward theorem).

∎∎

Problem 5.5. Solution: Here is a direct proof without using the hint.

We start with calculating the conditional expectations

E(B4
t ∣Fs)

= E ((Bt −Bs +Bs)4 ∣Fs)

= B4
s + 4B3

s E(Bt −Bs) + 6B2
s E((Bt −Bs)2) + 4BsE((Bt −Bs)3) +E((Bt −Bs)4)

= B4
s + 6B2

s(t − s) + 3(t − s)2

= B4
s − 6B2

ss + 6B2
s t + 3(t − s)2,

and

E(B2
t ∣Fs) = E ((Bt −Bs +Bs)2 ∣Fs)

= t − s + 2BsE(Bt −Bs) +B2
s

= B2
s + t − s.

Combining these calculations, such that the term 6B2
s t vanishes from the first formula,

we get

E (B4
t − 6tB2

t ∣Fs) = B4
s − 6sB2

s − 6t2 + 6st + 3t2 − 6st + 3s2

= B4
s − 6sBs + 3s2 − 3t2.

Therefore π(t,Bt) ∶= B4
t − 6tB2

t + 3t2 is a martingale.

∎∎

Problem 5.6. Solution:

a) Since Brownian motion has exponential moments of any order, we can use the dif-

ferentiation lemma for parameter-dependent integrals. Following the instructions we

get

d

dξ
eξBt−

t
2
ξ2 = (Bt − tξ)M ξ

t

d2

dξ2
eξBt−

t
2
ξ2 = ((Bt − tξ)2 − t)M ξ

t

d3

dξ3
eξBt−

t
2
ξ2 = ((Bt − tξ)2 − 3t) (Bt − tξ)M ξ

t
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d4

dξ4
eξBt−

t
2
ξ2 = {((Bt − tξ)2 − 3t) ((Bt − tξ)2 − t) − 2t(Bt − tξ)2}M ξ

t

and so on. The recursion n→ n + 1 is pretty obvious

d

dξ
Pn(B, ξ)M ξ

t = [ d
dξ
Pn(B, ξ) + Pn(B, ξ)(B − tξ)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pn+1(B,ξ)

M ξ
t .

If we set ξ = 0 we find that Pn(b,0)∣b=Bt is a martingale. In particular,

Bt

B2
t − t

B3
t − 3tBt

B4
t − 6tB2

t + 3t2

are martingales.

b) Part (a) shows the general recursion scheme

P1(b, ξ) = b − tξ, Pn+1(b, ξ) =
d

dξ
Pn(b, ξ) + (b − tξ)Pn(b, ξ).

c) Using the fact that Mt ∶= B4
t − 6tB2

t + 3t2 is a martingale with M0 = 0 we get for the

bounded stopping times τ ∧ n by optional stopping

0 = E [Mτ∧n] = E [B4
τ∧n] − 6E [(τ ∧ n)B2

τ∧n] + 3E [(τ ∧ n)2]

and, by rearranging this equality, and with the Cauchy-Schwarz inequality

3E [(τ ∧ n)2] = 6E [(τ ∧ n)B2
τ∧n] −E [B4

τ∧n]

⩽ 6E [(τ ∧ n)B2
τ∧n]

⩽ 6
√
E [(τ ∧ n)2]

√
E [B4

τ∧n].

Thus, √
E [(τ ∧ n)2] ⩽ 2

√
E [B4

τ∧n].

Since ∣Bτ∧n∣ ⩽ max{a, b}, we can use monotone convergence (on the left side) and

dominated convergence (on the right), and the first inequality follows.

The second inequality follows in a similar way: By optional stopping we get

E [B4
τ∧n] = 6E [(τ ∧ n)B2

τ∧n] − 3E [(τ ∧ n)2]

⩽ 6E [(τ ∧ n)B2
τ∧n]

⩽ 6
√
E [(τ ∧ n)2]

√
E [B4

τ∧n].

Thus, √
E [B4

τ∧n] ⩽ 6
√
E [(τ ∧ n)2] ⩽ 6

√
E [τ2]

and the estimate follows from dominated convergence (on the left).
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∎∎

Problem 5.7. Solution: For t = 0 and all c we have

E ec∣B0∣ = E ec∣B0∣2 = 1.

and for c ⩽ 0

E ec∣B0∣ ⩽ 1 and E ec∣B0∣2 ⩽ 1.

Now let t > 0 and c > 0. There exists some R > 0 such that c∣x∣ < 1
4t ∣x∣

2 for all ∣x∣ > R.

Thus

E ec∣Bt∣ = c̃∫ ec∣x∣e−
1
2t

∣x∣2 dx

⩽ c̃∫∣x∣⩽R
ec∣x∣e−

1
2t

∣x∣2 dx + c̃∫∣x∣>R
e

1
4t

∣x∣2 e−
1
2t

∣x∣2 dx

⩽ ecR + c̃∫∣x∣>R
e−

1
4t

∣x∣2 dx <∞,

i.e., E ec∣Bt∣ <∞ for all c, t. Furthermore

E ec∣Bt∣
2 = c̃∫ ec∣x∣

2− 1
2t

∣x∣2 dx = c̃∫ e∣x∣
2(c− 1

2t
) dx

and this integral is finite if, and only if, c − 1
2t < 0 or equivalently c < 1

2t .

∎∎

Problem 5.8. Solution:

a) We have p(t, x) = (2πt)− d2 e−
∣x∣2
2t . By the chain rule we get

∂

∂t
p(t, x) = −d

2
t−

d
2
−1(2π)−

d
2 e−

∣x∣2
2t + (2πt)−

d
2 (−1)t−2 (−1) ∣x∣

2

2
e−
∣x∣2
2t

and for all j = 1, . . . , d

∂

∂xj
p(t, x) = (2πt)−

d
2 ( − 2xj

2t
) e−

∣x∣2
2t ,

∂2

∂x2
j

p(t, x) = (2πt)−
d
2 ( − 1

t
) e−

∣x∣2
2t + (2πt)−

d
2

x2
j

t2
e−
∣x∣2
2t .

Adding these terms and noting that ∣x∣2 = ∑dj=1 x
2
j we get

1

2

d

∑
j=1

∂2

∂x2
j

p(t, x) = −d
2
(2πt)−

d
2 t−1e−

∣x∣2
2t + (2πt)− d2

2

∣x∣2
t2

e−
∣x∣2
2t = ∂

∂t
p(t, x).

b) A formal calculation yields

∫ p(t, x) 1

2

∂2

∂x2
j

f(t, x)dx

= p(t, x) 1

2

∂

∂xj
f(t, x)∣

∞

−∞
− ∫

∂

∂xj
p(t, x) ⋅ 1

2

∂

∂xj
f(t, x)dx
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= 0 − ∂

∂xj
p(t, x) ⋅ 1

2
f(t, x)∣

∞

−∞
+ ∫

∂2

∂x2
j

p(t, x) ⋅ 1

2
f(t, x)dx

= ∫
∂2

∂x2
j

p(t, x) ⋅ 1

2
f(t, x)dx.

By the same arguments as in Exercise 7 we find that all terms are integrable and

vanish as ∣x∣ → ∞. This justifies the above calculation. Furthermore summing over

j = 1, . . . d we obtain the statement.

∎∎

Problem 5.9. Solution: Note that E ∣Xt∣ <∞ for all a, b, cf. Problem 5.7. We have

E (eaBt+bt ∣Fs) = E (ea(Bt−Bs)eaBs+bt ∣Fs)

= eaBs+bt E eaBt−s

= eaBs+bt+(t−s)a2/2.

Thus, Xt is a martingale if, and only if, bs = bt + (t − s)a2

2 , i.e., b = −1
2 a

2.

∎∎

Problem 5.10. Solution: Measurability (i.e. adaptedness to the Filtration Ft) and integra-

bility is no issue, see also Problem 5.7.

a) Ut is only a martingale for c = 0.

Solution 1: see Exercise 9.

Solution 2: if c ≠ 0, EUt is not constant, i.e. cannot be a martingale. If c = 0, Ut is

trivially a martingale.

b) Vt is a martingale since

E (Vt ∣Fs) = tE(Bt −Bs) + tBs −E(∫
s

0
Br dr ∣Fs) −E(∫

t

s
Br dr ∣Fs)

= tBs − ∫
s

0
Br dr −E(∫

t

s
(Br −Bs) +Bs dr ∣Fs)

= tBs − ∫
s

0
Br dr − (t − s)Bs

= Vs.

(c) and (e) Let a ∈ R. Then we get

E (aB3
t − tBt ∣Fs) = E (a(Bt −Bs +Bs)3 − t(Bt −Bs) − tBs ∣Fs)

= aB3
s + 3aB2

s EBt−s + 3aBsEB
2
t−s + aEB3

t−s − 0 − tBs
= aB3

s + (3a(t − s) − t)Bs.

This is a martingale if, and only if, −s = 3a(t − s) − t, i.e., a = 1
3 . Thus Yt is a

martingale and Wt is not a martingale.
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d) We have seen in part c) and b) that

E (B3
t ∣Fs) = B3

s + 3(t − s)Bs

and

3E(∫
t

0
Br dr ∣Fs) = 3∫

s

0
Br dr + 3(t − s)Bs.

Thus, Xt is a martingale.

(f) Zt is only a martingale for c = 1
2 , see Exercise 9.

∎∎

Problem 5.11. Solution: Let s < t. We have

Mt = f(t)Bt − ∫
t

0
f ′(r)Br dr

= f(t)Bt − ∫
s

0
f ′(r)Br dr − ∫

t

s
f ′(r)(Br −Bs)dr − ∫

t

s
f ′(r)drBs

= f(s)Bs − ∫
s

0
f ′(r)Br dr − ∫

t

s
f ′(r)(Br −Bs)dr

=Ms − ∫
t

s
f ′(r)(Br −Bs)dr.

The integral term depends only on the increments Br−Bs with r ⩾ s, thus it is independent

of Fs. Taking conditional expectation yields, using pull-out and independence

E [Mt ∣ Fs] =Ms −E [∫
t

s
f ′(r)(Br −Bs)dr ∣ Fs]

=Ms −E [∫
t

s
f ′(r)(Br −Bs)dr]

=Ms − ∫
t

s
f ′(r)E [(Br −Bs)]dr = 0.

Remark: A formal integration by parts yields that Mt = ∫ t0 f(s)dBs (this is a Wiener–Itô

integral). We will see in Remark 13.5 and later in Chapter 15 that this operation can

be justified. Note that t ↦ Bt has unbounded variation (Corollary 9.2) and, therefore,

the integral ∫ t0 f(s)dBs cannot be defined for all continuous f ∈ C(R) using the classical

approach, see Corollary A.36 and Remark A.37.

∎∎

Problem 5.12. Solution: We have

E (1
d ∣Bt∣

2 − t ∣Fs) = −t + 1
d

d

∑
j=1

E ((B(j)
t )2 ∣Fs) Pr. 5= −t + 1

d

d

∑
j=1

((B(j)
s )2 + t − s) = 1

d ∣Bs∣
2 − s.

∎∎

Problem 5.13. Solution: For a)–c) we prove only the statements for τ ○, the statements for τ

are proved analogously.
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a) The following implications hold:

A ⊂ C Ô⇒ {t ⩾ 0 ∶ Xt ∈ A} ⊂ {t ⩾ 0 ∶ Xt ∈ C} Ô⇒ τ ○A ⩾ τ ○C .

b) By part a) we have τ ○A∪C ⩽ τ ○A and τ ○A∪C ⩽ τ ○C . Thus,

τ ○A∪C
a)
⩽ min{τ ○A, τ ○C}.

To see the converse, min{τ ○A, τ ○C} ⩽ τ ○A∪C , it is enough to show that

Xt(ω) ∈ A ∪C Ô⇒ t ⩾ min{τ ○A(ω), τ ○C(ω)}

since this implication shows that τ ○A∪C(ω) ⩾ min{τ ○A(ω), τ ○C(ω)} holds.

Now observe that

Xt(ω) ∈ A ∪C Ô⇒ Xt(ω) ∈ A or Xt(ω) ∈ C

Ô⇒ t ⩾ τ ○A(ω) or t ⩾ τ ○C(ω)

Ô⇒ t ⩾ min{τ ○A(ω), τ ○C(ω)}.

c) Part a) implies max{τ ○A, τ ○C} ⩽ τ ○A∩C .

Remark: we cannot expect “=”. To see this consider a BM1 staring at B0 = 0 and

the set

A = [4,6] and C = [1,2] ∪ [5,7].

Then Bt has to reach first C and A before it hits A ∩C.

d) as in b) it is clear that τ ○A ⩽ τ ○An for all n ⩾ 1, hence

τ ○A ⩽ inf
n⩾1

τ ○An .

In order to show the converse, τ ○A ⩾ infn⩾1 τ
○
An

, it is enough to check that

Xt(ω) ∈ A Ô⇒ t ⩾ inf
n⩾1

τ ○An(ω)

since, if this is true, this implies that τ ○A(ω) ⩾ infn⩾0 τ
○
An

(ω).

Now observe that

Xt(ω) ∈ A = ∪nAn Ô⇒ Xt(ω) ∈ An for some n ∈N

Ô⇒ t ⩾ τ ○An(ω) for some n ∈N

Ô⇒ t ⩾ inf
n⩾0

τ ○An(ω).

e) Note that inf {s ⩾ 0 ∶ Xs+ 1
n
∈ A} = inf {s ⩾ 1

n ∶ Xs ∈ A} is monotone decreasing as

n→∞. Thus we get

inf
n

( 1
n + inf{s ⩾ 1

n ∶ Xs ∈ A}) = 0 + inf
n

inf{s ⩾ 1
n ∶ Xs ∈ A}

= inf{s > 0 ∶ Xs ∈ A}

= τA.
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f) Let Xt = x0 + t. Then τ ○{x0} = 0 and τ{x0} =∞.

More generally, a similar situation may happen if we consider a process with con-

tinuous paths, a closed set F , and if we let the process start on the boundary ∂F .

Then τ ○F = 0 a.s. (since the process is in the set) while τF > 0 is possible with positive

probability.

∎∎

Problem 5.14. Solution: We have τ ○U ⩽ τU .

Let x0 ∈ U . Then τ ○U = 0 and, since U is open and Xt is continuous, there exists an N > 0

such that

X 1
n
∈ U for all n ⩾ N.

Thus τU = 0.

If x0 ∉ U , then Xt(ω) ∈ U can only happen if t > 0. Thus, τ ○U = τU .

∎∎

Problem 5.15. Solution: Suppose d(x,A) ⩾ d(z,A). Then

d(x,A) − d(z,A) = inf
y∈A

∣x − y∣ − inf
y∈A

∣z − y∣

⩽ inf
y∈A

(∣x − z∣ + ∣z − y∣) − inf
y∈A

∣z − y∣

= ∣x − z∣

and, with an analogous argument for d(x,A) ⩽ d(z,A), we conclude

∣d(x,A) − d(z,A)∣ ⩽ ∣x − z∣.

Thus x↦ d(x,A) is globally Lipschitz continuous, hence uniformly continuous.

∎∎

Problem 5.16. Solution: It is enough to show that τ ○F is a stopping time for Ft+, the assertion

for τF to be a stopping time for Ft now follows as in the proof of Lemma 5.8.

In order not to run into measurability problems, we assume that we work with a filtration

Ft which contains all subsets of measurable null sets.

Let F be a closed set and approximate F by a sequence of open sets Un = F +B(0,1/n) =
{x ∈ Rd ∶ infy∈F ∣x − y∣ < 1

n
}. Clearly, Un ↓ F i.e. F = ⋂nUn = ⋂nUn.

Define a further stopping time σ ∶= supn τ
○
Un

and note that σ ⩽ τ ○F . The last inequality is

due to the fact that F ⊂ Un.

Let us show the converse inequality.

Claim: On {τ ○A <∞} we have X(τ ○A) ∈ A for any set A ⊂ Rd. Indeed, if ω ∈ {τ ○A <∞} we

know that

∀δ > 0 ∃t ∈ [τ ○A(ω), τ ○A(ω) + δ) ∶ Xt(ω) ∈ A
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and, by right continuity, X(τ ○A) ∈ A.

Now we apply this to A = Un and see that X(τ ○Un) ∈ Un for all n ∈ N. Using quasi left

continuity (qlc), we get, a.s. on {0 < σ <∞}

X(σ) qlc= lim
n
X(τ ○Un) ∈⋂

n
Un = F.

Consequently, σ ⩾ τ ○F on {0 < σ <∞}.

If σ = 0, then τ ○Un = 0 for all n and X0 ∈ F , so σ ⩾ τ ○F on {σ = 0}.

If σ =∞, then τ ○F =∞ on {σ =∞}.

Together, we see that τ ○F = limn τ
○
Un

and that {τ ○F ⩽ t} = ⋂n{τ ○Un ⩽ t} ∈ Ft and {τ ○F = 0} =
{X0 ∈ F}.

∎∎

Problem 5.17. Solution: Denote by Ω0 = {ω ∈ Ω ∶ t ↦ Xt(ω)} is right continuous. Then the

proof of Lemma 18 shows only that {τU < t} ∩ Ω0 ∈ Ω0 ∩FX
t . If we know that Ω0 ∈ Ft

along with all subsets of measurable null sets, then we get {τU < t} ∈ Ft.

The same holds for the proof of Lemma 5.8.

∎∎

Problem 5.18. Solution: We treat the two cases simultaneously and check the three properties

of a sigma algebra:

i) We have Ω ∈ F∞ and

Ω ∩ {τ ⩽ t} = {τ ⩽ t} ∈ Ft ⊂ Ft+.

ii) Let A ∈ Fτ(+). Thus A ∈ F∞, Ac ∈ F∞ and

Ac ∩ {τ ⩽ t} = Ω ∖A ∩ {τ ⩽ t} = (Ω ∩ {τ ⩽ t}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Ft⊂Ft+

) ∖ (A ∩ {τ ⩽ t}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Ft(+) since A∈Fτ(+)
) ∈ Ft(+).

iii) Let An ∈ Fτ(+). Then An,⋃nAn ∈ F∞ and

⋃
n
An ∩ {τ ⩽ t} =⋃

n
(An ∩ {τ ⩽ t}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Ft(+)
) ∈ Ft(+).

Therefore Fτ and Fτ+ are σ-algebras.

∎∎

Problem 5.19. Solution:

a) Let F ∈ Fτ+, i.e., F ∈ F∞ and for all s we have F ∩ {τ ⩽ s} ∈ Fs+.

Let t > 0. Then

F ∩ {τ < t} =⋃
s<t

(F ∩ {τ ⩽ s}) ∈⋃
s<t

Fs+ ⊂ Ft.
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For the converse: Note that {τ < ∞} = ⋃n∈N{τ ⩽ n} ∈ F∞. If τ < ∞ a.s. then

F = ⋃t>0(F ∩ {τ ⩽ t}) ∈ F∞ and

F ∩ {τ ⩽ s} =⋂
t>s

(F ∩ {τ < t}) ∈⋂
t>s

Ft = Fs+.

If τ = ∞ occurs with strictly positive probability, then we have to assume that

F ∈ F∞.

b) For all s ⩾ 0 we have

{τ ∧ t ⩽ s} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{τ ⩽ s} ∈ Fs, if t > s;

Ω ∈ Fs, if t ⩽ s;

so τ ∧ t is indeed a stopping time.

c) We have {τ ⩽ t} ∈ Ft ⊂ F∞ and

{τ ⩽ t} ∩ {τ ∧ t ⩽ r} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{τ ⩽ t} ∈ Ft if r ⩾ t;

{τ ⩽ r} ∈ Fr ⊂ Ft if r < t.

∎∎

Problem 5.20. Solution:

a) eiξBt+
1
2
t∣ξ∣2 is a martingale for all ξ ∈ R by Example 5.2 d). By optional stopping

1 = E e
1
2
(τ∧t)c2+icBτ∧t .

Since the left-hand side is real, we get

1 = E (e
1
2
(τ∧t)c2 cos(cBτ∧t)).

Set m ∶= a ∨ b. Since ∣Bτ∧t∣ ⩽ m, we see that for mc < 1
2 π the cosine is positive. By

Fatou’s lemma we get for all mc < 1
2 π

1 = lim
t→∞

E (e
1
2
(τ∧t)c2 cos(cBτ∧t))

⩾ E ( lim
t→∞

e
1
2
(τ∧t)c2 cos(cBτ∧t))

⩾ E (e
1
2
τc2 cos(cBτ))

⩾ cos(mc)E e
1
2
τc2 .

Thus, E eγτ <∞ for any γ < 1
2 c

2 and all c < π/(2m). Since

et =
∞
∑
j=0

tj

j!
Ô⇒ ∀t ⩾ 0, j ⩾ 0 ∶ et ⩾ t

j

j!

we see that E τ j ⩽ j!γ−j E eγτ <∞ for any j ⩾ 0.
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b) By Exercise 10 d) the process B3
t − 3 ∫ t0 Bs ds is a martingale. By optional stopping

we get

E(B3
τ∧t − 3∫

τ∧t

0
Bs ds) = 0 for all t ⩾ 0. (*)

Set m = max{a, b}. By the definition of τ we see that ∣Bτ∧t∣ ⩽m; since τ is integrable

we get

∣B3
τ∧t∣ ⩽m3 and ∣∫

τ∧t

0
Bs ds∣ ⩽ τ ⋅m.

Therefore, we can use in (*) the dominated convergence theorem and let t→∞:

E(∫
τ

0
Bs ds) =

1

3
E(B3

τ )

= 1

3
(−a)3P(Bτ = −a) +

1

3
b3P(Bτ = b)

(5.13)= 1

3

−a3b + b3a
a + b

= 1

3
ab(b − a).

∎∎

Problem 5.21. Solution: By Example 5.2 c) ∣Bt∣2 − d ⋅ t is a martingale. Thus we get by

optional stopping

E(t ∧ τR) =
1

d
E ∣Bt∧τR ∣2 for all t ⩾ 0.

Since ∣Bt∧τR ∣ ⩽ R, we can use monotone convergence on the left and dominated convergence

on the right-hand side to get

E τR = sup
t⩾0
E(t ∧ τR) = lim

t→∞
1

d
E ∣Bt∧τR ∣2 =

1

d
E ∣BτR ∣2 =

1

d
R2.

∎∎

Problem 5.22. Solution:

a) For all t we have

{σ ∧ τ ⩽ t} = {σ ⩽ t}
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

∈Ft

∪{τ ⩽ t}
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈Ft

∈ Ft.

b) For all t we have

{σ < τ} ∩ {σ ∧ τ ⩽ t} = ⋃
0⩽r∈Q

({σ ⩽ r < τ} ∩ {σ ∧ τ ⩽ t})

= ⋃
r∈Q∩[0,t]

(({σ ⩽ r} ∩ {τ ⩽ r}c) ∩ {σ ∧ τ ⩽ t}) ∈ Ft.

This shows that {σ < τ},{σ ⩾ τ} = {σ < τ}c ∈ Fσ∧τ . Since σ and τ play symmetric

roles, we get with a similar argument that {σ > τ},{σ ⩽ τ} = {σ > τ}c ∈ Fσ∧τ , and

the claim follows.
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c) Since τ∧σ is an integrable stopping time, we get from Wald’s identities, Theorem 5.10,

that

EB2
τ∧σ = E(τ ∧ σ) <∞.

Following the hint we get

E(BσBτ1{σ⩽τ}) = E(Bσ∧τBτ1{σ⩽τ})

= E (E(Bσ∧τBτ1{σ⩽τ} ∣Fτ∧σ))
b)= E (Bσ∧τ1{σ⩽τ}E (Bτ ∣Fτ∧σ))
(*)= E(B2

σ∧τ1{σ⩽τ}).

(We will discuss the step marked by (*) below.)

With an analogous calculation for τ ⩽ σ we conclude

E(BσBτ) = E(Bσ∧τBτ1{σ<τ}) +E(Bσ∧τBτ1{τ⩽σ}) = E(B2
σ∧τ) = Eσ ∧ τ.

In the step marked with (*) we used that for integrable stopping times σ, τ we have

E(Bτ ∣ Fσ∧τ) = Bσ∧τ .

To see this we use optional stopping which gives

E(Bτ∧k ∣ Fσ∧τ∧k) = Bσ∧τ∧k for all k ⩾ 1.

This is the same as to say that

∫
F
Bτ∧k dP = ∫

F
Bσ∧τ∧k dP for all k ⩾ 1, F ∈ Fσ∧τ∧k.

Since Bτ∧k ÐÐÐ→
k→∞

Bτ in L2(P), see the proof of Theorem 5.10, we get for some fixed

i < k because of Fσ∧τ∧i ⊂ Fσ∧τ∧k that

∫
F
Bτ dP = lim

k→∞∫F Bτ∧k dP = lim
k→∞∫F Bσ∧τ∧k dP = ∫

F
Bσ∧τ dP for all F ∈ Fσ∧τ∧i.

Let ρ = σ ∧ τ (or any other stopping time). Since Fρ∧k = Fρ ∩Fk we see that Fρ is

generated by the ∩-stable generator ⋃iFρ∧i, and (*) follows.

d) From the above and Wald’s identity we get

E(∣Bτ −Bσ ∣2) = E(B2
τ − 2BτBσ +B2

σ)

= E τ − 2E τ ∧ σ +Eσ

= E(τ − 2(τ ∧ σ) + σ)

= E ∣τ − σ∣.

In the last step we used the elementary relation

(a + b) − 2(a ∧ b) = a ∧ b + a ∨ b − 2(a ∧ b) = a ∨ b − a ∧ b = ∣a − b∣.
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∎∎

Problem 5.23. Solution: (I owe this solution to Dr. Franziska Kühn) a)⇒b): Since we have

{τ = t} = {τ ⩽ t} ∖ ⋃
n∈N

{τ ⩽ t − 1/n} ∈ Ft

we can use Problem 4.9 to see that for all ω ∈ {τ = t} and ω′ ∈ Ω

∀s ⩽ t = τ(ω) ∶ Bs(ω) = Bs(ω′) Ô⇒ ω′ ∈ {τ = t}.

This is but what is claimed in b).

b)⇒a): Set F = {τ ⩽ t}. If ω ∈ F and ω′ ∈ Ω are such that b) holds, then we get τ(ω′) = t,
hence ω′ ∈ F . Using again Problem 4.9 we infer that {τ ⩽ t} = F ∈ Ft.

Remark. We may change, in the statement of the test, τ(ω) = t and τ(ω′) = t for τ(ω) ⩽ t
and τ(ω′) ⩽ t.

∎∎
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6 Brownian motion as a Markov process

Problem 6.1. Solution: We write gt(x) = (2πt)−1/2 e−x
2/(2t) for the one-dimensional normal

density.

a) This follows immediately from our proof of b).

b) Let u ∈ Bb(R) and s, t ⩾ 0. Then, by the independent and stationary increments

property of a Brownian motion

E [u(∣Bt+s∣) ∣Fs] = E [u(∣(Bt+s −Bs) +Bs∣) ∣ Fs]

= E [u(∣(Bt+s −Bs) + y∣)] ∣
y=Bs

= E [u(∣Bt + y∣)] ∣
y=Bs

.

Since B ∼ −B we also get

E [u(∣Bt+s∣) ∣Fs] = E [u(∣Bt + y∣)] ∣
y=−Bs

= E [u(∣Bt − y∣)] ∣
y=Bs

and, therefore,

E [u(∣Bt+s∣) ∣Fs] =
1

2
[Eu(∣Bt + y∣) +Eu(∣Bt − y∣)]y=Bs

= 1

2
[∫

∞

−∞
(u(∣z + y∣) + u(∣z − y∣)) gt(z)dz]

y=Bs

= 1

2
[∫

∞

−∞
u(∣z∣) (gt(z + y) + gt(z − y))dz]

y=Bs

= ∫
∞

0
u(∣z∣) (gt(z + y) + gt(z − y))dz∣

y=Bs

here we use that the integrand is even in z

= ∫
∞

0
u(∣z∣) (gt(z + ∣y∣) + gt(z − ∣y∣))dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶gu,s,t+s(y)—it is independent of s!

∣
y=Bs

since the integrand is also even in y! This shows that

• E [u(∣Bt+s∣) ∣Fs] is a function of ∣Bs∣, i.e. we get Markovianity.

• Py(∣Bt∣ ∈ dz) = gt(z − y) + gt(z + y) for z, y ⩾ 0, i.e. the form of the transition

function.

Remark: ∣Bt∣ is called reflecting (also: reflected) Brownian motion.
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c) Set Mt ∶= sups⩽tBs for the running maximum, i.e. Yt =Mt −Bt. From the reflection

principle, Theorem 6.10 we know that Yt ∼ ∣Bt∣. So the guess is that Y and ∣B∣ are

two Markov processes with the same transition function!

Let s, t ⩾ 0 and u ∈ Bb(R). We have by the independent and stationary increments

property of Brownian motion

E (u(Yt+s) ∣Fs) = E (u(Mt+s −Bt+s) ∣ Fs)

= E(u(max{ sup
u⩽s

Br, sup
0⩽u⩽t

Bs+u} −Bt+s) ∣ Fs)

= E(u(max{ sup
u⩽s

(Br −Bs) + (Bs −Bt+s), sup
0⩽u⩽t

(Bs+u −Bs+t)}) ∣ Fs)

and, as supu⩽s(Br−Bs) is Fs measurable and (Bs−Bt+s), sup0⩽u⩽t(Bs+u−Bs+t) áFs,

we get

= E(u(max{y + (Bs −Bt+s), sup
0⩽u⩽t

(Bs+u −Bs+t)})) ∣
y=supu⩽s(Br−Bs)

= E(u(max{y −Bt, sup
0⩽u⩽t

(Bu −Bt)})) ∣
y=Ys

Using time inversion (cf. 2.15) we see that W = (Wu)u∈[0,t] = (Bt−u − Bt)u∈[0,t]
is again a BM1, and we get (Bt, sup0⩽u⩽t(Bu −Bt)) ∼ (Wt, sup0⩽u⩽t(Wu −Wt))) =
(−Bt, sup0⩽u⩽tBu)) (we understand the vector as a function of the whole process B

resp. W and use B ∼W )

= E(u(max{y +Bt, sup
0⩽u⩽t

Bu)})) ∣
y=Ys

.

Using Solution 2 of Problem 6.12 we know the joint distribution of (Bt, supu⩽tBu):

E(u(max{y +Bt, sup
0⩽u⩽t

Bu)}))

= ∫
∞

z=0
∫

z

x=−∞
u(max{y + x, z}) 2√

2πt

2z − x
t

e−(2z−x)
2/2t dxdz.

Splitting the integral ∫ zx=−∞ into two parts ∫ zx=−∞,y+x⩽z + ∫
z
x=−∞,y+x>z we get

I = ∫
∞

z=0
u(z) 2√

2πt
∫

z−y

x=−∞

2z − x
t

e−(2z−x)
2/2t dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=e−(2z−x)2/2t∣

z−y
−∞

dz = 2√
2πt

∫
∞

z=0
u(z) e−(z+y)2/2t dz

and

II = 2√
2πt

∫
∞

z=0
∫

z

x=−z−y
u(y + x) 2z − x

t
e−(2z−x)

2/2t dxdz

= 2√
2πt

∫
∞

x=−y
u(y + x)∫

x+y

z=x

2z − x
t

e−(2z−x)
2/2t dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=− 1

2
e−(2z−x)2/2t∣

x+y
z=x
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dx = 1√
2πt

∫
∞

x=−y
u(y + x) [e−x2/2t − e−(x+2y)2/2t] dx

= 1√
2πt

∫
∞

x=−y
u(ξ) [e−(ξ−y)2/2t − e−(ξ+y)2/2t] dxi.

Finally, adding I and II we end up with

E(u(max{y +Bt, sup
0⩽u⩽t

Bu)})) = ∫
∞

0
u(z)(gt(z + y) + gt(z − y))dz, y ⩾ 0

which is the same transition function as in part b).

d) See part c).

∎∎

Problem 6.2. Solution: Replace 1F by 1F1G where G ∈ σ(Bσ+r − Bσ, r ⩽ s). The whole

calculation remains valid for this and yields, in the end,

E [ei⟨ξ,Bσ+t−Bσ+s⟩1F1G] = e−
1
2
(t−s)∣ξ∣2 P(F ∩G).

The main change is in the third equality of the long, multi-line calculation at the end of

the proof where we now have

E [ei⟨ξ,B(σ+t)−B(σ+s)⟩ 1F1G]

= . . .

= lim
j→∞

∞
∑
k=1

E [

áF
k2−j+s, ∼B(t−s) by (B1) or 5.1.b), (B2)

ei⟨ξ,B(k2−j+t)−B(k2−j+s)⟩ 1{(k−1)2−j⩽σ<k2−j} 1F
∈F

k2−j as F ∈Fσ+
1G

∈F
k2−j+s

]

= . . .

(pay attention to the independence w.r.t. Fk2−j+s, that’s the main point). Now take

F = Ω. Then we’re in the situation of Lemma 5.4 and we see that Bt+σ −Bσ is a Brownian

motion.

∎∎

Problem 6.3. Solution: Let us assume, for simplicity, that ∣Xt∣ ⩽ 1. The essence is that

we have a uniform majorant which is integrable, constants (as in the statement of the

theorem) will do nicely.

a) For every s ⩾ 0 we have {σ ∧n+ t ⩽ s} = {σ ∧n ⩽ s− t} and this is ∅ if s < t, this is Ω

if s ⩾ t & n ⩽ s − t and this is {σ ⩽ s − t} ∈ Fs−t ⊂ Fs if s ⩾ t & n > s − t. In any case

it is an element of Fs, hence σ ∧ n + t is a stopping time.

b) Since σ ∧ n ⩽ σ we have Fσ∧n ⊂ Fσ, and so ⋃nFσ∧n ⊂ Fσ and σ (⋃nFσ∧n) ⊂ Fσ.

To see the first assertion, take F ∈ Fσ∧n and observe that for any t ⩾ 0

F ∩ {σ ⩽ t} = F ∩ {σ ∧ n ⩽ t}
∈Ft as F ∈ Fσ∧n

∩{σ ⩽ t}
∈Ft

∈ Ft.
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For the reverse inclusion, take F ∈ Fσ and observe that Ω = {σ <∞}. Then

F ∈ Fσ Ô⇒ ∀n ∶ F ∩ {σ ⩽ n} ∈ Fσ∧n Ô⇒ ∀n ∶ F ∩ {σ ⩽ n} ∈ σ (⋃
m

Fσ∧m)

and taking the union over all n we get F = F ∩{σ <∞} ∈ σ (⋃nFσ∧n). If we have only

σ <∞ a.s., then F = F ∩ {σ <∞} up to a measurable null set, but as all measurable

null sets are in F0, we still have F ∈ σ (⋃nFσ∧n).

c) Recall that Lévy’s upwards theorem says that for an integrable random variable

Z ∈ L1(P) we have

E(Z ∣ Gn)
L1& a.s.ÐÐÐÐ→
n→∞

E(Z ∣ G∞), G∞ = σ (⋃
n

Gn) .

We would like to take Z =Xσ∧n and Gn = Fσ∧n, but the problem is the n-dependence

of Z. Therefore, we argue like this: Define for m ∈N

Wm = sup
n⩾m

∣Xσ∧n −Xσ ∣.

Clearly, Wm ⩽ 2 and Wm → 0 a.s. since Xt has continuous paths. Now apply Lévy’s

upwards theorem to Z =Wm to get

lim
n
E (∣Xσ∧n −Xσ ∣ ∣ Fσ∧n) ⩽ lim

n
E (Wm ∣ Fσ∧n) = E (Wm ∣ Fσ)ÐÐÐ→

m→∞
0

by (conditional) monotone convergence or (conditional) dominated convergence. This

proves a.e. convergence. Now the classical dominated convergence theorem kicks in

and gives

E ∣E (Xσ∧n ∣ Fσ∧n) −E (Xσ ∣ Fσ)∣ÐÐÐ→
n→∞

0.

∎∎

Problem 6.4. Solution:

a) By the definition of Bt and θσ, we have for all w ∈ C

Bt(θσw) def. B= θσw(t) def. θ= w(t + σ(w)) def. B= Bt+σ(w)(w).

Thus,

θ−1
σ ({Bt ∈ C}) = {θ−1

σ (w) ∶ Bt(w) ∈ C}

= {v ∶ Bt(θσv) ∈ C}

= {v ∶ Bt+σ(v) ∈ C}

= {Bt+σ ∈ C}.

b) We have to show that for all F ∈ Ft we have θ−1
σ (F ) ∈ Ft+σ. It is enough to do this

for a generator of Ft, and we choose the generator whose sets are of the form

{Bt1 ∈ C1, . . . ,Btn ∈ Cn} =
n

⋂
k=1

{Btk ∈ Ck} ,
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n ∈N, 0 ⩽ t1 < ⋅ ⋅ ⋅ < tn ⩽ t, C1, . . . ,Cn ∈ B(R).

The calculation of the first part and Corollary 6.26 (used for τ = σ + tj) show

θ−1
σ {Bt1 ∈ C1, . . . ,Btn ∈ Cn} = {Bt1+σ ∈ C1, . . . ,Btn+σ ∈ Cn} ∈ F[σ,t+σ] ⊂ Ft+σ.

The F[t+σ,∞)/F[t,∞) measurability is shown in a similar way, considering now in-

stances t ⩽ t1 < t2 < ⋅ ⋅ ⋅ < tn <∞.

c) σ + τ ○ θσ means that we first have observed σ and after that, we observe τ . Note

that τ ○ θσ refers to the shifted paths w(⋅ + σ(⋅)). For example, if σ means that “Bt

reaches the level 1” and if τ means “B reaches the level 3”, then we have τ = σ+τ ○θσ
since we must go to 1 before we can reach 3 (b/o continuity of the paths). But if we

are at 1, then we still have to go to 3, i.e. we have the same τ , but for a different set

of paths (those starting at 1).

Now for the assertion. For every t ⩾ 0 we have

{σ + τ ○ θσ < t} = ⋃
r∈Q

{σ < t − r} ∩ {τ ○ θσ < r} = ⋃
r∈Q

{σ + r < t} ∩ θ−1
σ {τ < r}
∈Fσ+r

and, by the definition of Fσ+r ((5.12) and Problem 5.mar-p37) we see that the set

under the countable union is in Ft, so {σ + τ ○ θσ < t} ∈ Ft i.e. {σ + τ ○ θσ ⩽ t} ∈ Ft+

It is interesting to see what happens if we consider {σ + τ ○ θσ ⩽ t}. If, say, τ ≡ 0 and

t ∉ Q, then the identity is obviously wrong, so the strict inequality is essential.

∎∎

Problem 6.5. Solution: Let s, t ⩾ 0. We use the following abbreviations:

Is = ∫
s

0
Br dr and Ms = sup

u⩽s
Bu and Fs = FB

s .

a) Let f ∶ R2 → R measurable and bounded. Then

E (f(Ms+t,Bs+t) ∣ Fs)

= E(f( sup
s⩽u⩽s+t

Bu ∨Ms, (Bs+t −Bs) +Bs) ∣ Fs)

= E(f([Bs + sup
s⩽u⩽s+t

(Bu −Bs)] ∨Ms, (Bs+t −Bs) +Bs) ∣ Fs) .

By the independent increments property of BM we get that the random variables

sups⩽u⩽s+t(Bu −Bs), Bs+t −Bs áFs while Ms and Bs are Fs measurable. Thus, we

can treat these groups of random variables separately (see, e.g., Lemma A.3:

E (f(Ms+t,Bs+t) ∣ Fs)

= E(f([z + sup
s⩽u⩽s+t

(Bu −Bs)] ∨ y, (Bs+t −Bs) + z) ∣ Fs) ∣
y=Ms,z=Bs
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= φ(Ms,Bs)

where

φ(y, z) = E(f([z + sup
s⩽u⩽s+t

(Bu −Bs)] ∨ y, (Bs+t −Bs) + z)) .

b) Let f ∶ R2 → R measurable and bounded. Then

E (f(Is+t,Bs+t) ∣ Fs)

= E(f(∫
s+t

s
Bu du + Is, (Bs+t −Bs) +Bs) ∣ Fs)

= E(f(∫
s+t

s
(Bu −Bs)du + Is + tBs, (Bs+t −Bs) +Bs) ∣ Fs) .

By the independent increments property of BM we get that the random variables

∫ s+ts (Bu −Bs)du, Bs+t −Bs á Fs while Is + tBs and Bs are Fs measurable. Thus,

we can treat these groups of random variables separately (see, e.g., Lemma A.3:

E (f(Is+t,Bs+t) ∣ Fs)

= E(f(∫
s+t

s
(Bu −Bs)du + y + tz, (Bs+t −Bs) + z)) ∣

y=Is,z=Bs

= φ(Is,Bs)

for the function

φ(y, z) = E(f(∫
s+t

s
(Bu −Bs)du + y + tz, (Bs+t −Bs) + z)) .

c) No! If we use the calculation of a) and b) for the function f(y, z) = g(y), i.e. only

depending on M or I, respectively, we see that we still get

E (g(It+s) ∣ Fs) = ψ(Bs, Is),

i.e. (It,Ft)t cannot be a Markov process. The same argument applies to (Mt,Ft)t.

∎∎

Problem 6.6. Solution: We follow the hint.

First, if f ∶ Rd×n → R, f = f(x1, . . . , xn), x1, . . . , xn ∈ Rd, we see that

Ex f(B(t1)), . . . ,B(tn))

= E f(B(t1)) + x, . . . ,B(tn) + x)

= ∫
Rd

⋯∫
Rd

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

f(y1 + x, . . . , yn + x) P(B(t1) ∈ dy1, . . . ,B(tn) ∈ dyn)

and the last expression is clearly measurable. This applies, in particular, to f =∏n
j=1 1Aj

where G ∶= ⋂nj=1{B(tj) ∈ Aj}, i.e. Ex 1G is Borel measurable.
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Set

Γ ∶=
⎧⎪⎪⎨⎪⎪⎩

n

⋂
j=1

{B(tj) ∈ Aj} ∶ n ⩾ 0, 0 ⩽ t1 < ⋯tn, A1, . . .An ∈ Bb(Rd)
⎫⎪⎪⎬⎪⎪⎭
.

Let us see that Σ is a Dynkin system. Clearly, ∅ ∈ Σ. If A ∈ Σ, then

x↦ Ex 1Ac = Ex(1 − 1A) = 1 −Ex 1A ∈ Bb(Rd) Ô⇒ Ac ∈ Σ.

Finally, if (Aj)j⩾1 ⊂ Σ are disjoint and A ∶= ⊍j Aj we get 1A = ∑j 1Aj . Thus,

x↦ Ex 1A =∑
j

Ex 1Aj ∈ Bb(Rd).

This shows that Σ is a Dynkin System. Denote by δ(⋅) the Dynkin system generated by

the argument. Then

Γ ⊂ Σ ⊂ FB
∞ Ô⇒ δ(Γ) ⊂ δ(Σ) = Σ ⊂ FB

∞.

But δ(Γ) = σ(Γ) since Γ is stable under finite intersections and σ(Γ) = FB
∞. This proves,

in particular, that Σ = FB
∞.

Since we can approximate every bounded FB
∞ measurable function Z by step functions

with steps from FB
∞, the claim follows.

∎∎

Problem 6.7. Solution: Solution 1: Without the assumption that F0 contains all null sets,

use Corollary 6.26 and the fact that Fτ ⊂ Fτ+.

Solution 2: We follow the hint, but we need to assume that F0 contains all null sets from

A . Since F0 ⊂ Ft and F0 ⊂ Fτ ⊂ Fτ+, all F∗ contain the measurable null sets.

Set un(x) ∶= (−n) ∨ x ∧ n. Then un(x)→ u(x) ∶= x. Using (6.7) we see

E [un(Bt+τ) ∣Fτ+](ω) a.s.= EBτ (ω) un(Bt).

Now take t = 0 to get

E [un(Bτ) ∣Fτ+](ω) a.s.= un(Bτ)(ω)

and we get

lim
n→∞

E [un(Bτ) ∣Fτ+](ω) = lim
n→∞

un(Bτ)(ω) a.s.= Bτ(ω).

Since the l.h.S. is Fτ+ measurable (as limit of such measurable functions!) and since

Bτ(ω) differs from this by at most a measurable null set, the claim follows. At this point

we have to use that F0 or all F∗ contain the measurable null sets.

∎∎

Problem 6.8. Solution: By the reflection principle, Theorem 6.10,

P(sup
s⩽t

∣Bs∣ ⩾ x) ⩽ P(sup
s⩽t

Bs ⩾ x) +P(inf
s⩽t
Bs ⩽ −x) = P(∣Bt∣ ⩾ x) +P(∣Bt∣ ⩾ x).

∎∎
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Problem 6.9. Solution:

a) Since B(⋅) ∼ −B(⋅), we get

τb = inf{s ⩾ 0 ∶ Bs = b} ∼ inf{s ⩾ 0 ∶ −Bs = b} = inf{s ⩾ 0 ∶ Bs = −b} = τ−b.

b) Since B(c−2 ⋅) ∼ c−1B(⋅), we get

τcb = inf{s ⩾ 0 ∶ Bs = cb} = inf{s ⩾ 0 ∶ c−1Bs = b}

∼ inf{s ⩾ 0 ∶ Bs/c2 = b}

= inf{rc2 ⩾ 0 ∶ Br = b}

= c2 inf{r ⩾ 0 ∶ Br = b} = c2τb.

c) We have

τb − τa = inf{s ⩾ 0 ∶ Bs+τa = b} = inf{s ⩾ 0 ∶ Bs+τa −Bτa = b − a}

which shows that τb − τa is independent of Fτa
by the strong Markov property of

Brownian motion.

Now we find for all s, t ⩾ 0 and c ∈ [0, a]

{τc ⩽ s} ∩ {τa ⩽ t}
τc⩽τa= {τc ⩽ s ∧ t} ∩ {τa ⩽ t} ∈ Ft∧s ∩Ft ⊂ Ft.

This shows that {τc ⩽ s} ∈ Fτa
, i.e. τc is Fτa

measurable. Since c is arbitrary,

{τc}c∈[0,a] is Fτa
measurable, and the claim follows.

∎∎

Problem 6.10. Solution: We begin with a simpler situation. As usual, we write τb for the first

passage time of the level b: τb = inf{t ⩾ 0 ∶ sups⩽tBs = b} where b > 0. From Example 5.2

d) we know that (M ξ
t ∶= exp(ξBt − 1

2 tξ
2))t⩾0 is a martingale. By optional stopping we get

that (M ξ

t∧τ
b

)t⩾0 is also a martingale and has, therefore, constant expectation. Thus, for

ξ > 0 (and with E = E0)

1 = EM ξ
0 = E ( exp(ξBt∧τb − 1

2(t ∧ τb)ξ
2))

Since the RV exp(ξBt∧τb) is bounded (mind: ξ ⩾ 0 and Bt∧τb ⩽ b), we can let t → ∞ and

get

1 = E ( exp(ξBτb − 1
2τbξ

2)) = E ( exp(ξb − 1
2τbξ

2))

or, if we take ξ =
√

2λ,

E e−λτb = e−
√

2λb.

As B ∼ −B, τb ∼ τ−b, and the above calculation yields

E e−λτb = e−
√

2λ∣b∣ ∀b ∈ R.
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Now let us turn to the situation of the problem. Set τ = τ ○(a,b)c . Here, Bt∧τ is bounded (it

is in the interval (a, b), and this makes things easier when it comes to optional stopping.

As before, we get by stopping the martingale (M ξ
t )t⩾0 that

eξx = lim
t→∞

Ex ( exp(ξBt∧τ − 1
2(t ∧ τ)ξ

2)) = Ex ( exp(ξBτ − 1
2τξ

2)) ∀ξ

(and not, as before, for positive ξ! Mind also the starting point x ≠ 0, but this does not

change things dramatically.) by, e.g., dominated convergence. The problem is now that

Bτ does not attain a particular value as it may be a or b. We get, therefore, for all ξ ∈ R

eξx = Ex ( exp(ξBτ − 1
2τξ

2)1{Bτ=a}) +E
x ( exp(ξBτ − 1

2τξ
2)1{Bτ=b})

= Ex ( exp(ξa − 1
2τξ

2)1{Bτ=a}) +E
x ( exp(ξb − 1

2τξ
2)1{Bτ=b})

Now pick ξ = ±
√

2λ. This yields 2 equations in two unknowns:

e
√

2λx = e
√

2λaEx (e−λτ1{Bτ=a}) + e
√

2λbEx (e−λτ1{Bτ=b})

e−
√

2λx = e−
√

2λaEx (e−λτ1{Bτ=a}) + e
−
√

2λbEx (e−λτ1{Bτ=b})

Solving this system of equations gives

e
√

2λ (x−a) = Ex (e−λτ1{Bτ=a}) + e
√

2λ (b−a)Ex (e−λτ1{Bτ=b})

e−
√

2λ (x−a) = Ex (e−λτ1{Bτ=a}) + e
−
√

2λ (b−a)Ex (e−λτ1{Bτ=b})

and so

Ex (e−λτ1{Bτ=b}) =
sinh (

√
2λ (x − a))

sinh (
√

2λ (b − a))
and Ex (e−λτ1{Bτ=a}) =

sinh (
√

2λ (b − x))
sinh (

√
2λ (b − a))

.

This answers Problem b) .

For the solution of Problem a) we only have to add these two expressions:

E e−λτ = E (e−λτ1{Bτ=a}) +E (e−λτ1{Bτ=b}) =
sinh (

√
2λ (b − x)) + sinh (

√
2λ (x − a))

sinh (
√

2λ (b − a))
.

∎∎

Problem 6.11. Solution: (I owe this solution to Dr. Franziska Kühn) We write Wt = (a, b)⊺ +
(B1

t ,B
2
t )⊺ where (Bi

t)t⩾0, i = 1,2, are independent standard BM1. WLOG we assume that

b > 0. The problem can be re-phrased in terms of stopping times as follows:

τ ∶= inf{t ⩾ 0 ∶ Wt ∈ R × (−∞,0]} = inf{t ⩾ 0 ∶ b +B2
t ⩽ 0}.

(Draw a picture. In order to hit the x-axis, we have go into the negative with the second

coordinate!). The second equality shows that τ depends only on the canonical filtration
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F 2
t of the second coordinate B2. Thus, τ is independent of (B1

t )t⩾0, and we get for the

probability which we are looking for (now comes the condition which half is hit first!)

p = P(a +B1
τ ⩾ 0) = ∫ P(a +B1

t ⩾ 0) P(τ ∈ dt).

From Theorem 6.10 we know the law of τ : P(τ ∈ dt) = ∣b∣(2πt3)−1/2e−b
2/(2t)1(0,∞) dt. Thus,

p = ∫
∞

0
∫

∞

−a

∣b∣√
2πt3

1√
2πt

exp(−b
2 + y2

2t
)dy dt

= ∣b∣
2π
∫

∞

−a ∫
∞

0
exp(−b

2 + y2

2t
) dt
t2
dy

= ∣b∣
2π
∫

∞

−a ∫
∞

0
exp(−s(b

2 + y2)
2

)dsdy

= 1

π
∫

∞

−a

∣b∣
b2 + y2

dy

= 1

π
arctan

x

∣b∣ ∣
∞

−a
= 1

2
− 1

π
arctan(−a∣b∣ ) .

Note: we have actually shown that B1
τ is Cauchy distributed.

∎∎

Problem 6.12. Solution: Solution 1 (direct calculation): Denote by τ = τy = inf{s > 0 ∶ Bs =
y} the first passage time of the level y. Then Bτ = y and we get for y ⩾ x

P(Bt ⩽ x, Mt ⩾ y) = P(Bt ⩽ x, τ ⩽ t)

= P(Bt∨τ ⩽ x, τ ⩽ t)

= E (E (1{Bt∨τ⩽x} ∣Fτ+) ⋅ 1{τ⩽t})

by the tower property and pull-out. Now we can use Theorem 6.12

= ∫ PBτ (ω)(Bt−τ(ω) ⩽ x) ⋅ 1{τ⩽t}(ω) P(dω)

= ∫ Py(Bt−τ(ω) ⩽ x) ⋅ 1{τ⩽t}(ω) P(dω)

= ∫ P(Bt−τ(ω) ⩽ x − y) ⋅ 1{τ⩽t}(ω) P(dω)
B∼−B= ∫ P(Bt−τ(ω) ⩾ y − x) ⋅ 1{τ⩽t}(ω) P(dω)

= ∫ Py(Bt−τ(ω) ⩾ 2y − x) ⋅ 1{τ⩽t}(ω) P(dω)

= ∫ PBτ (ω)(Bt−τ(ω) ⩾ 2y − x) ⋅ 1{τ⩽t}(ω) P(dω)

= . . . = P(Bt ⩾ 2y − x, Mt ⩾ y) y⩾x= P(Bt ⩾ 2y − x).

This means that

P(Bt ⩽ x, Mt ⩾ y) = P(Bt ⩾ 2y − x) = ∫
∞

2y−x
(2πt)−1/2e−z

2/(2t) dz
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and differentiating in x and y yields

P(Bt ∈ dx, Mt ∈ dy) =
2(2y − x)√

2πt3
e−(2y−x)

2/(2t) dxdy.

Solution 2 (using Theorem 6.19): We have (with the notation of Theorem 6.19)

P(Mt < y,Bt ∈ dx) = lim
a→−∞

P(mt > a,Mt < y,Bt ∈ dx)
(6.20)= dx√

2πt
[e−

x2

2t − e−
(x−2y)2

2t ]

and if we differentiate this expression in y we get

P(Bt ∈ dx, Mt ∈ dy) =
2(2y − x)√

2πt3
e−(2y−x)

2/(2t) dxdy.

∎∎

Problem 6.13. Solution: This is the so-called absorbed or killed Brownian motion. The result

is

Px(Bt ∈ dz, τ0 > t) = (gt(x − z) − gt(x + z))dz =
1√
2πt

(e−(x−z)2/(2t) − e−(x+z)2/(2t)) dz,

for x, z > 0 or x, z < 0.

To see this result we assume that x > 0. Write Mt = sups⩽tBs and mt = infs⩽tBs for the

running maximum and minimum, respectively. Then we have for A ⊂ [0,∞)

Px(Bt ∈ A, τ0 > t) = Px(Bt ∈ A, mt > 0)

= Px(Bt ∈ A, x ⩾mt > 0)

(we start in x > 0, so the minimum is smaller!)

= P0(Bt ∈ A − x, 0 ⩾mt > −x)
B∼−B= P0(−Bt ∈ A − x, 0 ⩾ −Mt > −x)

= P0(Bt ∈ x −A, 0 ⩽Mt < x)

=∬ 1A(x − a)1[0,x)(b) P0(Bt ∈ da, Mt ∈ db)

Now we use the result of Problem 6.12:

P0(Bt ∈ da, Mt ∈ db) =
2(2b − a)√

2πt3
exp(−(2b − a)2

2t
)dadb

and we get

Px(Bt ∈ A, τ0 > t) = ∫ 1A(x − a) [∫
x

0

2(2b − a)√
2πt3

exp(−(2b − a)2

2t
) db]da

= ∫ 1A(x − a)
t√

2πt3
[∫

x

0

2 ⋅ 2 ⋅ (2b − a)
2t

exp(−(2b − a)2

2t
) db]da

= ∫ 1A(x − a)
1√
2πt

[∫
x

0

2 ⋅ (2b − a)
t

exp(−(2b − a)2

2t
) db]da
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= 1√
2πt

∫ 1A(x − a) [− exp(−(2b − a)2

2t
)]

x

b=0

da

= 1√
2πt

∫ 1A(x − a){exp(−a
2

2t
) − exp(−(2x − a)2

2t
)}da

= 1√
2πt

∫ 1A(z){exp(−(x − z)2

2t
) − exp(−(x + z)2

2t
)}da.

The calculation for x < 0 is similar (actually easier): Let A ⊂ (−∞,0]

Px(Bt ∈ A, τ0 > 0) = Px(Bt ∈ A, −x ⩽Mt < 0)

= P0(Bt ∈ A − x, 0 ⩽Mt < −x)

=∬ 1A(a + x)1[0,−x)(b)
2(2b − a)√

2πt2
exp(−(2b − a)2

2t
) dbda

= ∫ 1A(a + x)
t√

2πt3
∫

−x

0

2 ⋅ (2b − a)
t

exp(−(2b − a)2

2t
) dbda

= 1√
2πt

∫ 1A(a + x) [− exp(−(2b − a)2

2t
)]

−x

b=0

da

= 1√
2πt

∫ 1A(a + x){exp(−a
2

2t
) − exp(−(2x + a)2

2t
−)} da

= 1√
2πt

∫ 1A(y){exp(−(y − x)2

2t
) − exp(−(x + y)2

2t
−)} da.

∎∎

Problem 6.14. Solution: For a compact set K ⊂ Rd the set Un ∶=K +B(0,1/n) ∶= {x+y ∶ x ∈
K, ∣y∣ < 1/n} is open.

φn(x) ∶= d(x,U cn)/(d(x,K) + d(x,U cn)).

Since for d(x, z) ∶= ∣x − z∣ and all x, z ∈ Rd

d(x,A) ⩽ d(x, z) + d(z,A) Ô⇒ ∣d(x,A) − d(z,A)∣ ⩽ d(x, z),

we see that φn(x) is continuous. Obviously, 1Un(x) ⩾ φn(x) ⩾ φn+1 ⩾ 1K , and 1K = infn φn

follows.

∎∎

Problem 6.15. Solution: Recall that P = P0. We have for all a ⩾ t ⩾ 0

P(ξ̃t > a) = P (inf {s ⩾ t ∶ Bs = 0} > a)

= P (inf {h ⩾ 0 ∶ Bt+h = 0} + t > a)

= E [PBt (inf {h ⩾ 0 ∶ Bh = 0} > a − t)]

= E [P0 (inf {h ⩾ 0 ∶ Bh + x = 0} > a − t) ∣
x=Bt

]

= E [P (inf {h ⩾ 0 ∶ Bh = −x} > a − t) ∣
x=Bt

]
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= E [P (τ−x > a − t) ∣
x=Bt

]
B∼−B= E [P (τBt > a − t)]

(6.14)= E [∫
∞

a−t

∣Bt∣√
2πs3

e−B
2
t /(2s) ds]

= ∫
∞

a−t
E [ ∣Bt∣√

2πs3
e−B

2
t /(2s)]ds.

Thus, differentiating with respect to a and using Brownian scaling yields

P(ξ̃t ∈ da) = E
⎡⎢⎢⎢⎣

∣Bt∣√
2π(a − t)3

exp(− B2
t

2(a − t))
⎤⎥⎥⎥⎦

= 1

(a − t)√π E [
√
t√

a − t
∣B1∣√

2
exp(−1

2
B2

1

t

a − t)]

= 1

(a − t)√π E
[∣cB1∣ exp (−(cB1)2)]

= 1

(a − t)√π E
[∣Bc2 ∣ exp (−B2

c2)]

where c2 = 1
2

t
a−t .

Now let us calculate for s = c2

E [∣Bs∣ e−B
2
s ] = (2πs)−1/2∫

∞

−∞
∣x∣ e−x2

e−x
2/(2s) dx

= (2πs)−1/2 2∫
∞

0
xe−x

2(1+(2s)−1) dx

= (2πs)−1/2 1

(1 + (2s)−1) ∫
∞

0
2(1 + (2s)−1)xe−x2(1+(2s)−1) dx

= 1√
2πs

2s

2s + 1
[e−x2(1+(2s)−1)]

∞

x=0

= 1√
2πs

2s

2s + 1
.

Let (Bt)t⩾0 be a BM1. Find the distribution of ξ̃t ∶= inf{s ⩾ t ∶ Bs = 0}. This gives

P(ξ̃t ∈ da) =
1

(a − t)√π
1√
2π c

2c2

2c2 + 1

= 1

(a − t)π

√
a − t√
t

t

(a − t)a/(a − t)

= 1

aπ

√
t

a − t .

∎∎

Problem 6.16. Solution: We have seen in Problem 6.1 that M −B is a Markov process with

the same law as ∣B∣. This entails immediately that ξ ∼ η.

Attention: this problem shows that it is not enough to have only Mt − Bt ∼ ∣Bt∣ for all

t ⩾ 0, we do need that the finite-dimensional distributions coincide. The Markov property

guarantees just this once the one-dimensional distributions coincide!

∎∎
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Problem 6.17. Solution:

a) We have

P (Bt = 0 for some t ∈ (u, v)) = 1 −P (Bt ≠ 0 for all t ∈ (u, v)).

But the complementary probability is known from Theorem 6.20.

P (Bt ≠ 0 for all t ∈ (u, v)) = 2

π
arcsin

√
u

v

and so

P (Bt = 0 for some t ∈ (u, v)) = 1 − 2

π
arcsin

√
u

v
.

b) Since (u, v) ⊂ (u,w) we find with the classical conditional probability that

P (Bt ≠ 0 ∀t ∈ (u,w) ∣ Bt ≠ 0 ∀t ∈ (u, v))

=
P ({Bt ≠ 0 ∀t ∈ (u,w)} ∩ {Bt ≠ 0 ∀t ∈ (u, v)})

P (Bt ≠ 0 ∀t ∈ (u, v))

=
P (Bt ≠ 0 ∀t ∈ (u,w))
P (Bt ≠ 0 ∀t ∈ (u, v))

a)=
arcsin

√
u
w

arcsin
√

u
v

c) We have

P (Bt ≠ 0 ∀t ∈ (0,w) ∣ Bt ≠ 0 ∀t ∈ (0, v))

= lim
u→0

P (Bt ≠ 0 ∀t ∈ (u,w) ∣ Bt ≠ 0 ∀t ∈ (u, v))

b)= lim
u→0

arcsin
√

u
w

arcsin
√

u
v

a)=
l’Hôpital

lim
u→0

√
v
√
v − u√

w
√
w − u

=
√
v√
w
.

∎∎
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7 Brownian motion and transition semigroups

Problem 7.1. Solution: Banach space: It is obvious that C∞(Rd) is a linear space. Let us

show that it is closed. By definition, u ∈ C∞(Rd) if

∀ε > 0 ∃R > 0 ∀∣x∣ > R ∶ ∣u(x)∣ < ε. (*)

Let (un)n ⊂ C∞(Rd) be a Cauchy sequence for the uniform convergence. It is clear that

the uniform limit u = limn un is again continuous. Fix ε and pick R as in (*). Then we get

∣u(x)∣ ⩽ ∣un(x) − u(x)∣ + ∣un(x)∣ ⩽ ∥un − u∥∞ + ∣un(x)∣.

By uniform convergence, there is some n(ε) such that

∣u(x)∣ ⩽ ε + ∣un(ε)(x)∣ for all x ∈ Rd.

Since un(ε) ∈ C∞, we find with (*) some R = R(n(ε), ε) = R(ε) such that

∣u(x)∣ ⩽ ε + ∣un(ε)(x)∣. ⩽ ε + ε ∀∣x∣ > R(ε).

Density: Fix an ε and pick R > 0 as in (*), and pick a cut-off function χ = χR ∈ C(Rd)
such that

1
B(0,R) ⩽ χR ⩽ 1B(0,2R).

Clearly, suppχR is compact, χR ↑ 1, χRu ∈ Cc(Rd) and

sup
x

∣u(x) − χR(x)u(x)∣ = sup
∣x∣>R

∣χR(x)u(x)∣ ⩽ sup
∣x∣>R

∣u(x)∣ < ε.

This shows that Cc(Rd) is dense in C∞(Rd).

∎∎

Problem 7.2. Solution: Fix (t, y, v) ∈ [0,∞) ×Rd × C∞(Rd), ε > 0, and take any (s, x, u) ∈
[0,∞) ×Rd × C∞(Rd). Then we find using the triangle inequality

∣Psu(x) − Ptv(y)∣ ⩽ ∣Psu(x) − Psv(x)∣ + ∣Psv(x) − Ptv(x)∣ + ∣Ptv(x) − Ptv(y)∣

⩽ sup
x

∣Psu(x) − Psv(x)∣ + sup
x

∣Psv(x) − PsPt−sv(x)∣ + ∣Ptv(x) − Ptv(y)∣

= ∥Ps(u − v)∥∞ + ∥Ps(v − Pt−sv)∥∞ + ∣Ptv(x) − Ptv(y)∣

⩽ ∥u − v∥∞ + ∥v − Pt−sv∥∞ + ∣Ptv(x) − Ptv(y)∣

where we used the contraction property of Ps.
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• Since y ↦ Ptv(y) is continuous, there is some δ1 = δ1(t, y, v, ε) such that ∣x − y∣ <
δ Ô⇒ ∣Ptv(x) − Ptv(y)∣ < ε.

• Using the strong continuity of the semigroup (Proposition 7.3 f) there is some δ2 =
δ2(t, v, ε) such that ∣t − s∣ < δ2 Ô⇒ ∥Pt−sv − v∥∞ ⩽ ε.

. This proves that for δ ∶= min{ε, δ1, δ2}

∣s − t∣ + ∣x − y∣ + ∥u − v∥∞ ⩽ δ Ô⇒ ∣Psu(x) − Ptv(y)∣ ⩽ 3ε.

∎∎

Problem 7.3. Solution: By the tower property we find

Ex(f(Xt)g(Xt+s)) tower=
property

Ex (Ex (f(Xt)g(Xt+s) ∣Ft))
pull=
out

Ex (f(Xt)Ex (g(Xt+s) ∣Ft))
Markov=
property

Ex (f(Xt)EXt (g(Xs)))

= Ex(f(Xt)h(Xt))

where, for every s,

h(y) = Ey g(Xs) is again in C∞.

Thus, Ex f(Xt)g(Xt+s) = Ex φ(Xt) and φ(y) = f(y)h(y) is in C∞. This shows that

x↦ Ex(f(Xt)g(Xt+s)) is in C∞.

Using semigroups we can write the above calculation in the following form:

Ex(f(Xt)g(Xt+s)) = Ex(f(Xt)Psg(Xt)) = Pt(fPsg)(x)

i.e. h = Ps and φ = f ⋅ Psg, and since Pt preserves C∞, the claim follows.

∎∎

Problem 7.4. Solution: Set u(t, z) ∶= Ptu(z) = pt ⋆ u(z) = (2πt)d/2 ∫Rd u(y)e∣z−y∣
2/2t dy.

u(t, ⋅) is in C∞ for t > 0: Note that the Gauss kernel

pt(z − y) = (2πt)−d/2e−∣z−y∣2/2t, t > 0

can be arbitrarily often differentiated in z and

∂kz pt(z − y) = Qk(z, y, t)pt(z − y)

where the function Qk(z, y, t) grows at most polynomially in z and y. Since pt(z − y)
decays exponentially, we see — as in the proof of Proposition 7.3 g) — that for each z

∣∂kz pt(z − y)∣

⩽ sup
∣y∣⩽2R

∣Qk(z, y, t)∣1B(0,2R)(y) + sup
∣y∣⩾2R

∣Qk(z, y, t)e−∣y∣
2/(16t)∣ e−∣y∣2/(16t) 1Bc(0,2R)(y).
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This inequality holds uniformly in a small neighbourhood of z, i.e. we can use the differ-

entiation lemma from measure and integration to conclude that ∂kPtu ∈ Cb.

x↦ ∂tu(t, x) is in C∞ for t > 0: This follows from the first part and the fact that

∂tpt(z − y) = −
d

2
(2πt)−d/2−1e−∣z−y∣

2/2t + (2πt)−d/2e−∣z−y∣2/2t ∣z − y∣
2

2t2

= 1

2
(∣z − y∣2

t2
− d
t
)pt(z − y).

Again with the domination argument of the first part we see that ∂t∂
k
xu(t, x) is continuous

on (0,∞) ×Rd.

∎∎

Problem 7.5. Solution:

a) Note that ∣un∣ ⩽ ∣u∣ ∈ Lp. Since ∣un − u∣p ⩽ (∣un∣ + ∣u∣)p ⩽ (∣u∣ + ∣u∣)p = 2p∣u∣p ∈ L1

and since ∣un(x) − u(x)∣ → 0 for every x as n → ∞, the claim follows by dominated

convergence.

b) Let u ∈ Lp and m < n. We have

∥Ptun − Ptum∥Lp = ∥pt ⋆ (un − um)∥Lp
Young

⩽ ∥pt∥L1∥un − um∥Lp = ∥un − um∥Lp .

Since (un)n is an Lp Cauchy sequence (it converges in Lp towards u ∈ Lp), so is

(Ptun)n, and therefore P̃tu ∶= limn Ptun exists in Lp.

If vn is any other sequence in Lp with limit u, the above argument shows that

limn Ptvn also exists. ‘Mixing’ the sequences (wn) ∶= (u1, v1, u2, v2, u3, v3, . . .) pro-

duces yet another convergent sequence with limit u, and we conclude that

lim
n
Ptun = lim

n
Ptwn = lim

n
Ptvn,

i.e. P̃t is well-defined.

c) Any u ∈ Lp with 0 ⩽ u ⩽ 1 has a representative u ∈ Bb. And then the claim follows

since Pt is sub-Markovian.

d) Recall that y ↦ ∥u(⋅ + y) − u∥Lp is for u ∈ Lp(dx) a continuous function. By Fubini’s

theorem and the Hölder inequality

∥Ptu − u∥pLp = ∫ ∣Eu(x +Bt) − u(x)∣p dx

⩽ E(∫ ∣u(x +Bt) − u(x)∣p dx)

= E (∥u(⋅ +Bt) − u∥pLp) .

The integrand is bounded by 2p∥u∥pLp , and continuous as a function of t; therefore we

can use the dominated convergence theorem to conclude that limt→0 ∥Ptu− u∥Lp = 0.

∎∎
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Problem 7.6. Solution: Let u ∈ Cb. Then we have, by definition

Tt+su(x) = ∫
Rd
u(z)pt+s(x, dz)

Tt(Tsu)(x) = ∫
Rd
Tsu(y)pt(x, dy)

= ∫
Rd
∫
Rd
u(z)ps(y, dz)pt(x, dy)

= ∫
Rd
u(z)∫

Rd
ps(y, dz)pt(x, dy)

By the semigroup property, Tt+s = TtTs, and we see that

pt+s(x, dz) = ∫
Rd
ps(y, dz)pt(x, dy).

If we pick u = 1C , this formal equality becomes

pt+s(x,C) = ∫
Rd
ps(y,C)pt(x, dy).

∎∎

Problem 7.7. Solution: Using Tt1C(x) = pt(x,C) = ∫ 1C(y)pt(x, dy) we get

pxt1,...,tn(C1 × . . . ×Cn)

= Tt1(1C1[Tt2−t11C2{⋯Ttn−1−tn−2 ∫ 1Cn(xn)ptn−tn−1(⋅, dxn)⋯}])(x)

= Tt1(1C1[Tt2−t11C2{⋯∫ 1Cn−1(xn−1)∫ 1Cn(xn)ptn−tn−1(xn−1, dxn)×

× ptn−1−tn−2(⋅, dxn−1)⋯}])(x)

⋮

= ∫ . . .∫
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n integrals

1C1(x1)1C2(x2)⋯1Cn(xn)ptn−tn−1(xn−1, dxn)ptn−1−tn−2(xn−2, dxn−1)×

⋯ × pt2−t1(x2, dx2)pt1(x, dx1)

= ∫ . . .∫
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n integrals

1C1×⋯×Cn(x1, . . . , xn)
n

∏
j=1

ptj−tj−1(xj−1, dxj)

(we set t0 ∶= 0 and x0 ∶= x).

This shows that pxt1,...,tn(C1 × . . . ×Cn) is the restriction of

pxt1,...,tn(Γ) = ∫ . . .∫
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n integrals

1Γ(x1, . . . , xn)
n

∏
j=1

ptj−tj−1(xj−1, dxj), Γ ∈ B(Rd⋅n)

and the right-hand side clearly defines a probability measure. By the uniqueness theorem

for measures, each measure is uniquely defined by its values on the rectangles, so we are

done.

∎∎
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Problem 7.8. Solution:

a) Let x, y ∈ Rd and a ∈ A. Then

inf
α∈A

∣x − α∣ ⩽ ∣x − a∣ ⩽ ∣x − y∣ + ∣a − y∣

Since this holds for all a ∈ A, we get

inf
α∈A

∣x − α∣ ⩽ ∣x − y∣ + inf
a∈A

∣a − y∣

and, since x, y play symmetric roles,

∣d(x,A) − d(y,A)∣ = ∣ inf
α∈A

∣x − α∣ − inf
a∈A

∣a − y∣∣ ⩽ ∣x − y∣.

b) By definition, Un = K +B(0,1/n) and un(x) ∶= d(x,Ucn)
d(x,K)+d(x,Ucn)

. Being a combination

of continuous functions, see Part (a), un is clearly continuous. Moreover,

un∣K ≡ 1 and un∣Ucn ≡ 0.

This shows that 1K ⩽ un ⩽ 1Ucn
n→∞ÐÐÐ→ 1K .

Picture: un is piecewise linear.

c) Assume, without loss of generality, that suppχn ⊂ B(0,1/n2). Since 0 ⩽ un ⩽ 1, we

find

χn ⋆ un(x) = ∫ χn(x − y)un(y)dy ⩽ ∫ χn(x − y)dy = 1 ∀x.

Now we observe that for γ ∈ (0,1)

un(y) =
d(y,U cn)

d(y,K) + d(y,U cn)
⩾ (1 − γ)/n

1/n = 1 − γ. ∀y ∈K +B(0, γ/n)

(Essentially this means that un is ‘linear’ for x ∈ Un ∖K!). Thus, if γ > 1/n,

χn ⋆ un(x) = ∫ χn(x − y)un(y)dy

⩾ (1 − γ)∫ χn(x − y)1K+B(0,γ/n)(y)dy

= (1 − γ)∫ χn(x − y)1B(0,1/n2)(x − y)1K+B(0,γ/n)(y)dy

= (1 − γ)∫ χn(x − y)1x+B(0,1/n2)(y)1K+B(0,γ/n)(y)dy

⩾ (1 − γ)∫ χn(x − y)1x+B(0,1/n2)(y)dy

= 1 − γ ∀x ∈K.

This shows that

1 − γ ⩽ lim inf
n

χn ⋆ un(x) ⩽ lim sup
n

χn ⋆ un(x) ⩽ 1 ∀x ∈K,

hence,

lim
n→∞

χn ⋆ un(x) = x for all x ∈K.
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On the other hand, if x ∈Kc, there is some n ⩾ 1 such that d(x,K) > 1
n +

1
n2 . Since

1

n
+ 1

n2
< d(x,K) ⩽ d(x, y) + d(y,K) Ô⇒ d(x, y) > 1

n2
or d(y,K) > 1

n
,

and so, using that suppχn ⊂ B(0,1/n2) and suppun ⊂K +B(0,1/n),

χn ⋆ un(x) = ∫ χn(x − y)un(y)dy = 0 ∀x ∶ d(x,K) > 1

n
+ 1

n2
.

It follows that limn χn ⋆ un(x) = 0 for x ∈Kc.

Remark 1: If we are just interested in a smooth function approximating 1K we could

use vn ∶= χn ⋆ 1K+suppun where (χn)n is any sequence of type δ. Indeed, as before,

χn ⋆ 1K+suppun(x) = ∫ χn(x − y)1K+suppun(y)dy ⩽ ∫ χn(x − y)dy = 1 ∀x.

For x ∈K we find

χn ⋆ 1K+suppun(x) = ∫ χn(x − y)1K+suppun(y)dy

= ∫ χn(y)1K+suppun(x − y)dy

= ∫ χn(y)dy

= 1 ∀x ∈K.

As before we get χn ⋆ 1K+suppun(x) = 0 if d(x,K) > 2/n.

Thus, limn χn ⋆ 1K+suppun(x) = 0 if x ∈Kc.

Remark 2: The naive approach χn ⋆ 1K will, in general, not lead to a (pointwise

everywhere) approximation of 1K : consider K = {0}, then χn ⋆1K ≡ 0. In fact, since

1K ∈ L1 we get χn ⋆ 1K → 1K in L1 hence, for a subsequence, a.e. ...

∎∎

Problem 7.9. Solution:

a) This follows from part (c).

b) This follows by approximating 1K from above by a decreasing sequence of C∞ func-

tions. Such a sequence exists, see Problem 7.8 above.

Remark: If we know that the kernel pt(x,K) ∶= Tt1K(x) is inner (compact) regular —

or outer (open) regular, which is the same and does always hold in this topologically

nice situation with bounded measures, see Schilling [18, Appendix H] — then we get

that (t, x)↦ pt(x,C) is measurable for all Borel measures C ⊂ Rd. Just observe that

pt(x,C) = sup{pt(x,K) ∶ K ⊂ C, K compact} and use the fact the the supremum is

attained by a sequence (which may depend on C, of course).

c) This is a standard 3-ε-trick. Fix ε > 0, fix (s, x, u) and consider another point (t, y,w).
Without loss of generality we assume that s ⩽ t. Then, by the triangle inequality,

the semigroup property and the contractivity (in the last step), we get

∣Tsu(x) − Ttw(y)∣ ⩽ ∣Tsu(x) − Tsu(y)∣ + ∣Tsu(y) − Ttu(y)∣ + ∣Ttu(y) − Ttw(y)∣
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⩽ ∣Tsu(x) − Tsu(y)∣ + ∥Tsu − Ttu∥∞ + ∥Tt(u −w)∥∞
⩽ ∣Tsu(x) − Tsu(y)∣ + ∥Ts(u − Tt−su)∥∞ + ∥Tt(u −w)∥∞
⩽ ∣Tsu(x) − Tsu(y)∣ + ∥u − Tt−su∥∞ + ∥u −w∥∞.

Now we know that for given ε there are δ1, δ2, δ3 such that

∥u −w∥∞ < δ1 Ô⇒ ∥u −w∥∞ < ε (pick δ1 = ε)

∣t − s∣ < δ2 Ô⇒ ∥Tt−su − u∥∞ < ε (by strong continuity)

∣x − y∣ < δ3 Ô⇒ ∣Tsu(x) − Tsu(y)∣ < ε (by the Feller property).

This proves continuity with δ ∶= min(δ1, δ2, δ3); note that δ may (and will) depend

on ε as well as on the fixed point (s, x, u), as we require continuity at this point only.

Mind that there are minor, but obvious, changes necessary if s = 0.

Remark: A full account on Feller semigroups can be found in Böttcher–Schilling–

Wang [1, Chapter 1].

∎∎

Problem 7.10. Solution:

a) Existence, contractivity: Let us, first of all, check that the series converges. Denote

by ∥A∥ any matrix norm in Rd. Then we see

∥Pt∥ =
XXXXXXXXXXX

∞
∑
j=0

(tA)j
j!

XXXXXXXXXXX
⩽

∞
∑
j=0

tj ∥Aj∥
j!

⩽
∞
∑
j=0

tj ∥A∥j

j!
= et∥A∥.

This shows that, in general, Pt is not a contraction. We can make it into a contraction

by setting Qt ∶= e−t∥A∥Pt. It is clear that Qt is again a semigroup, if Pt is a semigroup.

Semigroup property: This is shown using as for the one-dimensional exponential se-

ries. Indeed,

e(t+s)A =
∞
∑
k=0

(t + s)kAk
k!

=
∞
∑
k=0

k

∑
j=0

1

k!
(k
j
)tjsk−jAk

=
∞
∑
k=0

k

∑
j=0

tjAj

j!

sk−jAk−j

(k − j)!

=
∞
∑
j=0

tjAj

j!

∞
∑
k=j

sk−jAk−j

(k − j)!

=
∞
∑
j=0

tjAj

j!

∞
∑
l=0

slAl

l!

= etAesA.

Strong continuity: We have

∥etA − id∥ =
XXXXXXXXXXX

∞
∑
j=1

tjAj

j!

XXXXXXXXXXX
= t

XXXXXXXXXXX

∞
∑
j=1

tj−1Aj

j!

XXXXXXXXXXX
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and, as in the first calculation, we see that the series converges absolutely. Letting

t→ 0 shows strong continuity, even continuity in the operator norm.

(Strictly speaking, strong continuity means that for each vector v ∈ Rd

lim
t→0

∣etAv − v∣ = 0.

Since

∣etAv − v∣ ⩽ ∥etA − id ∥ ⋅ ∣v∣

strong continuity is implied by uniform continuity. One can show that the generator

of a norm-continuous semigroup is already a bounded operator, see e.g. Pazy.)

b) Let s, t > 0. Then

etA − esA =
∞
∑
j=0

( t
jAj

j!
− s

jAj

j!
) =

∞
∑
j=1

(tj − sj)Aj
j!

Since the sum converges absolutely, we get

etA − esA
t − s =

∞
∑
j=1

(tj − sj)
t − s

Aj

j!

s→tÐÐ→
∞
∑
j=1

jtj−1A
j

j!
.

The last expression, however, is

∞
∑
j=1

jtj−1A
j

j!
= A

∞
∑
j=1

tj−1 Aj−1

(j − 1)! = Ae
tA.

A similar calculation, pulling out A to the back, yields that the sum is also etAA.

c) Assume first that AB = BA. Repeated applications of this rule show AjBk = BkAj

for all j, k ⩾ 0. Thus,

etAetB =
∞
∑
j=0

∞
∑
k=0

tjAj

j!

tkBk

k!
=

∞
∑
j=0

∞
∑
k=0

tjtkAjBk

j!k!
=

∞
∑
k=0

∞
∑
j=0

tktjBkAj

k!j!
= etBetA.

Conversely, if etAetB = etBetA for all t > 0, we get

lim
t→0

etA − id

t

etB − id

t
= lim
t→0

etB − id

t

etA − id

t

and this proves AB = BA.

Alternative solution for the converse: If s = j/n and t = k/n for some common de-

nominator n, we get from etAetB = etBetA that

etAesB = e
1
n
A⋯e

1
n
A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

e
1
n
B⋯e

1
n
B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j

= e
1
n
B⋯e

1
n
B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j

e
1
n
A⋯e

1
n
A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

= esBetA.

Thus, if s, t > 0 are dyadic numbers, we get

AesB = lim
t→0

etA − id

t
esB = esB lim

t→0

etA − id

t
= esBA

and,

AB = A lim
s→0

esB − id

s
= lim
s→0

esB − id

s
A = BA.
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d) We have

eA/k = id+ 1
k A + ρk and k2ρk =

∞
∑
j=2

Aj

j!

1

kj−2
.

Note that k2ρk is bounded. Do the same for B (with the remainder term ρ′k) and

multiply these expansions to get

eA/keB/k = id+ 1
k A + 1

k B + σk

where k2σk is again bounded. In particular, if k ≫ 1,

∥ 1
k A + 1

k B + σk∥ < 1.

This allows us to (formally) apply the logarithm series

log(eA/keB/k) = 1
k A + 1

k B + σk + σ′k

where k2σ′k is bounded. Multiply with k to get

k log(eA/keB/k) = A +B + τk

with kτk bounded. Then we get

eA+B = lim
k→∞

eA+B+τk

= lim
k→∞

ek log(eA/keB/k)

= lim
k→∞

(elog(eA/keB/k))k

= lim
k→∞

(eA/keB/k)
k

Alternative Solution: Set Sk = e(A+B)/k and Tk = eA/keB/k. Then

Skk − T kk =
k−1

∑
j=0

Sjk(Sk − Tk)T
k−1−j
k .

This shows that

∥Skk − T kk ∥ ⩽
k−1

∑
j=0

∥Sjk(Sk − Tk)T
k−1−j
k ∥

⩽
k−1

∑
j=0

∥Sjk∥ ⋅ ∥Sk − Tk∥ ⋅ ∥T
k−1−j
k ∥

⩽ k ∥Sk − Tk∥ ⋅max{∥Sk∥, ∥Tk∥}k−1

⩽ k ∥Sk − Tk∥ ⋅ e∥A∥+∥B∥.

Observe that

∥Sk − Tk∥ =
XXXXXXXXXXX

∞
∑
j=0

(A +B)j
kjj!

−
∞
∑
j=0

∞
∑
l=0

Aj

kjj!

Bl

kll!

XXXXXXXXXXX
⩽ C

k2

with a constant C depending only on ∥A∥ and ∥B∥. This yields Skk − T kk → 0.
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∎∎

Problem 7.11. Solution:

a) Let 0 < s < t and assume throughout that h ∈ R is such that t − s − h > 0. We have

Pt−(s+h)Ts+h − Pt−sTs
= Pt−(s+h)Ts+h − Pt−(s+h)Ts + Pt−(s+h)Ts − Pt−sTs
= Pt−(s+h)(Ts+h − Ts) + (Pt−(s+h) − Pt−s)Ts
= (Pt−(s+h) − Pt−s)(Ts+h − Ts) + Pt−s(Ts+h − Ts) + (Pt−(s+h) − Pt−s)Ts.

Divide by h ≠ 0 to get for all u ∈D(B) ⊂D(A)

1

h
(Pt−(s+h)Ts+hu − Pt−sTsu)

= (Pt−(s+h) − Pt−s)
Ts+hu − Tsu

h
+ Pt−s

Ts+hu − Tsu
h

+
Pt−(s+h) − Pt−s

h
Tsu

= I + II + III.

Letting h→ 0 gives for all u ∈D(B) ⊂D(A)

II→ Pt−sBTs and III→ −Pt−sATs

(we use for the last asserting that Ts(D(B)) Lemma⊂
7.10.a)

D(B) ⊂D(A)). Let us show that

I→ 0. We have

I = (Pt−(s+h) − Pt−s) (
Ts+hu − Tsu

h
− TsBu) + (Pt−(s+h) − Pt−s)TsBu = I1 + I2.

By the strong continuity of the semigroup (Pt)t, we see that I2 → 0 as h → 0.

Furthermore, by contractivity,

∥I1∥ ⩽ (∥Pt−(s+h)∥ + ∥Pt−s∥) ⋅ ∥
Ts+hu − Tsu

h
− TsBu∥ ⩽ 2 ∥Ts+hu − Tsu

h
− TsBu∥→ 0

since u ∈D(B).

Remark. Usually this identity is used if D(A) =D(B), for example we have used it

in this way in the proof of Corollary 7.11.c) on page 96. Another, typical application

is the situation where B−A is a bounded operator (hence, D(A) =D(B)). Integrating

the identity of part a) yields

Ttu − Ptu = ∫
t

0

d

ds
(Pt−sTs)uds = ∫

t

0
Pt−s(B −A)Tsuds

which is often referred to as Duhamel’s formula. This formula holds first for u ∈D(B)
and then, by extension of bounded linear operators defined on a dense set, for all u

in the closure D(B).
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b) In general, no. The problem is the semigroup property (unless Tt and Ps commute

for all s, t ⩾ 0):

UtUs = TtPtTsPs ≠ TtTsPtPs = Tt+sPt+s = Ut+s.

In (c) we see how this can be ‘remedied’.

It is interesting to note (and helpful for the proof of (c)) that Ut is an operator on

C∞:

Ut ∶ C∞
PtÐÐÐÐ→ C∞

TtÐÐÐÐ→ C∞

and that Ut is strongly continuous: for all s, t ⩾ 0 and f ∈ C∞

∥Utf −Usf∥ = ∥TtPtf − TsPtf + TsPtf − TsPsf∥

⩽ ∥(Tt − Ts)Ptf∥ + ∥Ts(Pt − Ps)f∥

⩽ ∥(Tt − Ts)Ptf∥ + ∥(Pt − Ps)f∥

and, as s→ t, both expressions tend to 0 since f,Ptf ∈ C∞.

c) Set Ut,n ∶= (Tt/nPt/n)
n
.

Ut is a contraction on C∞: By assumption, Pt/n and Tt/n map C∞ into itself and,

therefore, Tt/nPt/n ∶ C∞ → C∞ as well as Ut,n.

We have ∥Ut,nf∥ = ∥Tt/nPt/n⋯Tt/nPt/nf∥ ⩽ ∏n
j=1 ∥Tt/n∥∥Pt/n∥∥f∥ ⩽ ∥f∥. So, by the

continuity of the norm

∥Utf∥ = ∥lim
n
Ut,nf∥ = lim

n
∥Ut,nf∥ ⩽ ∥f∥.

Strong continuity: Since the limit defining Ut is locally uniform in t, it is enough to

show that Ut,n is strongly continuous. Let X,Y be contractions in C∞. Then we get

Xn − Y n =Xn−1X −Xn−1Y +Xn−1Y − Y n−1Y

=Xn−1(X − Y ) + (Xn−1 − Y n−1)Y

hence, by the contraction property,

∥Xnf − Y nf∥ ⩽ ∥(X − Y )f∥ + ∥(Xn−1 − Y n−1)Y f∥.

By iteration, we get

∥Xnf − Y nf∥ ⩽
n−1

∑
k=0

∥(X − Y )Y kf∥.

Take Y = Tt/nPt/n, X = Ts/nPs/n where n is fixed. Then letting s → t shows the

strong continuity of each t↦ Ut,n.

Semigroup property: Let s, t ∈ Q and write s = j/m and t = k/m for the same m.

Then we take n = l(j + k) and get

(T s+t
n
P s+t

n
)
n
= (T 1

lm
P 1
lm

)
l(j+k)
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= (T 1
lm
P 1
lm

)
lj
(T 1

lm
P 1
lm

)
lk

= (T j
ljm
P j
ljm

)
lj

(T k
lkm

P k
lkm

)
lk

= (T s
lj
P s
lj
)
lj
(T t

lk
P t
lk
)
lk

Since n→∞ ⇐⇒ l →∞ ⇐⇒ lk, lj →∞, we see that Us+t = UsUt for rational s, t.

For arbitrary s, t the semigroup property follows by approximation and the strong

continuity of Ut: let Q ∋ sn → s and Q ∋ tn → t. Then, by the contraction property,

∥UsUtf −UsnUtnf∥ ⩽ ∥UsUtf −UsUtnf∥ + ∥UsUtnf −UsnUtnf∥

⩽ ∥Utf −Utnf∥ + ∥(Us −Usn)(Utn −Ut)f∥ + ∥(Us −Usn)Utf∥

⩽ ∥Utf −Utnf∥ + 2∥(Utn −Ut)f∥ + ∥(Us −Usn)Utf∥

and the last expression tends to 0. The limit limnUsn+tnu = Us+tu is obvious.

Generator: Let us begin with a heuristic argument (by ? and ?? indicate the steps

which are questionable!). By the chain rule

d

dt
∣
t=0

Utg =
d

dt
∣
t=0

lim
n

(Tt/nPt/n)ng

?= lim
n

d

dt
∣
t=0

(Tt/nPt/n)ng

??= lim
n

[n(Tt/nPt/n)
n−1(Tt/n 1

nBPt/n + Tt/n
1
nAPt/n)g∣t=0

]

= Bg +Ag.

So it is sensible to assume that D(A)∩D(B) is not empty. For the rigorous argument

we have to justify the steps marked by question marks.

Since D(B) ⊂ D(A), we can argue as follows: ?? We have to show that d
dsTsPsf

exists and is TsAf +BPsf for f ∈D(A)∩D(B). This follows similar to (a) since we

have for s, h > 0

Ts+hPs+hf − TsPsf = Ts+h(Ps+h − Ps)f + (Ts+h − Ts)Psf

= (Ts+h − Ts)(Ps+h − Ps)f + Ts(Ps+h − Ps)f + (Ts+h − Ts)Psf.

Divide by h. Then the first term converges to 0 as h→ 0, while the other two terms

tend to TsAf and BPsf , respectively.

? This is a matter of interchanging limit and differentiation. Recall the following

theorem from calculus, e.g. Rudin [15, Theorem 7.17].

Theorem. Let (fn)n be a sequence of differentiable functions on [0,∞) which con-

verges for some t0 > 0. If (f ′n)n converges [locally] uniformly, then (fn)n converges

[locally] uniformly to a differentiable function f and we have f ′ = limn f
′
n.
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This theorem holds for functions with values in any Banach space space and, there-

fore, we can apply it to the situation at hand: Fix g ∈ D(A) ∩ D(B); we know

that fn(t) ∶= Ut,ng converges (even locally uniformly) and, because of ?? , that

f ′n(t) = (Tt/nPt/n)n−1(Tt/nA +BPt/n)g.

Since limn(Tt/nPt/n)nu converges locally uniformly, so does limn(Tt/nPt/n)n−1u; more-

over, by the strong continuity, Tt/nA + BPt/n → (A + B)g locally uniformly for

g ∈ D(A) ∩ D(B). Therefore, the assumptions of the theorem are satisfied and

we may interchange the limits in the calculation above.

Remark. It is surprisingly difficult to verify that A + B is the generator of the

semigroup Ut – even if one already knows that the Trotter Formula converges. The

obvious failure is that the canonical (pre-)domain of A +B, the set D(A) ∩D(B) is

too small, i.e. not dense or even empty!. The assumption that D(B) ⊂ D(A) is a

strong, but still reasonable assumption. Alternatively one can require that A and B

commute.

The usual statements of Trotter’s formula, see e.g. the excellent monograph by En-

gel & Nagel [5, Chapter III.5], is such that one has a condition on D(A) ∩ D(B)
which also ensures that the limit defining Ut exists. In an L2-context one can find a

counterexample on p. 229 of [5].

∎∎

Problem 7.12. Solution: The idea is to show that A = −1
2 ∆ is closed when defined on C2

∞(R).
Since C2

∞(R) ⊂ D(A) and since (A,D(A)) is the smallest closed extension, we are done.

So let (un)n ⊂ C2
∞(R) be a sequence such that un → u uniformly and (Aun)n is a C∞

Cauchy sequence. Since C∞(R) is complete, we can assume that u′′n → 2g uniformly for

some g ∈ C∞(Rd). The aim is to show that u ∈ C2
∞.

a) By the fundamental theorem of differential and integral calculus we get

un(x) − un(0) − xu′n(0) = ∫
x

0
(u′n(y) − u′n(0))dy = ∫

x

0
∫

y

0
u′′n(z)dz.

Since u′′n → 2g uniformly, we get

un(x) − un(0) − xu′n(0) = ∫
x

0
∫

y

0
u′′n(z)dz → ∫

x

0
∫

y

0
2g(z)dz.

Since un(x)→ u(x) and un(0)→ u(0), we conclude that u′n(0)→ c converges.

b) Recall the following theorem from calculus, e.g. Rudin [15, Theorem 7.17].

Theorem. Let (fn)n be a sequence of differentiable functions on [0,∞) which con-

verges for some t0 > 0. If (f ′n)n converges uniformly, then (fn)n converges uniformly

to a differentiable function f and we have f ′ = limn f
′
n.

If we apply this with f ′n = u′′n → 2g and fn(0) = u′n(0)→ c, we get that u′n(x)−u′n(0)→

∫ x0 2g(z)dt.
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Let us determine the constant c′ ∶= limn u
′
n(0). Since u′n converges uniformly, the

limit as n→∞ is in C∞, and so we get

− lim
n→∞

u′n(0)) = lim
x→−∞

lim
n→∞

(u′n(x) − u′n(0)) = lim
x→−∞∫

x

0
2g(z)dz

i.e. c′ = ∫ 0
−∞ g(z)dz. We conclude that u′n(x)→ ∫

x
−∞ g(z)dt uniformly.

c) Again by the Theorem quoted in (b) we get un(x) − un(0) → ∫ x0 ∫
y
−∞ 2g(z)dz uni-

formly, and with the same argument as in (b) we get un(0) = ∫ 0
−∞ ∫

y
−∞ 2g(z)dz.

∎∎

Problem 7.13. Solution: By definition, (for all α > 0 and formally but justifiable via monotone

convergence also for α = 0)

Uα1C(x) = ∫
∞

0
e−αtPt1C(x)dt

= ∫
∞

0
e−αtE1C(Bt + x)dt

= E∫
∞

0
e−αt1C−x(Bt)dt.

This is the ‘discounted’ (with ‘interest rate’ α) total amount of time a Brownian motion

spends in the set C − x.

∎∎

Problem 7.14. Solution: This is a consequence of the recurrence of a one- or two-dimensional

Brownian motion. Here is the intuition: If u ⩾ 0, monotone convergence shows that

U0u(x) = sup
α>0

Uαu(x) = sup
α>0

Ex∫
∞

0
e−tαu(Bt)dt = Ex∫

∞

0
u(Bt)dt

and the integral measures “how much time” Bt spends in the region where {u > 0}. Since

it is recurrent, the time should be infinitely long and U0u(x) =∞.

Now for the rigorous argument. We can use the above calculation, then use the law of Bt

and Tonelli so see (compare Example 7.14) that

U0u(x) = sup
α>0

∫
Rd
Gα,d(y)u(x − y)dy.

If d = 1 we get

U0u(x) = sup
α>0

∫
R

1√
2α
e−

√
2α∣y∣u(x − y)dy BL= ∫

R
sup
α>0

1√
2α
e−

√
2α∣y∣u(x − y)dy =∞.

If d = 2 we get

U0u(x) = sup
α>0

∫
R2
K0(

√
2α∣y∣)u(x − y)dy BL= ∫

R2
sup
α>0

K0(
√

2α∣y∣)u(x − y)dy =∞

since K0(0) =∞ (see also the explicit asymptotic relation used in the proof of Lemma 7.26.

∎∎
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Problem 7.15. Solution: First formula: We use induction. The induction start with n = 0 is

clearly correct. Let us assume that the formula holds for some n and we do the induction

step n↝ n + 1. We have for β ≠ α

dn+1

dαn+1
Uαf(x) = lim

β→α

dn

dαnUαf(x) −
dn

dβnUβf(x)
β − α

= lim
β→α

n!(−1)nUn+1
α f(x) − n!(−1)nUn+1

β f(x)
β − α

= n!(−1)n lim
β→α

Un+1
α f(x) −Un+1

β f(x)
β − α

Using the identity an+1 − bn+1 = (a − b)∑nj=0 a
n−jbj we get, since the resolvents commute,

Un+1
α f(x) −Un+1

β f(x)
β − α = Uα −Uβ

β − α
n

∑
j=0

Un−jα U jβf(x) = −UαUβ
n

∑
j=0

Un−jα U jβf(x)

In the last line we used the resolvent identity. Now we can let β → α to get

β→αÐÐ→ −UαUα
n

∑
j=0

Un−jα U jαf(x) = −(n + 1)Un+2
α f(x).

This finishes the induction step.

Second formula: We use Leibniz’ formula for the derivative of a product:

∂n(fg) =
n

∑
j=0

(n
j
)∂jf∂n−jg

and we get, using the first formula

∂n(αUαf(x)) = (n
0
)α∂nUαf(x) + (n

1
)∂n−1Uαf(x)

= αn!(−1)nUn+1
α f(x) + n(n − 1)!(−1)n−1Unαf(x)

= n!(−1)n+1(id−αUα)Unαf(x).

∎∎

Problem 7.16. Solution: Using Dini’s Theorem (e.g.: Rudin, p. 150) we see that

lim
n→∞

sup
x∈K

∣f(x) − fn(x)∣ = 0

for any compact set K ⊂ Rd. Fix ε > 0 and pick a compact set K = Kε ⊂ Rd such that

0 ⩽ fn(x) ⩽ f(x) ⩽ ε on Rd ∖K. Then

lim
n→∞

sup
x

∣fn(x) − f(x)∣ ⩽ lim
n→∞

sup
x∈K

∣fn(x) − f(x)∣ + lim
n→∞

sup
x∉K

∣fn(x)∣ + sup
x∉K

∣f(x)∣

⩽ 3ε.
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Remark: Positivity is, in fact, not needed. Here is the argument: Let f1 ⩽ f2 ⩽ . . . ⩽ fn ⩽ . . .
and fn ∈ C∞(Rd) (any sign is now allowed!) and set f = supn fn. Using Dini’s Theorem

(e.g.: Rudin, p. 150) we see that

lim
n→∞

sup
x∈K

∣f(x) − fn(x)∣ = 0

for any compact set K ⊂ Rd. Fix ε > 0 and pick a compact set K = Kε ⊂ Rd such that

−ε ⩽ f1(x) ⩽ fn(x) ⩽ f(x) ⩽ ε on Rd ∖K. Then

lim
n→∞

sup
x

∣fn(x) − f(x)∣ ⩽ lim
n→∞

sup
x∈K

∣fn(x) − f(x)∣ + lim
n→∞

sup
x∉K

(f(x) − fn(x))

⩽ lim
n→∞

sup
x∈K

∣fn(x) − f(x)∣ + 2ε

⩽ 3ε.

Alternative Solution (non-positive case): Apply the solution of the positive case to the

sequence gn ∶= fn − f1. This is possible since 0 ⩽ gn ⩽ gn+1 and supn gn = f − f1.

∎∎

Problem 7.17. Solution: Because of Lemma 7.24 c),d) it is enough to show that there are

positive functions u, v ∈ C∞(Rd) such that

sup
α>0

Uαu, sup
α>0

Uαv ∈ C∞(Rd) but U0(u − v)(x) = sup
α>0

Uαu(x) − sup
α>0

Uαv(x) ∉ C2(Rd).

As in Example 7.25 we have

U0u(x) = αd ∫
Rd

∣y − x∣2−d u(y)dy

for any u ∈ C+∞(Rd) with αd = π−d/2Γ(d
2
)/(d − 2). Since ∫∣y∣⩽1 ∣y∣2−d dy < ∞, we see with

dominated convergence that the function U0w is in C∞(Rd) for all u ∈ C+∞(Rd) ∩L1(dy).

Pick any f ∈ Cc([0,1)) such that f(0) = 0. We denote by (x1, . . . , xd) points in Rd and

set r2 ∶= x2
1 + . . . + x2

d. Then let

u(x1, . . . , xd) ∶= γ
x2
d

r2
f(r), v(x1, . . . , xd) ∶= f(r)

and

w(x1, . . . , xd) ∶= u(x1, . . . , xd) − v(x1, . . . , xd).

We will show that there is some f and a constant γ > 0 such that w ∈ D(U0) and

U0w ∉ C2(Rd). The first assertion follows directly from Lemma 7.24 d). Introducing polar

coordinates
yd = r cos θd−2,

yd−1 = r cos θd−3 ⋅ sin θd−2,

yd−2 = r cos θd−4 ⋅ sin θd−3 ⋅ sin θd−2,

⋮
y2 = r cosφ sin θ1 ⋅ . . . ⋅ sin θd−2,

y1 = r sinφ sin θ1 ⋅ . . . ⋅ sin θd−2,
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and using the integral formula for U0u and U0v, we get for xd ∈ (0,1/2)

U0w(0, . . . ,0, xd)

= αd [∫
1

0
rd−1 f(r)(∫

π

0

(γ cos2 θd−2 − 1)(sin θd−2)d−2

√
r2 + x2

d − 2xdr cos θd−2

d−2
dθd−2)dr]

d−2

∏
j=1

(∫
π

0
(sin θj)j dθj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶βd

.

Note that βd > 0. For brevity we write x = xd and θ = θd−2. From

γ cos2 θ − 1 = −γ sin2 θ − (1 − γ)

we conclude

∫
π

0

(γ cos2 θ − 1)(sin θ)d−2

√
r2 + x2 − 2xr cos θ

d−2
dθ

= −γ ∫
π

0

(sin θ)d
√
r2 + x2 − 2xr cos θ

d−2
dθ − (1 − γ)∫

π

0

(sin θ)d−2

√
r2 + x2 − 2xr cos θ

d−2
dθ

=∶ −γI1(r, x) − (1 − γ)I2(r, x).

By (??), there exist constants bd, cd ∈ R such that

I1(r, x) =
1

xd−2 ∫
π

0

(sin θ)d
√

( r
x
)2 + 1 − 2 rx cos θ

d−2
dθ = 1

xd−2
(bd (

r

x
)

2

+ cd)

for any 0 < r < x. Similarly,

I1(r, x) =
1

rd−2 ∫
π

0

(sin θ)d
√

1 + (x
r
)2 − 2xr cos θ

d−2
dθ = 1

rd−2
(bd (

x

r
)

2

+ cd)

for x < r < 1. Analogously, we find by (??)

I2(r, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ad
xd−2

0 < r < x
ad
rd−2

x < r < 1

for some ad ∈ R. It is not difficult to see that 0 < cd < ad. Therefore, we may choose

γ = γd = ad/(ad − cd). Then,

∫
π

0

(γd cos2 θ − 1)(sin θ)d−2

√
r2 + x2 − 2xr cos θ

d−2
dθ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−γd bd
r2

xd
0 < r < x

−γd bd
x2

rd
x < r < 1.

Hence,

U0w(0, . . . ,0, x) = −αd βd γd bd
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Cd

( 1

xd
∫

x

0
rd+1 f(r)dr + x2∫

1

x

f(r)
r

dr) .

The remaining part of the proof follows as in Example 7.25. Differentiating in x yields

d

dx
U0w(0, . . . ,0, x) = Cd (−

d

xd+1 ∫
x

0
rd+1 f(r)dr + 2x∫

1

x

f(r)
r

dr) .
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It is not hard to show that limx→0+
d
dxU0w(0, . . . ,0, x) = 0. Thus,

d
dxU0w(0, . . . ,0, x) − d

dxU0w(0, . . . ,0)
x

= Cd (−
d

xd+2 ∫
x

0
rd+1 f(r)dr + 2∫

1

x

f(r)
r

dr) .

Applying l’Hôpital’s rule we obtain

lim
x→0+

d
dxU0w(0, . . . ,0, x) − d

dxU0(0, . . . ,0)
x

= Cd (−
d

d + 2
f(0) + 2 lim

x→0+∫
1

x

f(r)
r

dr) .

This means that the second derivative of U0w at x = 0 in xd-direction does not exist if

∫ 1
0+

f(r)
r dr diverges. A canonical candidate is f(r) = ∣ log r∣−1χ(r) with a suitable cut-off

function χ ∈ C+c ([0,1)) and χ∣[0,1/2] ≡ 1.

∎∎

Problem 7.18. Solution:

a) The process (t,Bt) starts at (0,B0) = 0, and if we start at (s, x) we consider the

process (s + t, x +Bt) = (s, x) + (t,Bt). Let f ∈ Bb([0,∞) ×R). Since the motion in

t is deterministic, we can use the probability space (Ω,A ,P = P) generated by the

Brownian motion (Bt)t⩾0. Then

Ttf(s, x) ∶= E(s,x) f(t,Bt) ∶= E f(s + t, x +Bt).

Tt preserves C∞([0,∞) ×R): If f ∈ C∞([0,∞) ×R), we see with dominated conver-

gence that

lim
(σ,ξ)→(s,x)

Ttf(σ, ξ) = lim
(σ,ξ)→(s,x)

E f(σ + t, ξ +Bt)

= E lim
(σ,ξ)→(s,x)

f(σ + t, ξ +Bt)

= E f(s + t, x +Bt)

= Ttf(s, x)

which shows that Tt preserves f ∈ Cb([0,∞) ×R). In a similar way we see that

lim
∣(σ,ξ)∣→∞

Ttf(σ, ξ) = E lim
∣(σ,ξ)∣→∞

f(σ + t, ξ +Bt) = 0,

i.e. Tt maps C∞([0,∞) ×R) into itself.

Tt is a semigroup: Let f ∈ C∞([0,∞)×R). Then, by the independence and stationary

increments property of Brownian motion,

Tt+τf(s, x) = E f(s + t + τ, x +Bt+τ)

= E f(s + t + τ, x + (Bt+τ −Bt) +Bt)

= EE(t,Bt) f(s + τ, x + (Bt+τ −Bt))

= EE(t,Bt) f(s + τ, x +Bτ)
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= ETτf(s + t, x +Bt)

= TtTτf(s, x).

Tt is strongly continuous: Since f ∈ C∞([0,∞) ×R) is uniformly continuous, we see

that for every ε > 0 there is some δ > 0 such that

∣f(s + h,x + y) − f(s, x)∣ ⩽ ε ∀h + ∣y∣ ⩽ 2δ.

So, let t < h < δ, then

∣Ttf(s, x) − f(s, x)∣ = ∣E (f(s + t, x +Bt) − f(s, x))∣

⩽ ∫∣Bt∣⩽δ
∣f(s + t, x +Bt) − f(s, x)∣dP+2∥f∥∞P(∣Bt∣ > δ)

⩽ ε + 2∥f∥∞
1

δ2
E(B2

t )

= ε + 2∥f∥∞
t

δ2
.

Since the estimate is uniform in (s, x), this proves strong continuity.

Markov property: this is trivial.

b) The transition semigroup is

Ttf(s, x) = E f(s + t, x +Bt) = (2πt)−1/2∫
R
f(s + t, x + y) e−y2/(2t) dy.

The resolvent is given by

Uαf(s, x) = ∫
∞

0
e−tαTtf(s, x)dt

and the generator is, for all f ∈ C1,2([0,∞) ×R)

Ttf(s, x) − f(s, x)
t

= E f(s + t, x +Bt) − f(s, x)
t

= E [f(s + t, x +Bt) − f(s, x +Bt)]
t

+ E f(s, x +Bt) − f(s, x)
t

t→0ÐÐ→ E∂tf(s, x +B0) + 1
2∆xf(s, x)

= (∂t + 1
2 ∆x)f(s, x).

Note that, in view of Theorem 7.22, pointwise convergence is enough (provided the

pointwise limit is a C∞-function).

c) We get for u ∈ C1,2
∞ that under P(s,x)

Mu
t ∶= u(s + t, x +Bt) − u(s, x) − ∫

t

0
(∂r + 1

2 ∆x)u(s + r, x +Br)dr

is an Ft-martingale. This is the same assertion as in Theorem 5.6 (up to the choice

of u which is restricted here as we need it in the domain of the generator...).

∎∎
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Problem 7.19. Solution: Let u ∈ D(A) and σ a stopping time with Ex σ <∞. Use optional

stopping (Theorem A.18 in combination with remark A.21) to see that

Mu
σ∧t ∶= u(Xσ∧t) − u(x) − ∫

σ∧t

0
Au(Xr)dr

is a martingale (for either Ft or Fσ∧t). If we take expectations we get

Ex u(Xσ∧t) − u(x) = Ex (∫
σ∧t

0
Au(Xr)dr) .

Since u,Au ∈ C∞ we see

∣Ex (∫
σ∧t

0
Au(Xr)dr)∣ ⩽ Ex (∫

σ∧t

0
∥Au∥∞ dr) ⩽ ∥Au∥∞ ⋅Ex σ <∞,

i.e. we can use dominated convergence and let t →∞. Because of the right continuity of

the paths of a Feller process we get Dynkin’s formula (7.30).

∎∎

Problem 7.20. Solution: Clearly,

P(Xt ∈ F ∀t ∈ R+) ⩽ P(Xq ∈ F ∀q ∈ Q+).

On the other hand, since F is closed and Xt has continuous paths,

Xq ∈ F ∀q ∈ Q+ Ô⇒ Xt = lim
Q+∋q→tXq ∈ F ∀t ⩾ 0

and the converse inequality follows.

∎∎

Problem 7.21. Solution:

a) The PMP states that

w ∈ C∞c (Rd), w(x0) = sup
x
w(x) Ô⇒ Lw(x0) ⩽ 0.

Now assume that u(x) ⩾ 0 and u(x0) = 0. Thus, w ∶= −u has a positive maximum at

x0 and, by the linearity of L, Lu = −Lw. Thus the PMP implies almost positivity.

(The converse direction is wrong.)

b) Let K = suppφ and take x ∉K. Since K is closed, Kc is open and φ(y) ≡ 0 in B(x, r)
for some small r > 0. Thus, by locality, L(φ)(x) = L(0)(x) at x, but L(0) ≡ 0 by

linearity. Thus Lφ(x) = 0, and we have suppLφ ⊂ suppφ.

c) We follow the hint, fix some K and some χ ∈ C∞c with 1K ⩽ χ ⩽ 1 and consider the

function

y ↦ φ(y) − φ(x) −∇φ(x) ⋅ (y − x).

Using Taylor’s theorem gives a constant c such that

∣φ(y) − φ(x) −∇φ(x) ⋅ (y − x)∣ ⩽ C∥φ∥(2)∣x − y∣2.
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Now multiply this through with χ(y), observe that suppφ ⊂ {χ = 1}, to get

± [φ(y) − φ(x)χ(y) −∇φ(x) ⋅ (y − x)χ(y)] ⩽ C∥φ∥(2)∣x − y∣2χ(y).

Set for fixed x

f(y) ∶= C∥φ∥(2)∣x − y∣2χ(y) ± [φ(y) − φ(x)χ(y) −∇φ(x) ⋅ (y − x)χ(y)] .

Then f(x) = 0, f ⩾ 0, f ∈ C∞c and, by the almost positive property of L, Lf(x) ⩾ 0.

Using the linearity of L now gives

C∥φ∥(2)L (∣x − ⋅∣2χ) (x) ⩾ ±Lφ(x) − ∣φ(x)Lχ(x)∣ − ∣∇φ(x)∣ ⋅ ∣L ((⋅ − x)χ) (x)∣

proving the claim.

d) It is enough to show that L is a second-order differential operator on the sets C∞c (K)
for any compact set K ⊂ Rd. From Peetre’s theorem we already know the structure

of L, namely Lu(x) = ∑finite aα(x)∂αu(x). Since x ∈ K, we can safely assume that

aα are functions. Assume, say that some ∂α with ∣α∣ > 2 appears in the sum. Then

we cannot control ∥∂αu∥∞ by ∥u∥(2), thus the claim.

Remark: Almost positivity and the positive maximum principle also give structural

results for not necessarily local operators. In fact, one can show the Lévy–Khintchine

formula using the PMP. This and other developments are worked out in [17, Theorem

6.8, pp. 44–58] (for constant-coefficient operators) and [1, Theorem 2.21, pp. 47–50] (for

variable-coefficient operators).

∎∎
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8 The PDE connection

Problem 8.1. Solution: It is clearly enough to show the exponentially bounded case. From

∣E f(Bt + x)∣ ⩽ E ∣f(Bt + x)∣ ⩽ ECeC(∣Bt∣+∣x∣) = CeC∣x∣E eC∣Bt∣

we see that u(t, x) is exponentially bounded if f is exponentially bounded. Together

with the dominated convergence theorem, this argument also shows continuity in (t, x) ∈
(0,∞) ×Rd.

In order to treat the derivatives, we have to go into the structure of Ptf(x), that is, we

have to use the fact that Ptf(x) is given through a convolution. Write, for the moment,

gt(z) = (2πt)−d/2e−∣z∣2/2t for the normal distribution in Rd. Then we have

Ptf(x) = E f(Bt + x) = ∫
Rd
f(y)gt(x − y)dy.

Since f is exponentially bounded, we can use the differentiation theorem for parameter

dependent integrals. We check this exemplarily for the second mixed x-derivatives ∂j∂k,

the other calculations are quite similar. We have

∣∂j∂kgt(x − y)∣ = t−2∣(xj − yj)(xk − yk)∣(2πt)−d/2e−∣x−y∣
2/2t ⩽ CRt−d/2−2(∣y∣2 + 1)e−∣y∣2/2t

if ∣x∣ < R. This allows us to swap differentiation and integration, and we get, using

∣yjyk∣ ⩽ 1
2(∣yj ∣

2 + ∣yk∣2) ⩽ ∣y∣2

∣∂j∂kPtf(x)∣ = ∣(∂j∂kgt) ∗ f(x)∣

= t−2 ∣∫
Rd

(xj − yj)(xk − yk)f(y)gt(x − y)dy∣

= t−2 ∣∫
Rd
yjykf(x − y)gt(y)dy∣

⩽ t−2 ∣∫
Rd

∣y∣2f(x − y)gt(y)dy∣

⩽ t−2E (∣Bt∣2∣f(Bt + x)∣),

and (a minute variation of) the argument from the beginning proves exponential bound-

edness.

Looking once again at the first calculation in the solution reveals that the variation in

Part c) leads to an expression of the type

E eC∣x+Bt∣2 ⩽ e2C∣x∣2 E e2C∣Bt∣2 ⩽ e2C∣x∣2 E e2Ct∣B1∣2
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and this expression is finite if 4Ct < 1, i.e. we get a restriction in the admissible values for

t.

∎∎

Problem 8.2. Solution: Write gt(x) = (2πt)−d/2 e−∣x∣2/2t for the heat kernel. Since convolutions

are smoothing, one finds easily that Pεf = gε ⋆ f ∈ C∞∞ ⊂ D(∆). (There is a more general

concept behind it: whenever the semigroup is analytic—i.e. z ↦ Pz has an extension to,

say, a sector in the complex plane and it is holomorphic there—one has that Tt maps the

underlying Banach space into the domain of the generator; cf. e.g. Pazy [12, pp. 60–63].)

Thus, if we set fε ∶= Pεf , we can apply Lemma 8.1 and find that

uε(t, x) Lemma 8.1= Ptfε(x) def= PtPεf(x) semi-=
group

Pt+εf(x).

By the strong continuity of the heat semigroup, we find that

uε(t, x)
uniformlyÐÐÐÐÐ→
ε→0

Ptf(x).

Moreover,

∂

∂t
uε(t, ⋅) =

1

2
∆xPtPεf

= Pε(
1

2
∆xPtf

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈C∞

) uniformlyÐÐÐÐÐ→
ε→0

1

2
∆xPtf.

Since both the sequence and the differentiated sequence converge uniformly, we can inter-

change differentiation and the limit, cf. [15, Theorem 7.17, p. 152], and we get

∂

∂t
u(t, x) = lim

ε→0

∂

∂t
uε(t, x) =

1

2
∆xu(t, x)

and

uε(0, ⋅) = Pεf ÐÐ→
ε→0

f = u(0, ⋅)

and we get a solution for the initial value f . The proof of the uniqueness part in Lemma 8.1

stays valid.

∎∎

Problem 8.3. Solution: By differentiation we get d
dt ∫

t
0 f(Bs)ds = f(Bt) so that f(Bt) = 0.

We can assume that f is positive and bounded, otherwise we could consider f±(Bt) ∧ c
for some constant c > 0. Now E f(Bt) = 0 and we conclude from this that f = 0.

∎∎

Problem 8.4. Solution:

a) Note that

∣χn(Bt)e−α ∫
t

0 gn(Bs)ds∣ ⩽ ∣e−α ∫
t

0 ds∣ = e−αt ⩽ 1
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is uniformly bounded. Moreover,

lim
n→∞

χn(Bt)e−α ∫
t

0 gn(Bs)ds = 1R(Bt)e−α ∫
t

0 1(0,∞)(Bs)ds

which means that, by dominated convergence,

vn,λ(x) = ∫
∞

0
e−λt E (χn(Bt)e−α ∫

t
0 gn(Bs)ds)dtÐÐÐ→

n→∞
vλ(x).

Moreover, we get that ∣vλ(x)∣ ⩽ λ−1.

If we rearrange (8.16) we see that

v′′n,λ(x) = 2(αχn(x) + λ)vn,λ(x) − gn(x), (*)

and since the expression on the right has a limit as n→∞, we get that limn→∞ v′′n,λ(x)
exists.

b) Integrating (*) we find

v′n,λ(x) − v′n,λ(0) = 2∫
x

0
(αχn(y) + λ)vn,λ(y)dy − ∫

x

0
gn(y)dy, (**)

and, again by dominated convergence, we conclude that limn→∞ [v′n,λ(x) − v′n,λ(0)]
exists. In addition, the right-hand side is uniformly bounded (for all ∣x∣ ⩽ R):

∣2∫
x

0
(αχn(y) + λ)vn,λ(y)dy − ∫

x

0
gn(y)dy∣ ⩽ 2∫

R

0
(α + λ)dy + ∫

R

0
dy

⩽ 2(α + λ + 1)R.

Integrating (**) reveals

vn,λ(x) − vn,λ(0) − xv′n,λ(0) = ∫
x

0
[v′n,λ(z) − v′n,λ(0)]dz.

Since the expression under the integral converges boundedly and since limn→∞ vn,λ(x)
exists, we conclude that limn→∞ v′n,λ(0) exists. Consequently, limn→∞ v′n,λ(x) exists.

c) The above considerations show that

vλ(x) = lim
n→∞

vn,λ(x)

v′λ(x) = lim
n→∞

v′n,λ(x)

v′′λ(x) = lim
n→∞

v′′n,λ(x)

∎∎

Problem 8.5. Solution: We have to show that v(t, x) ∶= ∫ t0 Psg(x)ds is the unique solution

of the initial value problem (8.7) with g = g(x) satisfying ∣v(t, x)∣ ⩽ C t.

Existence: The linear growth bound is obvious from ∣Psg(x)∣ ⩽ ∥Psg∥∞ ⩽ ∥g∥∞ <∞. The

rest follows from the hint if we take A = 1
2 ∆ and Lemma 7.10.
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Uniqueness: We proceed as in the proof of Lemma 8.1. Set vλ(x) ∶= ∫ ∞0 e−λt v(t, x)dt.
This integral is, for λ > 0, convergent and it is the Laplace transform of v(⋅, x). Under the

Laplace transform the initial value problem (8.7) with g = g(x) becomes

λvλ(x) −Avλ(x) = λ−1g(x)

and this problem has a unique solution, cf. Proposition 7.13 f). Since the Laplace trans-

form is invertible, we see that v is unique.

∎∎

Problem 8.6. Solution: Integrating u′′(x) = 0 twice yields

u′(x) = c and u(x) = cx + d

with two integration constants c, d ∈ R. The boundary conditions u(0) = a and u(1) = b
show that

d = a and c = b − a

so that

u(x) = (b − a)x + a.

On the other hand, by Corollary 5.11 (Wald’s identities), Brownian motion started in

x ∈ (0,1) has the probability to exit (at the exit time τ) the interval (0,1) in the following

way:

Px(Bτ = 1) = x and Px(Bτ = 0) = 1 − x.

Therefore, if f ∶ {0,1} → R is a function on the boundary of the interval (0,1) such that

f(0) = a and f(1) = b,then

Ex f(Bτ) = (1 − x)f(0) + xf(1) = (b − a)x + a.

This means that u(x) = Ex f(Bτ), a result which we will see later in Section 8.4 in much

greater generality.

∎∎

Problem 8.7. Solution: The key is to show that all points in the open and bounded, hence

relatively compact, set D are non-absorbing. Thus the closure of D has an neighbourhood,

say V ⊃ D̄ such that E τDc ⩽ E τV c . Let us show that E τV c <∞.

Since D is bounded, there is some R > 0 such that B(0,R) ⊃ D̄. Pick some test function

χ = χR such that χ∣Bc(0,R) ≡ 0 and χ ∈ C∞
c (Rd). Pick further some function u ∈ C2(Rd)

such that ∆u > 0 in B(0,2R). Here are two possibilities to get such a function:

u(x) = ∣x∣2 =
d

∑
j=1

x2
j Ô⇒ 1

2 ∆u(x) = 1
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or, if f ∈ Cb(Rd), f ⩾ 0 and f = f(x1) we set

F (x) = F (x1) ∶= ∫
x1

0
f(z1)dz1

and

U(x) = U(x1) ∶= ∫
x1

0
F (y1)dy1 = ∫

x1

0
∫

y1

0
f(z1)dz1.

Clearly, 1
2 ∆U(x) = 1

2 ∂
2
x1
U(x1) = f(x1), and we can arrange things by picking the correct

f .

Problem: neither u nor U will be in D(∆) (unless you are so lucky as in the proof of

Lemma 8.10 to pick instantly the right function).

Now observe that

χ ⋅ u, χ ⋅U ∈ C2
c(Rd) ⊂D(∆)

∆(χ ⋅U) = χ ⋅∆U +U ⋅∆χ + 2⟨∇χ, ∇U⟩

which means that

∆(χ ⋅U)∣
B(0,R) = ∆U ∣

B(0,R).

The rest of the proof follows now either as in Lemma 7.33 or Lemma 8.10 (both employ,

anyway, the same argument based on Dynkin’s formula).

∎∎

Problem 8.8. Solution: We are following the hint. Let L = ∑dj,k=1 ajk(x)∂j∂k +∑dj=1 bj(x)∂j .
Then

L(χf) =∑
j,k

ajk∂j∂k(χf) +∑
j

bj∂j(χf)

=∑
j,k

ajk(∂j∂kχ + ∂j∂kf + ∂kχ∂jf + ∂jχ∂kf) +∑
j

bj(f∂jχ + χ∂jf)

= χLf + fLχ +∑
j,k

(ajk + akj)∂jχ∂kf.

If ∣x∣ < R and χ∣B(0,R) = 1, then L(uχ)(x) = Lu(x). Set u(x) = e−x2
1/γr2

. Then only the

derivatives in x1-direction give any contribution and we get

∂1u(x) = −
2x1

γr2
e
− x2

1
γr2 and ∂2

1u(x) =
2

γr2
(2x2

1

γr2
− 1) e−

x2
1

γr2

Thus we get for L(−u) = −Lu and any ∣x∣ < r

−Lu(x) = 2a11(x)
γr2

(1 − 2x2
1

γr2
) e−

x2
1

γr2 + 2b1(x)x1

γr2
e
− x2

1
γr2

= [2a11(x)
γr2

(1 − 2x2
1

γr2
) + 2b1(x)x1

γr2
] e−

x2
1

γr2

⩾ [2a0

γr2
(1 − 2

γ
) − 2b0

γr
] e−

r2

γr2
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This shows that the drift b1(x) can make the expression in the bracket negative!

Let us modify the Ansatz. Observe that for f(x) = f(x1) we have

Lf(x) = a11(x)∂2
1f(x) − b1(x)∂1f(x)

and if we know that ∂2
1f, ∂1f ⩾ 0 we get

Lf(x) ⩾ a0∂
2
1f(x) − b0∂1f(x)

!!> 0.

This means that ∂2
1f/∂1f > b0/a0 seems to be natural and a reasonable Ansatz would be

f(x) = ∫
x1

0
e

2b0
a0

y
dy.

Then

∂1f(x) = e
2b0
a0

x1 and ∂2
1f(x) =

2b0
a0
e

2b0
a0

x1

and we get

Lf(x) = a11(x)
2b0
a0
e

2b0
a0

x1 − b1(x)e
2b0
a0

x1

⩾ a0
2b0
a0
e

2b0
a0

x1 − b0 e
2b0
a0

x1

⩾ (2b0 − b0) e
2b0
a0

x1 > 0.

With the above localization trick on balls, we are done.

∎∎

Problem 8.9. Solution: Denote by u(t, x) = Ex f(Bt) the solution to (8.3) and by v(t, x) ∶=
E (∫ t0 g(t − s,Bs)ds) the solution to (8.7). Define w(t, x) ∶= u(t, x) + v(t, x). Then we get

∂tw(t, x) = ∂tu(t, x) + ∂tv(t, x) = ∆xu(t, x) +∆xv(t, x) + g(t, x) = ∆xw(t, x) + g(t, x)

and

w(0, x) = u(0, x) + v(0, x) = f(x) + 0 = f(x)

i.e. we get the solution to (8.6).

∎∎

Problem 8.10. Solution: We follow the hint and use the strategy of (the proof of) Lemma 8.7.

We write gt(x) = (2πt)−d/2 exp [−∣x∣2/2t] and use the formulae for the derivatives ∂tgt, ∂jgt

and ∂j∂kgt from the proof of Lemma 8.7. By definition

v(t, x) ∶=Ex (∫
t

0
g(t − s,Bs)ds)

=E(∫
t

0
g(t − s, x +Bs)ds)

=∫
Rd
∫

t

0
g(t − s, y) gs(x − y)dsdy.
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1. Since g ∈ Cb([0,∞)×Rd) we can use dominated convergence to conclude that v(t, x) ∈
Cb([0,∞) ×Rd).

2. We have (try to figure out why we can use the differentiation lemma and perform all

derivatives under the integral):

∂jv(t, x) = ∫
Rd
∫

t

0
g(t − s, y)∂jgs(x − y)dsdy

= −∫
Rd
∫

t

0
g(t − s, y) xj − yj

s
gs(x − y)dsdy

= −∫
t

0
E

⎛
⎝
g(t − s, x +Bs)

B
(j)
s

s

⎞
⎠
ds.

Thus, by scaling B
(j)
s ∼ √

sB
(j)
1 ,

∣∂jv(t, x)∣ ⩽ ∥g∥∞∫
t

0

1

s
E ∣B(j)

s ∣ds

⩽ ∥g∥∞E ∣B(j)
1 ∣∫

t

0

1√
s
ds

= c
√
t.

In particular, x ↦ v(t, x) is Lipschitz with the Lipschitz constant of order
√
t. (At-

tention: in the proof of Lemma 8.7 we had the Lipschitz constant 1/
√
t, due to a

further term which is not present in this calculation.

3.

4. We have (try to figure out why we can use the differentiation lemma and perform all

derivatives under the integral):

∂j∂kv(t, x) = ∫
Rd
∫

t

0
g(t − s, y)∂j∂kgs(x − y)dsdy

= ∫
Rd
∫

t

0
g(t − s, y) (xj − yj)(xk − yk) − δjks

s2
gs(x − y)dsdy

= ∫
t

0
E

⎛
⎝
g(t − s,Bs)

B
(j)
s B

(k)
s − δjks
s2

⎞
⎠
ds

= ∫
t

0
E

⎛
⎝
[g(t − s,Bs) − g(t − s, x)]

B
(j)
s B

(k)
s − δjks
s2

⎞
⎠
ds.

Here we use that EB
(j)
s B

(k)
s = δjks to slip in the term g(t−s, x). Now we use Hölder

continuity, and Brownian scaling to get

∣∂j∂kv(t, x)∣ ⩽ C ∫
t

0
E [∣Bs∣κ]

s

s2
ds

= C ′∫
t

0
sκ/2−1 ds

<∞.

5. Before we differentiate in t, we change variables t − s→ s and get

v(t, x) = ∫
Rd
∫

t

0
g(s, y)gt−s(x − y)dsdy.
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Now we differentiate and see (exactly as in Lemma 8.7)

∂tv(t, x) = Ex g(t,B0) + ∫
Rd
∫

t

0
g(s, y)∂tgt−s(x − y)dsdy

= g(t, x) + 1

2

d

∑
j=1
∫
Rd
∫

t

0
g(s, y)∂2

j gt−s(x − y)dsdy

and this expression is finite as we have seen in the previous step.

Since the solution has the required classical smoothness, it is indeed a solution to the PDE

problem No. 3. in Table 8.1.

∎∎

Problem 8.11. Solution: Assume that B0 = 0. Any other starting point can be reduced to

this situation by shifting Brownian motion to B0 = 0. The LIL shows that a Brownian

motion satisfies

−1 = lim
t→0

B(t)√
2t log log 1

t

< lim
t→0

B(t)√
2t log log 1

t

= 1

i.e. B(t) oscillates for t → 0 between the curves ±
√

2t log log 1
t . Since a Brownian motion

has continuous sample paths, this means that it has to cross the level 0 infinitely often.

∎∎

Problem 8.12. Solution: The idea is to proceed as in Example 8.14 e) where Zaremba’s

needle plays the role a truncated flat cone in dimension d = 2 (but in dimension d ⩾ 3

it has too small dimension). The set-up is as follows: without loss of generality we take

x0 = 0 (otherwise we shift Brownian motion) and we assume that the cone lies in the

hyperplane {x ∈ Rd ∶ x1 = 0} (otherwise we rotate things).

Let B(t) = (b(t), β(t)), t ⩾ 0, be a BMd where b(t) is a BM1 and β(t) is a (d − 1)-
dimensional Brownian motion. Since B is a BMd, we know that the coordinate processes

b = (b(t))t⩾0 and β = (β(t))t⩾0 are independent processes. Set σn = inf{t > 1/n ∶ b(t) = 0}.

Since 0 ∈ R is regular for {0} ⊂ R, see Example 8.14 e), we get that limn→∞ σn = τ{0} = 0

almost surely with respect to P0. Since β á b, the random variable β(σn) is rotationally

symmetric (see, e.g., the solution to Problem 8.13).

Let C be a flat (i.e. in the hyperplane {x ∈ Rd ∶ x1 = 0}) cone such that some truncation

C ′ of it lies in Dc. By rotational symmetry, we get

P0(β(σn) ∈ C) = γ = opening angle of C

full angle
.

By continuity of BM, β(σn)→ β(0) = 0, and this gives

P0(β(σn) ∈ C ′) = γ.

Clearly, B(σn) = (b(σn), β(σn)) = (0, β(σn)) and {β(σn) ∈ C ′} ⊂ {τDc ⩽ σn}, so

P0(τDc = 0) = lim
n→∞

P0(τDc ⩽ σn) ⩾ lim
n→∞

P0(β(σn) ∈ C ′) ⩾ γ > 0.

106



Solution Manual. Last update February 4, 2022

Now Blumenthal’s 0-1–law, Corollary 6.23, applies and gives P0(τDc = 0) = 1.

∎∎

Problem 8.13. Solution: Proving that the random variable β(σn) is absolutely continuous

with respect to Lebesgue measure is relatively easy: note that, because of the independence

of b and β, hence σn and β,

− d

dx
P0(β(σn) ⩾ x) = −

d

dx
∫
R
P0(βt ⩾ x) P(σn ∈ dt)

= ∫
R
− d

dx
P0(βt ⩾ x) P(σn ∈ dt)

= ∫
R

1√
2πt

e−x
2/(2t) P(σn ∈ dt)

= ∫
∞

1/n

1√
2πt

e−x
2/(2t) P(σn ∈ dt).

(observe, for the last equality, that σn takes values in [1/n,∞).) Since the integrand

is bounded (even as t → 0), the interchange of integration and differentiation is clearly

satisfied.

(d − 1)-dimensional version: Let β be a (d − 1)-dimensional version as in Problem 8.12

Proving that the random variable β(σn) is rotationally symmetric is easy: note that,

because of the independence of b and β, hence σn and β, we have for all Borel sets

A ⊂ Rd−1

P0(β(σn) ∈ A) = ∫
∞

1/n
P0(βt ∈ A) P(σn ∈ dt)

and this shows that the rotational symmetry of β is inherited by β(σn).

We even get a density by formally replacing A by dx:

β(σn) ∼ ∫
R
P0(βt ∈ dx) P(σn ∈ dt)

= ∫
∞

1/n

1

(2πt)(d−1)/2 e
−∣x∣2/(2t) P(σn ∈ dt)dx.

(here x ∈ Rd−1).

It is a bit more difficult to work out the exact shape of the density. Let us first determine

the distribution of σn. Clearly,

{σn > t} = { inf1/n⩽s⩽t ∣b(s)∣ > 0}.

By the Markov property of Brownian motion we get

P0(σn > t) = P0 ( inf1/n⩽s⩽t ∣b(s)∣ > 0)
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= E0Pb(1/n) ( infs⩽t−1/n ∣b(s)∣ > 0)

= E0 (1{b(1/n)>0}P
b(1/n) ( infs⩽t−1/n b(s) > 0)

+ 1{b(1/n)<0}P
b(1/n) ( sups⩽t−1/n b(s) < 0))

= E0 (1{b(1/n)>0}P
0 ( infs⩽t−1/n b(s) > −y)

+ 1{b(1/n)<0}P
0 ( sups⩽t−1/n b(s) < −y)∣

y=b(1/n)
)

b∼−b= E0 (1{b(1/n)>0}P
0 ( sups⩽t−1/n b(s) < y)

+ 1{b(1/n)<0}P
0 ( sups⩽t−1/n b(s) < −y)∣

y=b(1/n)
)

b∼−b= E0 (1{b(1/n)>0}P
0 ( sups⩽t−1/n b(s) < y)

+ 1{b(1/n)>0}P
0 ( sups⩽t−1/n b(s) < −y)∣−y=b(1/n))

= 2 E0 (1{b(1/n)>0}P
0 ( sups⩽t−1/n b(s) < y)∣

y=b(1/n)
)

(6.13)= 2 E0 (1{b(1/n)>0}P
0 (∣b(t − 1/n)∣ < y)∣

y=b(1/n)
)

= 4 ∫
∞

0
P0 (b(t − 1/n) < y)P0(b(1/n) ∈ dy)

= 2

π

1√
t − 1

n

√
1
n

∫
∞

0
∫

y

0
e−z

2/2(t−1/n) dz e−ny
2/2 dy

change of variables: ζ = z/
√
t − 1

n

= 2
√
n

π
∫

∞

0
∫

y/
√
t− 1
n

0
e−ζ

2/2 dζ e−ny
2/2 dy.

For the density we differentiate in t:

− d
dt
P0(σn > t) = −

2
√
n

π

d

dt
∫

∞

0
∫

y/
√
t− 1
n

0
e−ζ

2/2 dζ eny
2/2 dy

=
√
n

π
(t − 1

n
)−3/2

∫
∞

0
y e−y

2/2(t− 1
n
) e−ny

2/2 dy

=
√
n

π
(t − 1

n
)−3/2

∫
∞

0
y e

− y
2

2
nt

t−1/n dy

=
√
n

π
(t − 1

n
)−3/2 t − 1

n

nt
[−e−

y2

2
nt

t−1/n ]
∞

y=0

=
√
n

π
(t − 1

n
)−1/2 1

nt

= 1

π

1

t
√
nt − 1

.

Now we proceed with the d-dimensional case. We have for all x ∈ Rd−1

β(σn) ∼ ∫
∞

1/n

1

(2πt)(d−1)/2 e
−∣x∣2/(2t) P(σn ∈ dt)dx

= 1

π(d+1)/22(d−1)/2 ∫
∞

1/n

1

t(d+1)/2
√
nt − 1

e−∣x∣
2/(2t) dt
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= n(d−1)/2

π(d+1)/22(d−1)/2 ∫
∞

1

1

s(d+1)/2
√
s − 1

e−n∣x∣
2/(2s) ds

(∗)= n(d−1)/2

π(d+1)/22(d−1)/2 B(d
2 ,

1
2
) 1F1(d2 ,

d+1
2 ; −n2 ∣x∣2)

where B(⋅, ⋅) is Euler’s Beta-function and 1F1 is the degenerate hypergeometric function,

cf. Gradshteyn–Ryzhik [8, Section 9.20, 9.21] and, for (∗), [8, Entry 3.471.5, p. 340].

∎∎
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9 The variation of Brownian paths

Problem 9.1. Solution: Let ε > 0 and Π = {t0 = 0 < t1 < . . . < tm = 1} be any partition of

[0,1]. As a continuous function on a compact space, f is uniformly continuous, i.e. there

exists δ > 0 such that ∣f(x) − f(y)∣ < ε
2m for all x, y ∈ [0,1] with ∣x − y∣ < δ. Pick n0 ∈N so

that ∣Πn∣ < δ′ ∶= δ ∧ ∣1
2 min1⩽i⩽m ∣ti − ti−1∣ for all n ⩾ n0.

Now, the balls B(tj , δ′) for 0 ⩽ j ⩽ m are disjoint as δ′ ⩽ ∣1
2 min1⩽i⩽m ∣ti − ti−1∣. Therefore

the sets B(tj , δ′) ∩ Πn0 for 0 ⩽ j ⩽ m are also disjoint, and non-empty as ∣Πn0 ∣ < δ′. In

particular, there exists a subpartition Π′ = {q0 = 0 < q1 < . . . < qm = 1} of Πn0 such that

∣tj − qj ∣ < δ′ ⩽ δ for all 0 ⩽ j ⩽m. This implies

RRRRRRRRRRR

m

∑
j=1

∣f(tj) − f(tj−1)∣ −
m

∑
j=1

∣f(qj) − f(qj−1)∣
RRRRRRRRRRR
⩽

m

∑
j=1

∣∣f(tj) − f(tj−1)∣ − ∣f(qj) − f(qj−1)∣∣

⩽
m

∑
j=1

∣f(tj) − f(qj) + f(tj−1) − f(qj−1)∣

⩽ 2 ⋅
m

∑
j=0

∣f(tj) − f(qj)∣

⩽ ε.

Because adding points to a partition increases the corresponding variation sum, we have

SΠ
1 (f ; [0,1]) ⩽ SΠ′

1 (f ; [0,1])+ε ⩽ SΠn0
1 (f ; [0,1])+ε ⩽ lim

n→∞
SΠn

1 (f ; [0,1])+ε ⩽ VAR1(f ; [0,1])+ε

and since Π was arbitrarily chosen, we deduce

VAR1(f ; [0,1]) ⩽ lim
n→∞

SΠn
1 (f ; [0,1]) + ε ⩽ VAR1(f ; [0,1]) + ε

for every ε > 0. Letting ε tend to zero completes the proof.

Remark: The continuity of the function f is essential. A counterexample would be Dirich-

let’s discontinuous function f = 1Q∩[0,1] and Πn a refining sequence of partitions made up

of rational points.

∎∎

Problem 9.2. Solution: Note that the problem is straightforward if ∥x∥ stands for the maxi-

mum norm: ∥x∥ = max1⩽j⩽d ∣xj ∣.

Remember that all norms on Rd are equivalent. One quick way of showing this is the

following: Denote by ej with j ∈ {1, . . . , d} the usual basis of Rd. Then

∥x∥ ⩽ (d ⋅ max
1⩽j⩽d

∥ej∥) ⋅ max
1⩽j⩽d

∣xj ∣ = (d ⋅ max
1⩽j⩽d

∥ej∥) ⋅ ∥x∥∞ =∶ B ⋅ ∥x∥∞
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for every x = ∑dj=1 xjej in Rd using the triangle inequality and the positive homogeneity

of norms. In particular, x ↦ ∥x∥ is a continuous mapping from Rd equipped with the

supremum-norm ∥ ⋅ ∥∞ to R, since

∣∥x∥ − ∥y∥∣ ⩽ ∥x − y∥ ⩽ B ⋅ ∥x − y∥∞

holds for every x, y in Rd. Hence, the extreme value theorem claims that x↦ ∥x∥ attains

its minimum on the compact set {x ∈ Rd ∶ ∥x∥∞ = 1}. Finally, this implies A ∶= min{∥x∥ ∶
∥x∥∞ = 1} > 0 and hence

∥x∥ = ∥ x

∥x∥∞
∥ ⋅ ∥x∥∞ ⩾ A ⋅ ∥x∥∞

for every x ≠ 0 in Rd as required.

As a result of the equivalence of norms on Rd, it suffices to consider the supremum-norm

to determine the finiteness of variations. In particular, VARp(f ; [0, t]) <∞ if, and only if,

sup

⎧⎪⎪⎨⎪⎪⎩
∑

tj−1,tj∈Π
∣g(tj) − g(tj−1)∣p ∨ ∣h(tj) − h(tj−1)∣p ∶ Π finite partition of [0,1]

⎫⎪⎪⎬⎪⎪⎭

is finite. But this term is bounded from below by VARp(g; [0, t]) ∨ VARp(h; [0, t]) and

from above by VARp(g; [0, t]) +VARp(h; [0, t]), which proves the desired result.

∎∎

Problem 9.3. Solution: Let p > 0, ε > 0 and Π = {t0 = 0 < t1 < . . . < tn = 1} a partition

of [0,1]. Since f is continuous and the rational numbers are dense in R, there exist

0 < q1 < . . . < qn−1 < 1 such that qj is rational and ∣f(tj) − f(qj)∣ < n−1/pε1/p for every

1 ⩽ j ⩽ n − 1. In particular, Π′ = {q0 = 0 < q1 < . . . < qn = 1} is a rational partition of [0,1]
such that ∑nj=0 ∣f(tj) − f(qj)∣p ⩽ ε.

Some preliminary considerations: If φ ∶ [0,∞) → R is concave and φ(0) ⩾ 0 then φ(ta) =
φ(ta + (1 − t)0) ⩾ tφ(a) + (1 − t)φ(0) ⩾ tφ(a) for all a ⩾ 0 and t ∈ [0,1]. Hence

φ(a + b) = a

a + b φ(a + b) +
b

a + b φ(a + b) ⩽ φ(a) + φ(b)

for all a, b ⩾ 0, i.e. φ is subadditive. In particular, we have ∣x + y∣p ⩽ (∣x∣ + ∣y∣)p ⩽ ∣x∣p + ∣y∣p

and thus

∣∣x∣p − ∣y∣p∣ ⩽ ∣x − y∣p for all p ⩽ 1 and x, y ∈ R. (*)

For p > 1, on the other hand, and x, y ∈ R such that ∣x∣ < ∣y∣ we find

∣∣y∣p − ∣x∣p∣ = ∫
∣y∣

∣x∣
ptp−1 dt ⩽ p ⋅ (∣x∣ ∨ ∣y∣)p−1 ⋅ (∣y∣ − ∣x∣) ⩽ p ⋅ (∣x∣ ∨ ∣y∣)p−1 ⋅ ∣y − x∣

and hence

∣∣y∣p − ∣x∣p∣ ⩽ p ⋅ (∣x∣ ∨ ∣y∣)p−1 ⋅ ∣y − x∣ for all p > 1 and x, y ∈ R (**)
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using the symmetry of the inequality.

Let p > 0 and ε > 0. For every partition Π = {t0 = 0 < t1 < . . . < tn = 1} there exists a

rational partition Π′ = {q0 = 0 < q1 < . . . < qn = 1} such that ∑nj=0 ∣f(tj) − f(qj)∣1∧p ⩽ ε and

hence

RRRRRRRRRRR

n

∑
j=1

∣f(tj) − f(tj−1)∣p −
n

∑
j=1

∣f(qj) − f(qj−1)∣p
RRRRRRRRRRR

⩽
n

∑
j=1

∣∣f(tj) − f(tj−1)∣p − ∣f(qj) − f(qj−1)∣p∣

(*)

⩽
(**)

max{1, (p ⋅ 2p−1 ⋅ ∥f∥p−1
∞ )} ⋅

n

∑
j=1

∣f(tj) − f(qj) + f(tj−1) − f(qj−1)∣1∧p

⩽ C ⋅
n

∑
j=0

∣f(tj) − f(qj)∣1∧p

⩽ C ⋅ ε

with a finite constant C > 0.

In particular, we have VARp(f ; [0,1]) −C ⋅ ε ⩽ VARQp (f ; [0,1]) ⩽ VARp(f ; [0,1]) where

VARQp (f ; [0,1]) ∶= sup

⎧⎪⎪⎨⎪⎪⎩
∑

qj−1,qj∈Π′ ∣f(qj) − f(qj−1)∣p ∶ Π′ finite, rational partition of [0,1]
⎫⎪⎪⎬⎪⎪⎭

and hence the desired result as ε tends to zero.

Alternative Approach: Note that (ξ1, . . . , ξn) ↦ ∑nj=1 ∣f(ξj) − f(ξj−1)∣p is a continuous

map since it is the finite sum and composition of continuous maps, and that the rational

numbers are dense in R.

∎∎

Problem 9.4. Solution: Obviously, we have VAR○
p(f ; [0, t]) ⩽ VARp(f ; [0, t]) with

VAR○
p(f ; [0, t]) ∶= sup

⎧⎪⎪⎨⎪⎪⎩

n

∑
j=1

∣f(sj) − f(sj−1)∣p ∶ n ∈N and 0 < s0 < s1 < . . . < sn < t
⎫⎪⎪⎬⎪⎪⎭

because there are less (non-negative) summands in the definition of VAR○
p(f ; [0, t]).

Let ε > 0 and Π = {t0 = 0 < t1 < . . . < tn = t} a partition of [0, t]. Set sj = tj for 1 ⩽ j ⩽ n− 1

and note that ξ ↦ ∣f(ξ0) − f(ξ)∣p is a continuous map for every ξ0 ∈ [0, t] since it is the

composition of continuous maps. Hence we can pick s0 ∈ (t0, t1) and sn ∈ (tn−1, tn) with

∣∣f(s1) − f(t0)∣p − ∣f(s1) − f(s0)∣p∣ <
ε

2

∣∣f(tn) − f(tn−1)∣p − ∣f(sn) − f(tn−1)∣p∣ <
ε

2

and so that 0 < s0 < s1 < . . . < sn < t. This implies

n

∑
j=1

∣f(tj) − f(tj−1)∣p = ∣f(s1) − f(t0)∣p +
n−1

∑
j=2

∣f(sj) − f(sj−1)∣p + ∣f(tn) − f(sn−1)∣p
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⩽ ε
2
+

n

∑
j=1

∣f(sj) − f(sj−1)∣p +
ε

2

⩽ ε +VAR○
p(f ; [0, t])

and thus VARp(f ; [0, t]) ⩽ ε + VAR○
p(f ; [0, t]) since the partition Π = {t0 = 0 < t1 < . . . <

tn = t} was arbitrarily chosen. Consequently, VARp(f ; [0, t]) ⩽ VAR○
p(f ; [0, t]) as ε tends

to zero, as required.

The same argument shows that varp(f ; [0, t]) does not change its value (if it exists).

∎∎

Problem 9.5. Solution:

a) Use B(t) −B(s) ∼ N(0, ∣t − s∣) to find

EYn =
n

∑
k=1

E (B ( k
n
) −B (k−1

n
))2

=
n

∑
k=1

V (B ( k
n
) −B (k−1

n
))

=
n

∑
k=1

( k
n −

k−1
n

)

=
n

∑
k=1

1
n

= 1

and the independence of increments to get

VYn =
n

∑
k=1

V (B ( k
n
) −B (k−1

n
))2

=
n

∑
k=1

E (B ( k
n
) −B (k−1

n
))4 − (E (B ( k

n
) −B (k−1

n
))2)

2

=
n

∑
k=1

3 ⋅ ( kn −
k−1
n

)2 − ( k
n −

k−1
n

)2

= 2 ⋅
n

∑
k=1

1
n2

= 2 ⋅ 1
n

where we also used that E(X4) = 3 ⋅ σ4 for X ∼ N(0, σ2).

b) Note that the increments B( kn) −B(k−1
n ) ∼ N(0, 1

n) are iid random variables. By a

standard result the sum of squares n∑nk=1 (B( kn) −B(k−1
n ))2

has a χ2
n-distribution,

i.e. its density is given by

2−n/2
1

Γ(n
2
)
s
n
2
−1 e−

s
2 1[0,∞)(s).

and we get

n

∑
k=1

(B( kn) −B(k−1
n ))2 ∼ 2−n/2

n

Γ(n
2
)
(ns)

n
2
−1 e−

ns
2 1[0,∞)(s).
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Here is the calculation: (in case you do not know this standard result...): If X ∼
N(0,1) and x > 0, we have

P(X2 ⩽ x) = P(X ⩽
√
x) = 1√

2π
∫

√
x

−√x
exp(− t

2

2
)dt

= 2√
2π
∫

√
x

0
exp(− t

2

2
)dt

= 1√
2π
∫

x

0
exp(−s

2
) ⋅ s−1/2ds

using the change of variable s = t2. Hence, X2 has density

f
X2 (s) = 1(0,∞)(s) ⋅

1√
2π

⋅ exp(−s
2
) ⋅ s−1/2.

Let X1,X2, . . . be independent and identically distributed random variables with

X1 ∼ N(0,1). We want to prove by induction that for n ⩾ 1

f
X2

1
+...+X2

n
(s) = Cn ⋅ 1(0,∞)(s) ⋅ exp(−s

2
) ⋅ sn/2−1

with some normalizing constants Cn > 0. Assume that this is true for 1, . . . , n. Since

X2
n+1 is independent of X2

1 + . . . + X2
n and distributed like X2

1 , we know that the

density of the sum is a convolution. This leads to

f
X2

1
+...+X2

n+1

(s) = ∫
∞

−∞
f
X2

1
+...+X2

n
(t) ⋅ f

X2
n+1

(s − t)dt

= Cn ⋅C1 ⋅ ∫
s

0
exp(− t

2
) ⋅ tn/2−1 ⋅ exp(−s − t

2
) ⋅ (s − t)−1/2 dt

= Cn ⋅C1 ⋅ exp(−s
2
) ⋅ ∫

s

0
tn/2−1 ⋅ (s − t)−1/2mdt

= Cn ⋅C1 ⋅ exp(−s
2
) ⋅ sn/2−1 ⋅ s−1/2 ⋅ ∫

s

0
( t
s
)
n/2−1

⋅ (1 − t
s
)
−1/2

dt

= Cn ⋅C1 ⋅ exp(−s
2
) ⋅ s(n+1)/2−1 ⋅ ∫

1

0
xn/2−1 ⋅ (1 − x)−1/2 dx

= Cn+1 ⋅ exp(−s
2
) ⋅ s(n+1)/2−1

using the change of variable x = t/s. Since probability distribution functions integrate

to one, we find

1 = Cn ⋅ ∫
∞

0
exp(−s

2
) ⋅ sn/2−1 ds = Cn ⋅ 2n/2∫

∞

0
exp (−t) ⋅ tn/2−1 dt

= Cn ⋅ 2n/2 ⋅ Γ(n/2)

and thus

fX2
1+...+X2

n
(s) = (2n/2 ⋅ Γ(n/2))−1 ⋅ 1(0,∞)(s) ⋅ e−s/2 ⋅ sn/2−1

which is usually called chi-squared or χ2-distribution with n degrees of freedom. Now,

remember that B ( k
n
) −B (k−1

n
) ∼ N(0,1/n) ∼ n−1/2 ⋅Xk for 1 ⩽ k ⩽ n. Hence

f
Yn

(s) = n ⋅ fX2
1+...+X2

n
(n ⋅ s)

= n ⋅ (2n/2 ⋅ Γ(n/2))−1 ⋅ 1(0,∞)(s) ⋅ e−n⋅s/2 ⋅ (ns)n/2−1.

115



R.L. Schilling: Brownian Motion (3rd edn)

c) For X ∈ N(0,1) and ξ < 1/2, we find

E(eξ⋅X2) = (2 ⋅ π)−1/2∫
∞

−∞
eξ⋅x

2

e−x
2/2 dx = 2√

2 ⋅ π ∫
∞

0
e−1/2⋅(1−2ξ)⋅x2

dx

= (1 − 2ξ)−1/2 2√
2 ⋅ π ∫

∞

0
e−y

2/2 dy

= (1 − 2ξ)−1/2

using the change of variable x2 = (1 − 2ξ)y2. Since the moment generating function

ξ ↦ (1−2ξ)−1/2 has a unique analytic extension to an open strip around the imaginary

axis, the characteristic function is of the form

E(ei⋅ξ⋅X2) = (1 − 2iξ)−1/2.

Using the independence and B ( k
n
) −B (k−1

n
) ∼ N(0,1/n), we obtain

E(ei⋅ξ⋅Yn) =
n

∏
k=1

E(ei⋅ξ⋅(Bk/n−B(k−1)/n)2) =
n

∏
k=1

E(ei⋅(ξ/n)⋅X2) = (1 − 2i(ξ/n))−n/2

and hence

lim
n→∞

φn(ξ) = lim
n→∞

(1 − 2i(ξ/n))−n/2 = ( lim
n→∞

(1 − 2iξ

n
)
n

)
−1/2

= (e−2iξ)
−1/2

= eiξ.

d) We have shown in a) that E ((Yn−1)2) = V(Yn) = 2/n which tends to zero as n→∞.

∎∎

Problem 9.6. Solution:

a)

√
2π ⋅P(Z > x) = ∫

∞

x
e−y

2/2dy > ∫
∞

x

y

x
⋅ e−y2/2dy = 1

x
⋅ [ − e−y2/2]

∞

x
= 1

x
⋅ e−x2/2

Ô⇒ P(Z > x) < 1√
2π

e−x
2/2

x

On the other hand

√
2π ⋅P(Z > x) = ∫

∞

x
e−y

2/2dy

< ∫
∞

x

x2

y2
⋅ e−y2/2dy

= x2 ⋅ ([−1

y
⋅ e−y2/2]

∞

x

− ∫
∞

x
e−y

2/2dy)

= x2 ⋅ ([−1

y
⋅ e−y2/2]

∞

x

−
√

2π ⋅P(Z > x))

Ô⇒ (1 + x2) ⋅
√

2π ⋅P(Z > x) ⩾ x ⋅ e−x2/2

Ô⇒ P(Z > x) > 1√
2π

xe−x
2/2

x2 + 1
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b) Using the independence of Ak,n for 1 ⩽ k ⩽ 2n, we find

P( lim
n→∞

2n

⋃
k=1

Ak,n) = 1 −P(lim inf
n→∞

2n

⋂
k=1

Ack,n)

⩾ 1 − lim inf
n→∞

P(
2n

⋂
k=1

Ack,n)

= 1 − lim inf
n→∞

2n

∏
k=1

P(Ack,n)

and hence it suffices to prove lim infn→∞∏2n

k=1P(Ack,n) = 0.

Since 1 − x ⩽ e−x for x ⩾ 0, we obtain

2n

∏
k=1

P(Ack,n) = (1 −P(A1,n))
2n

⩽ e−2n⋅P(A1,n)

and a) implies

2n ⋅P(A1,n) = 2n ⋅P(
√

2−n ⋅ ∣Z ∣ > c
√
n2−n)

= 2n+1 ⋅P(Z > c
√
n)

⩾ 2n+1

√
2π

⋅ c
√
n

c2n + 1
⋅ e−c2n/2.

Now, (c2n)/(c2n + 1)→ 1 as n→∞ and thus there exists some n0 ∈N such that

c2n

c2n + 1
⩾ 1

2
⇐⇒ c

√
n

c2n + 1
⩾ 1

2c
√
n

for all n ⩾ n0. Therefore, we have

2n ⋅P(A1,n) ⩾
2n√
2π

⋅ 1

c
√
n
⋅ e−c2n/2 = 1√

2πc
⋅ 1√

n
⋅ e(log(2)−c2/2)n

for n ⩾ n0. Since ln(2)−c2/2 > 0 if, and only if, c <
√

2 log(2), we have 2n⋅P(A1,n)→∞
and thus lim infn→∞∏2n

k=1P(ACk,n) = 0 if c <
√

2 log(2).

c) With c <
√

2 log(2) we deduce

1 = P(lim sup
n→∞

2n

⋃
k=1

Ak,n)

= P ({ω ∈ Ω ∶ for infinitely many n ∈N ∃k ∈ {1, . . . ,2n}

such that ∣B(k2−n)(ω) −B((k − 1)2−n)(ω)∣ > c
√
n2−n})

= P ({ω ∈ Ω ∶ for infinitely many n ∈N ∃k ∈ {1, . . . ,2n}

such that
∣B(k2−n)(ω) −B((k − 1)2−n)(ω)∣√

2−n
> c

√
n})

⩽ P ({ω ∈ Ω ∶ t↦ Bt(ω) is NOT 1/2-Hölder continuous}).

∎∎

117



R.L. Schilling: Brownian Motion (3rd edn)

Problem 9.7. Solution: From Problem 9.5 we know that

Φ(λ) = E(eλ(X2−1)) = e−λE(eλX2) = e−λ(1 − 2λ)−1/2 for all 0 < λ < 1/2.

Using (a − b)2 ⩽ 2 (a2 + b2), we get

∣(X2 − 1)2eλ(X
2−1)∣ ⩽ ∣X2 − 1∣2 ⋅ eλX2 ⩽ 2(X4 + 1) ⋅ eλ0X

2

.

Since λ < λ0 < 1/2 there is some ε > 0 such that λ < λ0 < λ0 + ε < 1/2. Thus,

∣(X2 − 1)2eλ(X
2−1)∣ ⩽ 2(X4 + 1)e−εX2 ⋅ e(λ0+ε)X2

.

It is straightforward to see that

2(X4 + 1)e−εX2 ⩽ Cε = C(λ0) <∞,

and the claim follows.

∎∎

Problem 9.8. Solution: We follow the hint. Note that

eiη1F =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

eiη, x ∈ F

1, x ∉ F

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= eiη1F + 1F c .

Since F,F c ∈ F , we get ∀ξ, η ∈ R

E (eiξX eiη1F ) = E (eiξX eiη1F ) +E (eiξX1F c)

= E (eiξX)E (eiη1F ) +E (eiξX)E (1F c)

= E (eiξX)E (eiη1F ).

This is, however, M. Kac’s characterization of independence and we conclude that X á
1F , hence, X á F for all sets F ∈ F .

The converse is obvious.

∎∎
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10 Regularity of Brownian paths

Problem 10.1. Solution:

a) Note that for t, h ⩾ 0 and any integer k = 0,1,2, . . .

P(Nt+h −Nt = k) = P(Nh = k) =
(λh)k
k!

e−λh.

This shows that we have for any α > 0

E (∣Nt+h −Nt∣α) =
∞
∑
k=0

kα
(λh)k
k!

e−λh

= λhe−λh +
∞
∑
k=2

kα
(λh)k
k!

e−λh

= λhe−λh + λh
∞
∑
k=2

kα
(λh)k−1

k!
e−λh

= λhe−λh + o(h)

and, thus,

lim
h→0

E (∣Nt+h −Nt∣α)
h

= λ

which means that (10.1) cannot hold for any α > 0 and β > 0.

b) Part a) shows also E (∣Nt+h − Nt∣α) ⩽ ch, i.e. condition (10.1) holds for α > 0 and

β = 0.

The fact that β = 0 is needed for the convergence of the dyadic series (with the power

γ < β/α) in the proof of Theorem 10.1.

c) We have

E(Nt) =
∞
∑
k=0

k
tk

k!
e−t =

∞
∑
k=1

k
tk

k!
e−t = t

∞
∑
k=1

tk−1

(k − 1)! e
−t = t

∞
∑
j=0

tj

j!
e−t = t

E(N2
t ) =

∞
∑
k=0

k2 t
k

k!
e−t =

∞
∑
k=1

k2 t
k

k!
e−t = t

∞
∑
k=1

k
tk−1

(k − 1)! e
−t

= t
∞
∑
k=1

(k − 1) tk−1

(k − 1)! e
−t + t

∞
∑
k=1

tk−1

(k − 1)! e
−t

= t2
∞
∑
k=2

tk−2

(k − 2)! e
−t + t

∞
∑
k=1

tk−1

(k − 1)! e
−t = t2 + t

and this shows that

E(Nt − t) = ENt − t = 0
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E ((Nt − t)2) = E(N2
t ) − 2tENt + t2 = t

and, finally, if s ⩽ t

Cov ((Nt − t)(Ns − s)) = E ((Nt − t)(Ns − s))

= E ((Nt −Ns − t + s)(Ns − s)) +E ((Ns − s)2)

= E ((Nt −Ns − t + s))E ((Ns − s)) + s

= s = s ∧ t

where we used the independence of Nt −Ns á Ns.

Alternative Solution: One can show, as for a Brownian motion (Example 5.2 a)), that

Nt is a martingale for the canonical filtration FN
t = σ(Ns ∶ s ⩽ t). The proof only

uses stationary and independent increments. Thus, by the tower property, pull out

and the martingale property,

E ((Nt − t)(Ns − s)) = E (E ((Nt − t)(Ns − s) ∣ FN
s ))

= E ((Ns − s)E ((Nt − t) ∣ FN
s ))

= E ((Ns − s)2)

= s = s ∧ t.

∎∎

Problem 10.2. Solution: We have

max
1⩽j⩽n

∣xj ∣p ⩽ max
1⩽j⩽n

(∣x1∣p +⋯ + ∣xn∣p) =
n

∑
j=1

∣xj ∣p ⩽
n

∑
j=1

max
1⩽k⩽n

∣xk∣p = n max
1⩽k⩽n

∣xk∣p.

Since max1⩽j⩽n ∣xj ∣p = (max1⩽j⩽n ∣xj ∣)
p

the claim follows (actually with n1/p which is

smaller than n....)

∎∎

Problem 10.3. Solution: Let α ∈ (0,1). Since

∣x + y∣α ⩽ (∣x∣ + ∣y∣)α

it is enough to show that

(∣x∣ + ∣y∣)α ⩽ ∣x∣α + ∣y∣α

and, without loss of generality

(s + t)α ⩽ sα + tα ∀s, t > 0.

This follows from

sα + tα = s ⋅ sα−1 + t ⋅ tα−1 ⩾ s ⋅ (s + t)α−1 + t ⋅ (s + t)α−1 = (s + t)(s + t)α−1 = (s + t)α.
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Since the expectation is linear, this proves that

E(∣X + Y ∣α) ⩽ E(∣X ∣α) +E(∣Y ∣α).

In the proof of Theorem 10.1 (page 154, line 1 from above and onwards) we get:

This entails for α ∈ (0,1) because of the subadditivity of x↦ ∣x∣α

( sup
x,y∈D, x≠y

∣ξ(x) − ξ(y)∣
∣x − y∣γ )

α

= sup
m⩾0

sup
x,y∈D

2−m−1⩽∣x−y∣<2−m

∣ξ(x) − ξ(y)∣α
2−(m+1)γα

⩽ sup
m⩾0

(2α ⋅ 2(m+1)γα ∑
j⩾m

σαj )

= 2(1+γ)α sup
m⩾0

∑
j⩾m

2mγασαj

⩽ 2(1+γ)α
∞
∑
j=0

2jγασαj .

For α ∈ (0,1) and αγ < β we get

E [( sup
x≠y, x,y∈D

∣ξ(x) − ξ(y)∣
∣x − y∣γ )

α

] ⩽ 2(1+γ)α
∞
∑
j=0

2jγαE [σαj ]

⩽ c2(1+γ)α
∞
∑
j=0

2jγα3n 2−jβ

= c2(1+γ)α3n
∞
∑
j=0

2j(γα−β) <∞.

The rest of the proof continues literally as on page 154, line 10 onwards.

Alternative Solution: use the subadditivity of Z ↦ E(∣Z ∣α) directly in the second part of

the calculation, replacing ∥Z∥Lα by E(∣Z ∣α).

∎∎

Problem 10.4. Solution: We show the following

Theorem. Let (Bt)t⩾0 be a BM1. Then t↦ Bt(ω) is for almost all ω ∈ Ω nowhere Hölder

continuous of any order α > 1/2.

Proof. Set for every n ⩾ 1

An ∶= An,α = {ω ∈ Ω ∶ B(⋅, ω) is in [0, n] nowhere Hölder continuous of order α > 1
2
}.

It is not clear if the set An,α is measurable. We will show that Ω ∖ An,α ⊂ Nn,α for a

measurable null set Nn,α.

Assume that the function f is α-Hölder continuous of order α at the point t0 ∈ [0, n].
Then

∃ δ > 0 ∃L > 0 ∀ t ∈ B(t0, δ) ∶ ∣f(t) − f(t0)∣ ⩽ L ∣t − t0∣α.
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Since [0, n] is compact, we can use a covering argument to get a uniform Hölder constant.

Consider for sufficiently large values of k ⩾ 1 the grid { jk ∶ j = 1, . . . , nk}. Then there

exists a smallest index j = j(k) such that for ν ⩾ 3 and, actually, 1 − να + ν/2 < 0

t0 ⩽
j

k
and

j

k
, . . . ,

j + ν
k

∈ B(t0, δ).

For i = j + 1, j + 2, . . . , j + ν we get therefore

∣f( ik) − f(
i−1
k

)∣ ⩽ ∣f( ik) − f(t0)∣ + ∣f(t0) − f( i−1
k

)∣

⩽ L(∣ ik − t0∣
α + ∣ i−1

k − t0∣
α)

⩽ L( (ν+1)α
kα + να

kα
) = 2L(ν+1)α

kα .

If f is a Brownian path, this implies that for the sets

CL,ν,αm ∶=
∞
⋂
k=m

kn

⋃
j=1

j+ν
⋂
i=j+1

{∣B( i
k
) −B( i−1

k
)∣ ⩽ 2L(ν+1)α

kα
}

we have

Ω ∖An,α ⊂
∞
⋃
L=1

∞
⋃
m=1

CL,ν,αm .

Our assertion follows if we can show that P(CL,ν,αm ) = 0 for all m,L ⩾ 1 and all rational

α > 1/2. If k ⩾m,

P(CL,ν,αm ) ⩽ P(
kn

⋃
j=1

j+ν
⋂
i=j+1

{∣B( i
k
) −B( i−1

k
)∣ ⩽ 2L(ν+1)α

kα
})

⩽
kn

∑
j=1

P(
j+ν
⋂
i=j+1

{∣B( i
k
) −B( i−1

k
)∣ ⩽ 2L(ν+1)α

kα
})

(B1)=
kn

∑
j=1

P ({∣B( i
k
) −B( i−1

k
)∣ ⩽ 2L(ν+1)α

kα
})ν

(B2)= kn P ({∣B( 1
k
)∣ ⩽ 2L(ν+1)α

kα
})ν

⩽ kn( c

kα−1/2)
ν

= cν nk1−να+ν/2 1−να+ν/2<0ÐÐÐÐÐÐÐÐÐÐ→
k→∞

0.

For the last estimate we use B( 1
k) ∼ k

−1/2B(1), cf. 2.16, and therefore

P (∣B( 1
k
)∣ ⩽ x) = P (∣B(1)∣ ⩽ x

√
k) = 1√

2π

x
√
k

∫
−x

√
k

e−y
2/2

²
⩽1

dy ⩽ cx
√
k.

This proves that a Brownian path is almost surely nowhere not Hölder continuous of a

fixed order α > 1/2. Call the set where this holds Ωα. Then Ω0 ∶= ⋂Q∋α>1/2 Ωα is a set

with P(Ω0) = 1 and for all ω ∈ Ω0 we know that BM is nowhere Hölder continuous of any

order α > 1/2.

The last conclusion uses the following simple remark. Let 0 < α < q < ∞. Then we have

for f ∶ [0, n]→ R and x, y ∈ [0, n] with ∣x − y∣ < 1 that

∣f(x) − f(y)∣ ⩽ L∣x − y∣q ⩽ L∣x − y∣α.

Thus q-Hölder continuity implies α-Hölder continuity.
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∎∎

Problem 10.5. Solution: Fix ε > 0, fix a set Ω0 ⊂ Ω with P(Ω0) = 1 and h0 = h0(2, ω) such

that (10.6) holds for all ω ∈ Ω0, i.e. for all h ⩽ h0 we have

sup
0⩽t⩽1−h

∣B(t + h,ω) −B(t, ω)∣ ⩽ 2
√

2h log 1
h .

Pick a partition Π = {t0 = 0 < t1 < . . . < tn} of [0,1] with mesh size h = maxj(tj − tj−1) ⩽ h0

and assume that h0/2 ⩽ h ⩽ h0. Then we get

n

∑
j=1

∣B(tj , ω) −B(tj−1, ω)∣2+2ε ⩽ 22+2ε ⋅ 21+ε
n

∑
j=1

((tj − tj−1) log 1
tj−tj−1

)
1+ε

⩽ cε
n

∑
j=1

(tj − tj−1) = cε.

This shows that

sup
∣Π∣⩽h0

n

∑
j=1

∣B(tj , ω) −B(tj−1, ω)∣2+2ε ⩽ cε.

Since we have ∣x − y∣p ⩽ 2p−1(∣x − z∣p + ∣z − y∣p) and since we can refine any partition Π of

[0,1] in finitely many steps to a partition of mesh < h0, we get

VAR2+2ε(B; [0,1]) = sup
Π⊂[0,1]

n

∑
j=1

∣B(tj , ω) −B(tj−1, ω)∣2+2ε <∞

for all ω ∈ Ω0.

∎∎
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11 Brownian motion as a random fractal

Problem 11.1. Solution: The idea is to show that Hs
δ for every δ > 0 is an outer measure.

This solves the problem, since these properties are retained by taking the supremum over

δ > 0.

It is easy to see that Ej ∶= ∅ for j ∈ N is a δ-cover of E = ∅ and hence Hs
δ(∅) = 0.

Moreover, if (Ej)j∈N is a δ-cover of F ⊂ Rd and E ⊂ F , then it is also a δ-cover of E and

therefore Hs
δ(E) ⩽Hs

δ(F ).

Let ε > 0 and suppose that (Ek)k∈N is a sequence of subsets of Rd. Due to the definition

of Hs
δ, there exists a δ-cover (Ekj )j∈N for every k ∈N such that

∑
j∈N

∣Ekj ∣s ⩽Hs
δ(Ek) + 2−kε

holds. Since the double sequence (Ekj )j,k∈N is obviously a δ-cover of ⋃k∈NEk, we find that

Hs
δ (⋃

k∈N
Ek) ⩽ ∑

k∈N
∑
j∈N

∣Ekj ∣s ⩽ ∑
k∈N

(Hs
δ(Ek) + 2−kε) ⩽ ∑

k∈N
Hs
δ(Ek) + ε.

holds. This implies the σ-subadditivity as ε→ 0.

∎∎

Problem 11.2. Solution: Let U be open. Then U contains an open ball B ⊂ U and B contains

a cube Q ⊂ B ⊂ U . On the other hand, since U is bounded, it is contained in a large cube

Q′ ⊃ U . Since Hausdorff measure is monotone, we have Hd(Q) ⩽Hd(U) ⩽Hd(Q′) and it

is, thus, enough to show the claim for cubes.

The following argument is easily adapted to a general cube. Assume that Q = [0,1]d

and cover Q by nd non-overlapping cubes which are shifted copies of [0,1/n]d. Clearly, if

n > 1/δ,

Hd
δ(Q) ⩽

nd

∑
j=1

∣[0,1/n]d∣d = nd (
√
dn−1)

d
= (

√
d)d.

This shows that Hd(Q) ⩽ (
√
d)d <∞.

For the lower bound we take any δ-cover (Ej)j⩾1 of Q. For each j there is a closed cube

Cj such that Ej ⊂ Cj and the lengths of the edges of Cj are less or equal to 2∣Ej ∣ ⩽ 2δ. If

λd is Lebesgue measure, we get

1 = λd(Q) ⩽ λd (⋃j Ej) ⩽ λ
d (⋃j Cj) ⩽∑

j

λd (Cj) =∑
j

(2∣Ej ∣)d .
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This gives
∞
∑
j=1

∣Ej ∣d ⩾ 2−d > 0 Ô⇒ Hd(Q) ⩾ 2−d.

∎∎

Problem 11.3. Solution: It is enough to show the following two assertions: Let 0 ⩽ α < β <∞
and E ⊂ Rd. Then

a) Hα(E) <∞ Ô⇒ Hβ(E) = 0.

b) Hβ(E) > 0 Ô⇒ Hα(E) =∞.

Claim a) is just Lemma 11.4. Part b) is just the contraposition of a).

∎∎

Problem 11.4. Solution: Since Ej ⊂ E, we have dimEj ⩽ dimE and supj⩾1 dimEj ⩽ dimE.

Conversely, if α < dimE, then Hα(E) =∞ and by the σ-subadditivity of the outer measure

Hα, we get Hα(Ej0) > 0 for at least one index j0. Thus, α ⩽ dimEj0 ⩽ supj⩾1 dimEj . This

proves dimE ⩽ supj⩾1 dimEj . (Indeed, if we had dimE > supj⩾1 dimEj , we could find

some λ such that dimE > λ > supj⩾1 dimEj contradicting our previous calculation.)

∎∎

Problem 11.5. Solution: It is possible to show that dim(E ×F ) ⩾ dim(E)+dim(F ) holds for

arbitrary E ⊂ Rd and F ⊂ Rn, cf. [6, Theorem 5.12]. Unfortunately, the opposite direction

only holds under certain restriction on the sets E and F , cf. for example [7, Corollary 7.4].

In fact, one can show that there exist Borel sets E,F ⊂ R with dim(E) = dim(F ) = 0 and

dim(E × F ) ⩾ 1, cf. [6, Theorem 5.11].

We are going to prove the other direction (that does not hold in general) for this special

case: Let t > dim(E) and δ > 0. According to the Definition 11.5, there exists a δ-cover

(Ej)j∈N of E ⊂ Rd with ∑j∈N ∣Ej ∣t ⩽ δ. Let m ∈ N so that
√
n/m ⩽ δ, and (Fk)k be a

disjoint tessellation of [0,1)n by mn-many cubes with side-length 1/m. Now, (Ej ×Fk)j,k
is a δ2-cover of E × [0,1)n and hence

Ht+n
δ2 (E × [0,1)n) ⩽

mn

∑
k=1

∑
j∈N

∣Ej × Fk∣t+n ⩽
mn

∑
k=1

∑
j∈N

∣Ej ∣tnn/2m−n ⩽ nn/2δ

holds. In particular, Ht+n(E×[0,1)n) = 0 as δ → 0 and thus dim(E×[0,1)n) ⩽ t+n. Since

Rn can be represented as countable union of cubes with unit side-length, Problem 11.4

tells us that we also have dim(E × Rn) = dim(E × [0,1)n) ⩽ t + n. This proves that

dim(E ×Rn) ⩽ dim(E) + n, as required.

∎∎

Problem 11.6. Solution: Remark 11.6.c) says that dim f(E) ⩽ dimE holds for a Lipschitz

map f ∶ Rd → Rn. Therefore, we also have dimE = dim f−1(f(E)) ⩽ dim f(E) for a

bi-Lipschitz map f and hence the desired result.
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Moreover, Remark 11.6.c) tells us that dim f(E) ⩽ γ−1 dimE holds for a Hölder continuous

map f ∶ Rd → Rn with index γ ∈ (0,1]. Note that this inequality can be strict, e.g. take

f ≡ 0 and any E ⊂ Rd with dimE > 0.

Note that there is no bi-Lipschitz f ∶ Rd → Rn that is also Hölder continuous with index

γ ∈ (0,1): Suppose f had these properties, then there would exist a constant C > 0 such

that

∣x − y∣ = ∣f(f−1(x)) − f(f−1(y))∣ ⩽ C ∣x − y∣γ

holds for all x, y ∈ Rd. This leads to a contradiction to the boundedness of C > 0. Hence,

there is no bi-Lipschitz map that is also Hölder continuous with index γ ∈ (0,1).

∎∎

Problem 11.7. Solution: Let C0 ∶= [0,1]. It is easy to see that Cn = f1(Cn−1) ∪ f2(Cn−1) for

n ∈ N and C ∶= ⋂n∈NCn models the recursive definition of Cantor’s discontinuum in the

description of the problem. Now, note that

f1
⎛
⎝
∞
∑
j=1

tj3
−j⎞

⎠
=

∞
∑
j=1

tj3
−(j+1) = 0 ⋅ 3−1 +

∞
∑
j=2

tj−13−j

f2
⎛
⎝
∞
∑
j=1

tj3
−j⎞

⎠
=

∞
∑
j=1

tj3
−(j+1) + 2/3 = 2 ⋅ 3−1 +

∞
∑
j=2

tj−13−j

holds for sequences (tj)j∈N with tj ∈ {0,1,2} and that

C0 =
⎧⎪⎪⎨⎪⎪⎩

∞
∑
j=1

tj3
−j ∶ tj ∈ {0,1,2} for j ∈N

⎫⎪⎪⎬⎪⎪⎭
reflects the triadic representation of real numbers. This representation implies that

Cn =
⎧⎪⎪⎨⎪⎪⎩

∞
∑
j=1

tj3
−j ∶ tj ∈ {0,2} for j ⩽ n and tj ∈ {0,1,2} for j > n

⎫⎪⎪⎬⎪⎪⎭
holds for every n ∈N using mathematical induction. Hence,

C =
⎧⎪⎪⎨⎪⎪⎩

∞
∑
j=1

tj3
−j ∶ tj ∈ {0,2} for j ∈N

⎫⎪⎪⎬⎪⎪⎭
and therefore C = f1(C) ∪ f2(C). The results from Remark 11.6.e) solve the rest of the

problem.

∎∎

Problem 11.8. Solution: Denote by σd = 2πd/2/Γ(d/2) the surface volume of the (d − 1)-
dimensional unit sphere in Rd. Using polar coordinates, we find

E (∣B1∣−λ) = ∫
Rd

∣x∣−λ P(B1 ∈ dx) = (2π)−
d
2 ∫

Rd
∣x∣−λ e−

1
2
∣x∣2 dx

= σd(2π)−
d
2 ∫

∞

0
rd−λ−1 e−

1
2
r2

dr
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= σd(2π)−
d
2 ∫

∞

0
(2u)

d−λ−2
2 e−u du

= σd(2π)−
d
2 2

d−λ−2
2 Γ (d−λ

2
)

=
Γ (d−λ

2
)

2
λ
2 Γ (d

2
)
.

∎∎

Problem 11.9. Solution: Following the hint we have

B−1(A) =W −1(A ×R) ⩽ 1

2
dim(A ×R) ⩽ 1

2
(1 + dimA),

where we used the result of Problem 11.5.

∎∎

Problem 11.10. Solution: (F. Hausdorff) We show that a perfect set contains a Cantor-type

set. Since Cantor sets are uncountable, we are done.

Pick a1, a2 ∈ F and disjoint closed balls Fj , j = 1,2 with centre aj . Now take open balls such

that Uj ⊂ Fj . Since Ūj ∩F , j = 1,2, are again perfect sets, we can repeat this construction,

i.e. pick aj1, aj2 ∈ Uj ∩F and disjoint closed balls Fjk ⊂ Uj with centre ajk and open balls

Ujk ⊂ Fjk, k = 1,2. Each of the four sets A ∩ Ūjk, j, k = 1,2, is perfect. Again we find

points ajk1, ajk2 ∈ Ujk etc. Without loss of generality we can arrange things such that the

diameters of the balls Fj , Fjk, Fjkl, . . . are smaller than 1, 1
2 ,

1
3 , . . .. This construction yields

a discontinuum set D ⊂ F : Any x ∈D which is contained in Fj , Fjk, Fjkl, . . . is the limit of

the centres aj , ajk, ajkl, . . . It is now obvious how to make a correspondence between the

points ajkl... ∈ F and the Cantor ternary set.

∎∎

Problem 11.11. Solution:

a) We have

P(gt ∈ ds) = ∫
∞

0
P(gt ∈ ds, ∣Bt∣ ∈ dy) =

ds

π
√
s(t − s)3

∫
∞

0
y e−y

2/(2(t−s)) dy

= ds

π
√
s(t − s) ∫

∞

0

y

(t − s) e
−y2/(2(t−s)) dy

= ds

π
√
s(t − s)

[−e−y2/(2(t−s))]
∞

y=0
= ds

π
√
s(t − s)

.

Using sin2 φ + cos2 φ = 1 we see

P(gt < s) = ∫
s

0

du

π
√
u(t − u)

u=tv= ∫
s/t

0

dv

π
√
v(1 − v)

v=sin2 φ= ∫
arcsin

√
s/t

0

2 sinφ cosφ

π sinφ cosφ
dφ = 2

π
arcsin

√
s

t
.
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b) From part a) we know that the density of gt is

fgt(s) =
1

π
√
s(t − s)

, 0 < s < t.

The joint density of (∣Bt∣, gt) is, by Theorem 11.25

f(∣Bt∣, gt)(y, s) =
y

π
√
s(t − s)3

e−y
2/(2(t−s)), 0 < s < t, y > 0.

Using standard formulae for the conditional density, we find

f
∣Bt∣∣gt(y ∣ s) =

f(∣Bt∣, gt)(y, s)
∫ ∞0 f(∣Bt∣, gt)(y, s)dy

=
f(∣Bt∣, gt)(y, s)

fgt(s)
= y

t − s e
−y2/(2(t−s)).

c) Write

pt(x, y) = fBt(x − y) =
1√
2πt

e−(x−y)
2/(2t)

for the law of Bt and set

gt(x, y) ∶=
∣x − y∣√

2πt3
e−(x−y)

2/(2t) y>x= ∂

∂x
pt(x, y).

As a function of t, this is the density of τx−y, see (6.14). Then the identity reads

(after cancelling the factor 2)

pt(0, y) = ∫
t

0
ps(0,0)gt−s(0, y)ds = ∫

t

0
gt−s(0, y)ps(y, y)ds.

The first identity is a “last exit decomposition” of the density pt(0, y) while the last

identity is a “first entrance decomposition”.

∎∎

Problem 11.12. Solution: Following the hint we find

∂

∂s
(1 − 2

π
arccos

√
s

u
) = 2

π

1√
1 − s

u

1

2
√

s
u

1

u
= 1

π

1√
1 − s

u

1√
s
√
u
= 1

π

1√
s

1√
u − s

.

and so

∂

∂u

∂

∂s
(1 − 2

π
arccos

√
s

u
) = ∂

∂u
( 1

π

1√
s

1√
u − s

) = −1

2π
√
s(u − s)3

.

This is (up to the minus sign) just the density from Corollary 11.26. From Lemma 11.23

we know, however, that for s < t < u

P (gt ⩽ s, dt ⩾ u) = P (B● has no zero in (s, u)) = 1 − 2

π
arccos

√
s

u
.

This proves the claim.

∎∎
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Problem 11.13. Solution: Notation: We write fX for the density of the random variable X.

Using Corollary 11.26 we have, with some obvious changes in the integration variables,

Eφ(L−t , Lt) = Eφ(t − gt, dt − gt)

=∬ φ(t − s, u − s) P(gt ∈ ds, dt ∈ du)

= ∫
t

s=0
∫

∞

u=t
φ(t − s, u − s) duds

2π
√
s(u − s)3

= ∫
t

r=0
∫

∞

u=t
φ(r, u − t + r) dudr

2π
√

(t − r)(u − t + r)3

= ∫
t

r=0
∫

∞

l=r
φ(r, l) dl dr

2π
√

(t − r)l3

which shows that the joint density satisfies

f(L−t ,Lt)(r, l) =
1

2π
√

(t − r)l3
, 0 < r < t, l > r (⇐⇒ 0 < r < t ∧ l)

Integrating out Lt ∈ dl now yields

fL−t (r) =
1

π
√
r(t − r)

, 0 < r < t

(this is just the arc-sine density, rewritten for L−t = t − gt).

Integrating out L−t ∈ dr now yields

fLt(l) =
1

2π
√
l3
∫

t∧l

0

dr√
t − r

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
t

π
√
l3
, l ∈ [t,∞)

√
t −

√
t − l

π
√
l3

, l ∈ (0, t).

Using standard formulae for the conditional densities, we get

fLt∣L−t (l ∣ r) =
f(L−t ,Lt)(r, l)
fL−t (r)

= 1

2

√
r

l3
, 0 < r < t ∧ l.

From this we get

P(Lt > r + s ∣ L−t = r) = ∫
∞

r+s

1

2

√
r

l3
dl = 1

2

√
r [−2l−

1
2 ]
∞

l=r+s
=
√

r

r + s.

∎∎
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12 The growth of Brownian paths

Problem 12.1. Solution: Fix C > 2 and define An ∶= {Mn > C
√
n logn}. By the reflection

principle we find

P(An) = P(sup
s⩽n

Bs > C
√
n logn)

= 2 P (Bn > C
√
n logn)

scaling= 2 P (
√
nB1 > C

√
n logn)

= 2 P (B1 > C
√

logn)
(12.1)

⩽ 2√
2π

1

C
√

logn
exp (−C2

2 logn)

= 2√
2π

1

C
√

logn

1

nC2/2 .

Since C2/2 > 2, the series ∑nP(An) converges and, by the Borel–Cantelli lemma we see

that

∃ΩC ⊂ Ω, P(ΩC) = 1, ∀ω ∈ ΩC ∃n0(ω) ∀n ⩾ n0(ω) ∶ Mn(ω) ⩽ C
√
n logn.

This shows that

∀ω ∈ ΩC ∶ lim
n→∞

Mn√
n logn

⩽ C.

Since every t is in some interval [n − 1, n] and since t↦
√
t log t is increasing, we see that

Mt√
t log t

⩽ Mn√
(n − 1) log(n − 1)

= Mn√
n logn

√
n logn√

(n − 1) log(n − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→1 as n→∞

and the claim follows.

Remark: We can get the exceptional set in a uniform way: On the set Ω0 ∶= ⋂Q∋C>2 ΩC

we have P(Ω0) = 1 and

∀ω ∈ Ω0 ∶ lim
n→∞

Mn√
n logn

⩽ 2.

∎∎

Problem 12.2. Solution: One should assume that ξ > 0. Since y ↦ exp(ξy) is monotone

increasing, we see

P(sup
s⩽t

(Bs − 1
2ξs) > x) = P(esups⩽t(ξBs−1

2 ξ
2s) > eξx)
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Doob

⩽
(A.13)

e−xξ E eξBt−
1
2
ξ2t = e−xξ.

(Remark: we have shown (A.13) only for supD∋s⩽tM
ξ
s where D is a dense subset of [0,∞).

Since s↦M ξ
s has continuous paths, it is easy to see that supD∋s⩽tM

ξ
s = sups⩽tM

ξ
s almost

surely.)

Usage in step 1o of the Proof of Theorem 12.1: With the notation of the proof we set

t = qn and ξ = q−n(1 + ε)
√

2qn log log qn and x = 1

2

√
2qn log log qn.

Since sups⩽t(Bs − 1
2ξs) ⩾ sups⩽tBs − 1

2ξt the above inequality becomes

P(sup
s⩽t

Bs > x + 1
2ξt) ⩽ e−xξ

and if we plug in t, x, ξ we see

P(sup
s⩽t

Bs > x + 1
2ξt) = P(sup

s⩽qn
Bs > 1

2

√
2qn log log qn + 1

2(1 + ε)
√

2qn log log qn)

= P(sup
s⩽qn

Bs > (1 + ε
2)

√
2qn log log qn)

⩽ exp (−1
2

√
2qn log log qn q−n(1 + ε)

√
2qn log log qn)

= exp (−(1 + ε) log log qn)

= 1

(log qn)1+ε

= 1

(log q)1+ε
1

n1+ε .

Now we can argue as in the proof of Theorem 12.1.

∎∎

Problem 12.3. Solution: Actually, the hint is not needed, the present proof can be adapted in

an easier way. We perform the following changes at the beginning of page 166: Since every

t > 1 is in some interval of the form [qn−1, qn] and since the function Λ(t) =
√

2t log log t

is increasing for t > 3, we find for all t ⩾ qn−1 > 3

∣B(t)∣√
2t log log t

⩽
sups⩽qn ∣B(s)∣
√

2qn log log qn

√
2qn log log qn√

2qn−1 log log qn−1
.

Therefore

lim
t→∞

∣B(t)∣√
2t log log t

⩽ (1 + ε)√q a.s.

Letting ε→ 0 and q → 1 along countable sequences, we find the upper bound.

Remark: The interesting paper by Dupuis [4] shows LILs for processes (Xt)t⩾0 with sta-

tionary and independent increments. It is shown there that the important ingredient are

estimates of the type P(Xt > x). Thus, if we know that P(Xt > x) ≍ P ( sups⩽tXs > x),

we get a LIL for Xt if, and only if, we have a LIL for sups⩽tXs.

∎∎
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Problem 12.4. Solution: Direct calculation using (12.6).

∎∎

Problem 12.5. Solution: Denote by W (t) = tB(1/t) and W (0) = 0 the projective reflection

of (Bt)t⩾0. This is again a BM1. Thus

P (B(t) < κ(t) as t→∞) = P (W (t) < κ(t) as t→∞)

= P (tB(1/t) < κ(t) as t→∞)

= P (B(1/t) < κ(t)/t as t→∞)

= P (B(s) < sκ(1/s) as s→ 0) .

Set K(s) ∶= sκ(1/s). In order to apply Kolmogorov’s test we need (always s→ 0, t = 1/s→
∞, ↑=increasing, ↓=decreasing) that

K(s) ↑ ⇐⇒ sκ(1/s) ↑ ⇐⇒ κ(t)/t ↓

and

K(s)/
√
s ↓ ⇐⇒

√
sκ(1/s) ↓ ⇐⇒ κ(t)/

√
t ↑ .

Finally, by a change of variables and using the integral test,

∫
1

0
s−3/2K(s)e−K2(s)/2s ds

s=1/t= ∫
∞

1
t−3/2κ(t)e−κ2(t)/2t dt,

and the claim follows.

∎∎

Problem 12.6. Solution:

a) By the LIL for Brownian motion we find

Bt

b
√
a + t

= Bt√
2t log log t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
limt→∞(⋯)=1

⋅
√

2t log log t

b
√
a + t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
limt→∞(⋯)=∞

which shows that

lim
t→∞

Bt

b
√
a + t

=∞

almost surely. Therefore, P(τ <∞) = 1.

b) Let b ⩾ 1 and assume, to the contrary, that E τ < ∞. Then we can use the second

Wald identity, cf. Theorem 5.10, and get

E τ = EB2(τ) = E(b2(a + τ)) = ab2 + b2E τ > b2E τ ⩾ E τ,

leading to a contradiction. Thus, E τ =∞.
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c) Consider the stopping time τ ∧ n. As in b) we get for all b > 0

E (τ ∧ n) = EB2(τ ∧ n) ⩽ E(b2(a + τ ∧ n)).

This gives, if b < 1,

(1 − b2)E (τ ∧ n) ⩽ ab2 b2<1Ô⇒ E (τ ∧ n) ⩽ ab2

1 − b2
monotoneÔ⇒

convergence
E τ ⩽ ab2

1 − b2 <∞.

∎∎

Problem 12.7. Solution: Using symmetry we get

P(sup
s⩽t

Xs ⩾ x) ⩽ P(sup
s⩽t

∣Xs∣ ⩾ x)

⩽ 3P(∣Xt∣ ⩾ x/3)

= 3P(Xt ⩾ x/3) + 3P(−Xt ⩾ x/3)

= 6P(Xt ⩾ x/3).

(We could also use the slightly sharper Lévy inequality which, however, holds only for

symmetric Lévy processes.)

Pick a > 1 and set Ak ∶= {supt⩽ak X(t) > g(ak+1)}. Using the above inequality, we get

P(Ak) ⩽ 6P (X(ak) > g(ak+1)/3) .

For t ∈ [ak, ak+1] we have

g(t) ⩽ g(ak+1) and 2P(X(t) −X(ak) ⩾ 0) = 2P(X(t − ak) ⩾ 0) ⩾ 1.

Thus,

P(Ak) ⩽ 6P (X(ak) > g(t)/3) (g monotone)

⩽ 12P (X(ak) > g(t)/3)P (X(t) −X(ak) ⩾ 0) (symmetry)

⩽ 12P (X(ak) > g(t)/3, X(t) −X(ak) ⩾ 0) (indep. increments)

⩽ 12P(X(t) ⩾ g(t)/3).

Therefore,

log aP(Ak) = ∫
ak+1

ak

1

t
P(Ak)dt ⩽ 12∫

ak+1

ak

1

t
P (X(t) ⩾ g(t)/3)dt

and summing over k = 1,2, . . . we get

∞
∑
k=1

P(Ak) ⩽
1

log a
∫

∞

1

1

t
P (X(t) > g(t)/3)dt <∞.

We can now apply (the easy direction of) the Borel–Cantelli lemma to see that a.s. only

finitely many of the Ak happen.

P( lim
k→∞

1

g(ak+1) sup
ak−1⩽t⩽ak

X(t) ⩽ 1) = 1.
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Now we use the growth assumption on g: For t ∈ [ak−1, ak] and k ⩾ n0(ω) (this number

comes from the limsup or the Borel–Cantelli lemma) we have

X(t)
κ2(a2)g(t) ⩽ 1

κ2(a2)g(ak−1) sup
ak−1⩽t⩽ak

X(t) ⩽ 1

g(ak+1) sup
ak−1⩽t⩽ak

X(t).

Since a > 1 is arbitrary and κ2(a2)→ 1 as a→ 1 we see that g(t) is an upper function for

X(t).

Remark: With some minor variations, this proof still works for ∣X(t)∣. The main change

is needed in the step where we use that 2P(X(t) −X(ak) ⩾ 0) ⩾ 1. This must be aptly

replaced by an Ottaviani–Skorokhod type bound. See [9, p. 295] for details.

∎∎
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13 Strassen’s functional law of the iterated

logarithm

Problem 13.1. Solution: We construct a counterexample.

The function w(t) =
√
t, 0 ⩽ t ⩽ 1, is a limit point of the family

Zs(t) =
B(st)√

2s log log s

where t > 0 is fixed and for s→∞.

By the Khintchine’s LIL (cf. Theorem 11.1) we obtain

lim
s→∞

B(st)√
2st log log(st)

= 1 (almost surely P)

and so

lim
s→∞

B(st)√
2s log log(st)

=
√
t (almost surely P)

which implies

lim
s→∞

B(st)√
2s log log s

= lim
s→∞

B(st)√
2s log log(st)

⋅
√

log log(st)
log log s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→ 1 for s→∞

=
√
t.

On the other hand, the function w(t) =
√
t cannot be a limit point of Zs(⋅) in C(o)[0,1] for

s→∞. We prove this indirectly: Let sn = sn(ω) be a sequence, such that limn→∞ sn =∞.

Then

∥Zsn(⋅) −w(⋅)∥∞ ÐÐÐ→
n→∞

0

implies that for every ε > 0 the inequality

(
√
t − ε) ⋅

√
2sn log log sn ⩽ B(sn ⋅ t) ⩽ (

√
t + ε)

√
2sn log log sn (*)

holds for all sufficiently large n and every t ∈ [0,1]. This, however, contradicts

(1 − ε)
√

2tk log (log
1

tk
) ⩽ B(tk) ⩽ (1 + ε)

√
2tk log (log

1

tk
), (**)

for a sequence tk = tk(ω)→ 0, k →∞, cf. Corollary 12.2.

Indeed: fix some n, then the right side of (*) is in contradiction with the left side of (**).

Remark: Note that

∫
1

0
w′(s)2 ds = 1

4
∫

1

0

ds

s
= +∞.

∎∎
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Problem 13.2. Solution: For any w ∈K we have

∣w(t)∣2 = ∣∫
t

0
w′(s)ds∣

2

⩽ ∫
t

0
w′(s)2 ds ⋅ ∫

t

0
1ds ⩽ ∫

1

0
w′(s)2 ds ⋅ t ⩽ t.

∎∎

Problem 13.3. Solution: Since u is absolutely continuous (w.r.t. Lebesgue measure), for

almost all t ∈ [0,1], the derivative u′(t) exists almost everywhere.

Let t be a point where u′ exists and let (Πn)n⩾1 be a sequence of partitions of [0,1] such

that ∣Πn∣ → 0 as n → ∞. We denote the points in Πn by t
(n)
k . Clearly, there exists a

sequence (t(n)jn
)n⩾1 such that t

(n)
jn

∈ Πn and t
(n)
jn−1 ⩽ t ⩽ t

(n)
jn

for all n ∈N and t
(n)
jn

− t(n)jn−1 → 0

as n→∞. We obtain

fn(t) =
⎡⎢⎢⎢⎢⎣

1

t
(n)
jn

− t(n)jn−1

∫
t
(n)
jn

t
(n)
jn−1

u′(s)ds
⎤⎥⎥⎥⎥⎦

2

to simplify notation, we set tj ∶= t(n)jn
and tj−1 ∶= t(n)jn−1, then

= [ 1

tj − tj−1
⋅ (u(tj) − u(tj−1))]

2

= [ 1

tj − tj−1
⋅ (u(tj) − u(t) + u(t) − u(tj−1))]

2

=
⎡⎢⎢⎢⎢⎣

tj − t
tj − tj−1

⋅ u(tj) − u(t)
tj − t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→ u′(t)

+ t − tj−1

tj − tj−1
⋅ u(t) − u(tj−1)

t − tj−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→ u′(t)

⎤⎥⎥⎥⎥⎦

2

ÐÐÐ→
n→∞

[u′(t)]2
.

∎∎

Problem 13.4. Solution: We use the notation of Chapter 4: Ω = C(o)[0,1], w = ω, A =
B(C(o)[0,1]), P = µ, B(t, ω) = Bt(ω) = w(t), t ∈ [0,∞).

Linearity of Gφ is clear. Let Πn, n ⩾ 1, be a sequence of partitions of [0,1] such that

limn→∞ ∣Πn∣ = 0,

Πn = {s(n)k ∶ 0 = s(n)0 < s(n)1 < . . . < s(n)ln
= 1} ;

by s̃
(n)
k , k = 1, . . . , ln we denote arbitrary intermediate points, i.e. s

(n)
k−1 ⩽ s̃

(n)
k ⩽ s(n)k for all

k. Then we have

Gφ(ω) = φ(1)B1(ω) − ∫
1

0
Bs(ω)dφ(s)

= φ(1)B1(ω) − lim
∣Πn∣→0

ln

∑
k=1

B
s̃
(n)
k

(ω)(φ(s(n)k ) − φ(s(n)k−1)).

Write

Gφn ∶=φ(1)B1 −
ln

∑
k=1

B
s̃
(n)
k

(φ(s(n)k ) − φ(s(n)k−1))
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=
ln

∑
k=1

(B1 −Bs̃(n)
k

)(φ(s(n)k ) − φ(s(n)k−1)) +B1φ(0).

Then Gφ(ω) = limn→∞G
φ
n(ω) for all ω ∈ Ω. Moreover, the elementary identity

l

∑
k=1

ak(bk − bk−1) =
l−1

∑
k=1

(ak − ak+1)bk + albl − a1b0

implies

Gφn =
ln−1

∑
k=1

(B
s̃
(n)
k+1

−B
s̃
(n)
k

)φ(s(n)k ) + (B1 −Bs̃(n)
ln

)φ(1) − (B1 −Bs̃(n)1

)φ(0) +B1φ(0)

=
ln

∑
k=0

(B
s̃
(n)
k+1

−B
s̃
(n)
k

)φ(s(n)k ) +B
s̃
(n)
1

φ(0),

where s̃
(n)
ln+1 ∶= 1, s̃

(n)
0 ∶= 0.

a) Gφn is a Gaussian random variable with mean EGφn = 0 and variance

VGφn =
ln

∑
k=0

φ2(s(n)k )V(B
s̃
(n)
k+1

−B
s̃
(n)
k

) + φ2(0)VB
s̃
(n)
1

=
ln

∑
k=0

φ2(s(n)k )(s̃(n)k+1 − s̃
(n)
k ) + φ2(0)s̃(n)1

ÐÐÐ→
n→∞ ∫

1

0
φ2(s)ds.

This and limn→∞G
φ
n = Gφ (P-a.s.) imply that Gφ is a Gaussian random variable

with EGφ = 0 and VGφ = ∫ 1
0 φ

2(s)ds.

b) Without loss of generality we use for φ and ψ the same sequence of partitions.

Clearly, Gφn ⋅ Gψn → Gφ ⋅ Gψ for n → ∞ (P-a.s.) Using the elementary inequality

2ab ⩽ a2 + b2 and the fact that for a Gaussian random variable E(G4) = 3(E(G2))2,

we get

E ((GφnGψn)2) ⩽ 1

2
[E ((Gφn)4) +E ((Gψn)4)]

= 3

2
[(E(Gφn)2)2 + (E(Gψn)2)2]

⩽ 3

2
[(∫

1

0
φ2(s)ds)

2
+ (∫

1

0
ψ2(s)ds)

2
] + ε (n ⩾ nε).

This implies

E(GφnGψn)ÐÐÐ→n→∞
E(GφGψ).

Moreover,

E(GφnGψn) = E [(
ln

∑
k=0

(B
s̃
(n)
k+1

−B
s̃
(n)
k

)φ(s(n)k )) ⋅ (
ln

∑
j=0

(B
s̃
(n)
j+1

−B
s̃
(n)
j

)ψ(s(n)j ))]

+ φ(0)ψ(0)E(B2

s̃
(n)
1

) + φ(0)E [B
s̃
(n)
1

ln

∑
j=0

(B
s̃
(n)
j+1

−B
s̃
(n)
j

)ψ(s(n)j )]
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+ ψ(0)E [B
s̃
(n)
1

ln

∑
k=0

(B
s̃
(n)
k+1

−B
s̃
(n)
k

)ψ(s(n)k )]

=
ln

∑
k=0

E ((B
s̃
(n)
k+1

−B
s̃
(n)
k

)2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=s̃(n)
k+1

−s̃(n)
k

φ(s(n)k )ψ(s(n)k ) +⋯

ÐÐÐ→
n→∞ ∫

1

0
φ(s)ψ(s)ds.

This proves

E (GφGψ) = ∫
1

0
φ(s)ψ(s)ds.

c) Using a) and b) we see

E [(Gφn −Gψn)2] = E [(Gφn)2] − 2E [GφnGψn] +E [(Gψn)2]

= ∫
1

0
φ2
n(s)ds − 2∫

1

0
φn(s)ψn(s)ds + ∫

1

0
ψ2
n(s)ds

= ∫
1

0
(φn(s) − ψn(s))2 ds.

This and φn → φ in L2 imply that (Gφn)n⩾1 is a Cauchy sequence in L2(Ω,A,P).
Consequently, the limit X = limn→∞Gφn exists in L2. Moreover, as φn → φ in L2, we

also obtain that ∫ 1
0 φ

2
n(s)ds→ ∫

1
0 φ

2(s)ds.

Since Gφn is a Gaussian random variable with mean 0 and variance ∫ 1
0 φ

2
n(s)ds, we

see that Gφ is Gaussian with mean 0 and variance ∫ 1
0 φ

2(s)ds.

Finally, we have φn → φ and ψn → ψ in L2([0,1]) implying

E(GφnGψn)→ E(GφGψ)

—see part b)—and

∫
1

0
φn(s)ψn(s)ds→ ∫

1

0
φ(s)ψ(s)ds.

Thus,

E(GφGψ) = ∫
1

0
φ(s)ψ(s)ds.

∎∎

Problem 13.5. Solution:

a) It is clear that H1 is a normed vector space with a scalar product. (The definiteness

of the norm in H1 follows from the absolute continuity! Note that h′(s)ds = dh(s)
in the scalar product since h ∈H1 is absolutely continuous.) Let us show that H1 is

closed. Assume that (un)n⩾1 ⊂ H1 converges. This means that u′n
L2(ds)ÐÐÐÐ→
n→∞

w where

w ∈ L2(ds). Thus,

W (t) ∶= ∫
t

0
w(s)ds exists and W ∈H1, W ′(t) = w(t).

Moreover, by construction un
H1

ÐÐÐ→
n→∞

W .
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b) See the last part of Paragraph 13.5.

c) With the Cauchy–Schwarz inequality we see

⟨φ, h⟩H1 ⩽ ∥φ∥H1∥h∥H1

Ô⇒ ⟨ φ

∥φ∥H1

, h⟩
H1

⩽ ∥h∥H1

Ô⇒ sup
φ∈H1○ , ∥φ∥H1=1

⟨φ, h⟩H1 ⩽ sup
φ∈H1, ∥φ∥

H1=1

⟨φ, h⟩H1 ⩽ ∥h∥H1 .

Conversely, the supremum is attained if we take φ = h/ ∥h∥H1 . Thus,

∥h∥H1 = ⟨ h

∥h∥H1

, h⟩
H1

⩽ sup
φ∈H1

⟨ φ

∥φ∥H1

, h⟩
H1

.

If we approximate h ∈H1 by a sequence (φn)n⩾1 ⊂H1
○, we get

∥h∥H1 = ⟨ h

∥h∥H1

, h⟩
H1

= lim
n→∞

⟨ φn
∥φn∥H1

, h⟩
H1

⩽ sup
φ∈H1○

⟨ φ

∥φ∥H1

, h⟩
H1

.

d) Assume that there is some (φn)n⩾1 ⊂H1
○ with ∥φn∥H1 = 1 and ⟨φn, h⟩H1 ⩾ 2n. Then

∥h∥H1 = sup
∥φ∥

H1=1
⟨h, φ⟩H1 ⩾ sup

n⩾1
⟨φn, h⟩H1 =∞

which means that h ∉H1.

Conversely, assume that for every sequence (φn)n⩾1 ⊂ H1
○ with ∥φn∥H1 = 1 we have

⟨φn, h⟩H1 ⩽ C. (Think! Why this is the proper negation of the condition in the

problem?) Since the supremum can be realized by a sequence, we get for a suitable

sequence of φn’s

∥h∥H1 = sup
∥φ∥

H1=1, φ∈H1○
⟨h, φ⟩H1 = lim

n→∞
⟨φn, h⟩H1 ⩽ C.

This means that h ∈H1.

Remark. An alternative, and more elementary argument for part (d) can be based

on step functions and Lemmas 13.2 and 13.3.

∎∎

Problem 13.6. Solution: The vectors (X,Y ) in a) – d) are a.s. limits of two-dimensional

Gaussian distributions. Therefore, they are also Gaussian. Their mean is clearly 0. The

general density of a two-dimensional Gaussian law (with mean zero) is given by

f(x, y) = 1

2πσ1σ2

√
1 − ρ2

exp{− 1

2(1 − ρ2) (x
2

σ2
1

+ y
2

σ2
2

− 2ρxy

σ1σ2
)} .

In order to solve the problems we have to determine the variances σ2
1 = VX, σ2

2 = VY
and the correlation coefficient ρ = EXY

σ1σ2
. We will use the results of Problem 13.4.
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a) σ2
1 = V (∫

t

1/2
s2 dw(s)) = ∫

1

0
1[1/2,t](s)s4 ds = 1

5
(t5 − 1

32
),

σ2
2 = Vw(1/2) = 1/2 (= VB1/2 cf. canonical model),

E(∫
t

1/2
s2 dw(s) ⋅w(1/2)) = ∫

1

0
1[1/2,t](s)s2 ⋅ 1[0,1/2](s)ds = 0

Ô⇒ ρ = 0.

b) σ2
1 =

1

5
(t5 − 1

32
)

σ2
2 = Vw(u + 1/2) = u + 1/2

E(∫
t

1/2
s2 dw(s) ⋅w(u + 1/2))

= ∫
1

0
1[1/2,t](s)s2 ⋅ 1[0,u+1/2](s)ds

= ∫
(1/2+u)∧t

1/2
s2 ds

= 1

3
(((1

2
+ u) ∧ t)

3

− 1

8
) .

Ô⇒ ρ =
1
3 (((1

2 + u) ∧ t)
3 − 1

8)

[1
5
(t5 − 1

32
) ⋅ (u + 1

2
)]1/2 .

c) σ2
1 = V (∫

t

1/2
s2 dw(s)) = 1

5
(t5 − 1

32
),

σ2
2 = V (∫

t

1/2
sdw(s)) = 1

3
(t3 − 1

8
)

E(∫
t

1/2
s2 dw(s) ⋅ ∫

t

1/2
sdw(s)) = ∫

t

1/2
s3 ds = 1

4
(t4 − 1

16
)

Ô⇒ ρ =
1
4
(t4 − 1

16
)

[1
5
(t5 − 1

32
) ⋅ 1

3
(t3 − 1

8
)]1/2 .

d) σ2
1 = V (∫

1

1/2
es dw(s)) = ∫

1

1/2
e2s ds = 1

2
(e2 − e),

σ2
2 = V(w(1) −w(1/2)) = 1/2,

E(∫
1

1/2
es dw(s) ⋅ (w(1) −w(1/2))) = ∫

1

1/2
es ⋅ 1ds = e − e1/2.

Ô⇒ ρ = e − e1/2

(1
4 (e2 − e))1/2 .

∎∎

Problem 13.7. Solution: Let wn ∈ F , n ⩾ 1, and wn → v in C(o)[0,1]. We have to show that

v ∈ F .

Now:

wn ∈ F Ô⇒ ∃(cn, rn) ∈ [q−1,1] × [0,1] ∶ ∣wn(cnrn) −wn(rn)∣ ⩾ 1.
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Observe that the function (c, r)↦ w(cr) −w(r) with (c, r) ∈ [q−1,1] × [0,1] is continuous

for every w ∈ C(o)[0,1].

Since [q−1,1]× [0,1] is compact, there exists a subsequence (nk)k⩾1 such that cnk → c̃ and

rnk → r̃ as k →∞ and (c̃, r̃) ∈ [q−1,1] × [0,1].

By assumption, wnk → v uniformly and this implies

wnk(cnkrnk)→ v(c̃r̃) and wnk(rnk)→ v(r̃).

Finally,

∣v(c̃r̃) − v(r̃)∣ = lim
k→∞

∣wnk(cnkrnk) −wnk(rnk)∣ ⩾ 1,

and v ∈ F follows.

∎∎

Problem 13.8. Solution: Set L(t) =
√

2t log log t, t ⩾ e and sn = qn, n ∈N, q > 1. Then:

a) for the first inequality:

P(∣B(sn−1)∣
L(sn)

> ε
4
) = P

⎛
⎝
∣B(sn−1)√

sn−1
∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼N(0,1)

⋅ 1√
2q log log sn

> ε
4

⎞
⎠

= P(∣B(1)∣ > ε
4

√
2q log log qn)

using Problem 9.6 and P(∣Z ∣ > x) = 2P(Z > x) for x ⩾ 0

⩽
√

2

π

4

ε
√

2q log log qn
⋅ exp{− ε

2

32
⋅ 2q log log qn}

⩽ C

n2

if q is sufficiently large.

b) for the second inequality:

sup
t⩽q−1

∣w(t)∣ = sup
t⩽q−1

∣∫
t

0
w′(s)ds∣

⩽ ∫
1/q

0
∣w′(s)∣ds

⩽ [∫
1/q

0
w′(s)2 ds ⋅ ∫

1/q

0
ds]

1/2

⩽ [∫
1

0
w′(s)2 ds ⋅ 1

q
]

1/2

⩽
√

2r

q
< ε

4

for all sufficiently large q.
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c) for the third inequality: Brownian scaling
B(⋅ sn)√

sn
∼ B(⋅) yields

P
⎛
⎝

sup
0⩽t⩽q−1

∣B(tsn)∣√
2sn log log sn

> ε
4

⎞
⎠
= P

⎛
⎝

sup
0⩽t⩽q−1

∣B(t)∣√
2 log log sn

> ε
4

⎞
⎠

= P
⎛
⎝

sup
0⩽t⩽q−1

∣B(t)∣ > ε
4

√
2 log log sn

⎞
⎠

(*)

⩽ 2P(∣B(1/q)∣ > ε
4

√
2 log log sn)

= 2P
⎛
⎝
∣B(1/q)∣√

1/q
> ε

4

√
2q log log qn

⎞
⎠

⩽ C

n2

for all q sufficiently large. In the estimate marked with (*) we used

P ( sup
0⩽t⩽t0

∣B(t)∣ > x) ⩽ 2P ( sup
0⩽t⩽t0

B(t) > x) Thm.=
6.10

2P(M(t0) > x) = 2P (∣B(t0)∣ > x).

d) for the last inequality:

P
⎛
⎝
∣B(sn−1)∣
L(sn)

+ sup
t⩽q−1

∣w(t)∣ + sup
0⩽t⩽q−1

∣B(tsn)∣
L(sn)

> 3ε

4

⎞
⎠

⩽ P
⎛
⎝
∣B(sn−1)∣
L(sn)

> ε
4

or sup
t⩽q−1

∣w(t)∣ > ε
4

or sup
0⩽t⩽q−1

∣B(tsn)∣
L(sn)

> ε
4

⎞
⎠

⩽ P(∣B(sn−1)∣
L(sn)

> ε
4
) +P

⎛
⎝

sup
t⩽q−1

∣w(t)∣ > ε
4

⎞
⎠
+P

⎛
⎝

sup
0⩽t⩽q−1

∣B(tsn)∣
L(sn)

> ε
4

⎞
⎠

⩽ C

n2
+ 0 + C

n2

for all sufficiently large q. Using the Borel–Cantelli lemma we see that

lim
n→∞

⎛
⎝
∣B(sn−1)∣
L(sn)

+ sup
t⩽q−1

∣w(t)∣ + sup
0⩽t⩽q−1

∣B(tsn)∣
L(sn)

⎞
⎠
⩽ 3

4
ε.

∎∎
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14 Skorokhod representation

Problem 14.1. Solution: Clearly, FB
t ∶= σ(Br ∶ r ⩽ t) ⊂ σ(Br ∶ r ⩽ t, U, V ) = Ft. It remains

to show that Bt −Bs á Fs for all s ⩽ t. Let A,A′′,C be Borel sets in Rd. Then we find

for F ∈ FB
s

P ({Bt −Bs ∈ C} ∩ F ∩ {U ∈ A} ∩ {V ∈ A′})

= P ({Bt −Bs ∈ C} ∩ F) ⋅P ({U ∈ A} ∩ {V ∈ A′}) (since U,V áFB
∞)

= P ({Bt −Bs ∈ C}) ⋅P (F ) ⋅P ({U ∈ A} ∩ {V ∈ A′}) (since Bt −Bs áFB
∞)

= P ({Bt −Bs ∈ C}) ⋅P (F ∩ {U ∈ A} ∩ {V ∈ A′}) (since U,V áFB
∞)

and this shows that Bt − Bs is independent of the family Es = {F ∩ G ∶ F ∈ FB
s ,G ∈

σ(U,V )}. This family is stable under finite intersections, so Bt −Bs á σ(Es) = Fs.

∎∎

Problem 14.2. Solution: Following the hint we use the martingale Mt = B4
t −6tB2

t +3t2, t ⩾ 0,

see Problem 5.6. Since τ is an a.s. finite stopping time, τ ∧n, n ⩾ 1, are bounded stopping

times such that τ ∧ n ↑ τ . Using optional stopping we get

0 = EMτ∧n = E (B4
τ∧n) − 6E ((τ ∧ n)B2

τ∧n) + 3E ((τ ∧ n)2) .

We can rearrange this identity and use the Cauchy–Schwarz inequality to get

E (B4
τ∧n) + 3E ((τ ∧ n)2) = 6E ((τ ∧ n)B2

τ∧n)

⩽ 6
√
E ((τ ∧ n)2)

√
E (B4

τ∧n).

Divide by E (B4
τ∧n) and set x2 = E ((τ ∧ n)2) /E (B4

τ∧n) (this is the quantity we want to

bound). We get

1 + 3x2 ⩽ 6x Ô⇒ 3(x − 1)2 ⩽ 2 Ô⇒ x ⩽ 1 +
√

2
3 < 2.

This means that

E ((τ ∧ n)2) ⩽ 4E (B4
τ∧n) .

Now we can use monotone convergence/Beppo Levi on the left-hand side and dominated

convergence on the right-hand side to finish the proof.

As in Theorem 14.2 we have

4∫ x4 dF (x) = 4E [B4 (τ ○(U,W )c)] =∬ 4E [B4 (τ ○(u,w)c)]ν(du, dw)
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⩾∬ E [(τ ○(u,w)c)
2
]ν(du, dw) = E [(τ ○(U,W )c)

2
] .

Since, under the integral, u,w are fixed, the stopping time τ = τ ○(u,w)c satisfies our assump-

tions from above as Bt∧τ is bounded by max(∣u∣, ∣w∣) (it stays in the interval (u,w)). Note

that these calculations include the case that one or both sides are infinite! We may loose

finiteness in the ν-integral. Of course, if the left-hand side EX4 is finite, then so is E(τ2).

∎∎

Problem 14.3. Solution:

a) We use Mark Kac’s characterization of independence using characteristic functions,

see e.g. [21, Corollary 27.8]. For all ξ, η, θ ∈ R we have

E eiξB+iηH+iθT
Tá(B,H)= E eiξB+iηH E eiθT

BáH= E eiξB E eiηH E eiθT
Tá(B,H)= E eiξB+iθT E eiηH

and we conclude that (B,T ) áH.

b) Without loss of generality we can assume that H is a set (otherwise we would use

{H ⩽ h} in the following calculation). We have for all ξ, θ ∈ R

P(H)E (eiξB+iθT ∣H) = E (eiξBeiθT1H) Bá(H,T )= E (eiξB)E (eiθT1H)

=
P(H)E (eiξB)

P(H) E (eiθT1H) Bá(H,T )=
E (eiξB1H)
P(H) E (eiθT1H) = E (eiξB ∣H)E (eiθT1H)

and dividing by P(H) proves

E (eiξB+iθT ∣H) = E (eiξB ∣H)E (eiθT ∣H)

which is what is claimed.

∎∎
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15 Stochastic integrals: L2–theory

Problem 15.1. Solution: By definition of the angle bracket,

M2 − ⟨M⟩ and N2 − ⟨N⟩

are martingales. Moreover, M ±N are L2 martingales, i.e.

(M +N)2 − ⟨M +N⟩ and (M −N)2 − ⟨M −N⟩

are martingales. So, we subtract them to get a new martingale:

(M +N)2 − (M −N)2 = 4MN and ⟨M +N⟩ − ⟨M −N⟩ def= 4⟨M,N⟩

which shows that 4MN − 4⟨MN⟩ is a martingale.

∎∎

Problem 15.2. Solution: Let λ ∈ R. Clearly, λM +N is again an L2 martingale, and we have

by bilinearity

0 ⩽ ⟨λM +N⟩ = ⟨λM +N,λM +N⟩ = λ2⟨M,M⟩ + 2λ⟨M,N⟩ + ⟨N⟩.

We can minimize this expression in λ if we take λ = −⟨M,N⟩/⟨M⟩. Inserting this into the

above inequality yields the estimate.

∎∎

Problem 15.3. Solution: Note that

[a, b) ∩ [c, d) = [a ∨ c, b ∧ d) (with the convention [M,m) = ∅ if M ⩾m).

Then assume that we have any two representations for a simple process

f =∑
j

φj−11[sj−1,sj) =∑
k

ψk−11[tk−1,tk)

Then

f =∑
j

φj−11[sj−1,sj)1[0,T ) =∑
j,k

φj−11[sj−1,sj)1[tk−1,tk)

and, similarly,

f =∑
k,j

ψk−11[sj−1,sj)1[tk−1,tk).
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Then we get, since φj−1 = ψk−1 whenever [sj−1, sj) ∩ [tk−1, tk) ≠ ∅

∑
j

φj−1(B(sj) −B(sj−1)) = ∑∑
(j,k) ∶ [sj−1,sj)∩[tk−1,tk)≠∅

φj−1(B(sj ∧ tk) −B(sj−1 ∨ tk−1))

= ∑∑
(j,k) ∶ [sj−1,sj)∩[tk−1,tk)≠∅

ψk−1(B(sj ∧ tk) −B(sj−1 ∨ tk−1))

= ∑∑
(k,j) ∶ [sj−1,sj)∩[tk−1,tk)≠∅

ψk−1(B(sj ∧ tk) −B(sj−1 ∨ tk−1))

=∑
k

ψk−1(B(tk) −B(tk−1))

∎∎

Problem 15.4. Solution:

• Positivity is clear, finiteness follows with Doob’s maximal inequality

E [sup
s⩽T

∣Ms∣2] ⩽ 4 sup
s⩽T

E [∣Ms∣2] = 4 E [∣MT ∣2] .

• Triangle inequality:

∥M +N∥M2
T
= (E [sup

s⩽T
∣Ms +Ns∣2])

1
2

⩽ (E [(sup
s⩽T

∣Ms∣ + sup
s⩽T

∣Ns∣)2])
1
2

⩽ (E [sup
s⩽T

∣Ms∣2])
1
2

+ (E [sup
s⩽T

∣Ns∣2])
1
2

where we used in the first estimate the subadditivity of the supremum and in the

second inequality the Minkowski inequality (triangle inequality) in L2.

• Positive homogeneity

∥λM∥M2
T
= (E [sup

s⩽T
∣λMs∣2])

1
2

= ∣λ∣ (E [sup
s⩽T

∣Ms∣2])
1
2

= ∣λ∣ ⋅ ∥M∥M2
T
.

• Definiteness

∥M∥M2
T
= 0 ⇐⇒ sup

s⩽T
∣Ms∣2 = 0 (almost surely).

∎∎

Problem 15.5. Solution: Let fn → f and gn → f be two sequences which approximate f in

the norm of L2(λT ⊗P). Then we have

E (∣fn ●BT − gn ●BT ∣
2) = E (∣(fn − gn) ●BT ∣

2)

= E(∫
T

0
∣fn(s) − gn(s)∣2 ds)

= ∥fn − gn∥2
L2(λT⊗P)
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ÐÐÐ→
n→∞

0.

This means that

L2(P)- lim
n→∞

fn ●BT = L2(P)- lim
n→∞

gn ●BT .

∎∎

Problem 15.6. Solution: Solution 1: Let τ be a stopping time and consider the sequence of

discrete stopping times

τm ∶= ⌊2m τ⌋ + 1

2m
∧ T.

Let t0 = 0 < t1 < t2 < . . . < tn = T and, without loss of generality, τm(Ω) ⊂ {t0, . . . , tn}.

Then (B2
tj − tj)j is again a discrete martingale and by optional stopping we get that

(B2
τm∧tj − τm ∧ tj)j is a discrete martingale. This means that for each m ⩾ 1

⟨Bτm⟩tj = τm ∧ tj for all j

and this indicates that we can set ⟨Bτ ⟩t = t ∧ τ . This process makes B2
t∧τ − t ∧ τ into a

martingale. Indeed: fix 0 ⩽ s ⩽ t ⩽ T and add them to the partition, if necessary. Then

B2
τm∧t

a.e.ÐÐÐ→
m→∞

B2
τ∧t and B2

τm∧t
L1(P)ÐÐÐ→
m→∞

B2
τ∧t

by dominated convergence, since supr⩽T B
2
r is an integrable majorant. Thus,

∫
F
(B2

τ∧s − τ ∧ s) dP = lim
m→∞∫F

(B2
τm∧s − τm ∧ s) dP

= lim
m→∞∫F

(B2
τm∧t − τm ∧ t) dP

= ∫
F
(B2

τ∧t − τ ∧ t) dP for all F ∈ Fs

and we conclude that (B2
τ∧t − τ ∧ t)t is a martingale.

Solution 2: Observe that

Bτ
t = ∫

t

0
1[0,τ) dBs

and by Theorem 15.15 b) we get

⟨∫
●

0
1[0,τ) dBs⟩

t
= ∫

t

0
12
[0,τ) ds = ∫

t

0
1[0,τ) ds = τ ∧ t.

(Of course, one should make sure that 1[0,τ) ∈ L2
T , see e.g. Problem 15.20 below or Prob-

lem 16.2 in combination with Theorem 15.23.)

∎∎

Problem 15.7. Solution: We begin with a general remark: if f = 0 on [0, s] ×Ω, we can use

Theorem 15.15 f) and deduce f ●Bs = 0.
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a) We have

E [(f ●Bt)2 ∣ Fs] = E [(f ●Bt − f ●Bs)2 ∣ Fs]
15.15 b)=
(15.21)

E [∫
t

s
f2(r)dr ∣ Fs] .

If both f and g vanish on [0, s], the same is true for f ± g. We get

E [((f ± g) ●Bt)
2 ∣ Fs] = E [∫

t

s
(f ± g)2(r)dr ∣ Fs] .

Subtracting the ‘minus’ version from the ‘plus’ version and gives

E [((f + g) ●Bt)
2 − ((f − g) ●Bt)

2 ∣ Fs] = E [∫
t

s
(f + g)2(r) − (f − g)2(r)dr ∣ Fs] .

or

4E [(f ●Bt) ⋅ (g ●Bt) ∣ Fs] = 4E [∫
t

s
(f ⋅ g)(r)dr ∣ Fs] .

b) Since f ●Bt is a martingale, we get for t ⩾ s

E (f ●Bt ∣ Fs) martingale= f ●Bs see above= 0

since f vanishes on [0, s].

c) By Theorem 15.15 f) we have for all t ⩽ T

f ●Bt(ω)1A(ω) = 0 ●Bt(ω)1A(ω) = 0.

∎∎

Problem 15.8. Solution: Because of Lemma 15.12 it is enough to show that fn ●BT
n→∞ÐÐÐ→

f ●BT in L2(P). This follows immediately from Theorem 15.15 c):

E [∣fn ●BT − f ●BT ∣
2] = E [∣(fn − f) ●BT ∣

2]

= E [∫
T

0
∣fn(s) − f(s)∣2 ds]

n→∞ÐÐÐ→ 0.

∎∎

Problem 15.9. Solution: Without loss of generality we assume that f(0) = 0. Fix c > 0.

Then we have for all ε > 0, using the Markov inequality and the Hölder inequality with

p = 4 and q = 4/3

P(∣ 1

Bε
∫

ε

0
f(s)dBs∣ > c) = P(∣ 1

Bε
∫

ε

0
f(s)dBs∣

1/2
>
√
c)

⩽ c−1/2E
⎡⎢⎢⎢⎣

1

∣Bε∣1/2
∣∫

ε

0
f(s)dBs∣

1/2⎤⎥⎥⎥⎦

⩽ c−1/2 ⎛
⎝
E

⎡⎢⎢⎢⎣
1

∣Bε∣2/3
⎤⎥⎥⎥⎦
⎞
⎠

3/4

(E [(∫
ε

0
f(s)dBs)

2

])
1/4
.
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Using Itô’s isometry and Brownian scaling yields

P(∣ 1

Bε
∫

ε

0
f(s)dBs∣ > c) ⩽ c−1/2 (E [∣B1∣−2/3])

3/4
ε−1/4 (∫

ε

0
E [∣f(s)∣2] ds)

1/4

= c−1/2 (E [∣B1∣−2/3])
3/4

(1

ε
∫

ε

0
E [∣f(s)∣2] ds)

1/4

⩽ c−1/2 (E [∣B1∣−2/3])
3/4

(sup
s⩽ε
E [∣f(s)∣2])

1/4
.

Since E [∣B1∣−2/3] <∞, see (the solution of) Problem 11.8, we find

lim
ε→0

P(∣ 1

Bε
∫

ε

0
f(s)dBs∣ > c) ⩽ C ( lim

ε→0
sup
s⩽ε

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=lim supε→0

E [∣f(s)∣2])
1/4

= C (lim
ε→0

E [∣f(ε)∣2])
1/4

= 0.

Alternative solution: We fix c,K > 0 and observe

P(∣ 1

Bε
∫

ε

0
f(s)dBs∣ > c) ⩽ P(∣ 1

Bε
∫

ε

0
f(s)dBs∣ > c, ∣

√
ε

Bε
∣ ⩽K) +P(∣

√
ε

Bε
∣ >K)

⩽ P(∣ 1√
ε
∫

ε

0
f(s)dBs∣ >

c

K
) +P(∣Bε∣√

ε
< 1

K
)

The first expression can now be estimated using the Markov inequality and Itô’s isometry,

for the second expression we use Brownian scaling.

∎∎

Problem 15.10. Solution: Do not try to argue like this:

Yt∫
t

0
Xs dBs = ∫

t

0
YtXs dBs = ∫

t

0
YtYsXs dBs = Yt∫

t

0
YsXs dBs

since the pull-in and pull-out of Yt under the stochastic integral cannot be justified. The

correct argument goes like this: The condition YtYs = Yt means that Yt ∈ {0,1}. Define

F = {Yt = 1} and use Theorem 15.15.f): The condition YtYs = Yt ensures that on F the

processes Xs and YsXs coincide. Thus, the claim.

∎∎

Problem 15.11. Solution: We have to show that for all s, t ⩾ 0 one has lims→tE [∣1{Bs>0} − 1{Bt>0}∣
2] =

0. Since the integrand can have only the value 1 or 0, we see

E [∣1{Bs>0} − 1{Bt>0}∣
2] = E [∣1{Bs>0} − 1{Bt>0}∣] = P(Bs > 0,Bt ⩽ 0) +P(Bs ⩽ 0,Bt > 0).

Since s, t play symmetric roles, it is enough to consider one of these probabilities. More-

over, we can assume that s ⩽ t, the other calculation is similar. Since P(Bt = 0) = 0 and

Bs á Bt −Bs ∼ Bt−s we get

P(Bs > 0,Bt ⩽ 0) = P(Bs > 0,Bt < 0) = P(Bs > 0,Bt −Bs +Bs < 0)
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= ∫
∞

0
P(Bt−s < −x) P(Bs ∈ dx) = ∫

∞

0
P(Bt−s < −

√
sy) P(B1 ∈ dy)

In the last step we use Bs ∼
√
sB1 and a change of variables. Now we can use dominated

convergence and the fact that, because of stochastic continuity, P(Bt−s < −
√
sy) → 0 as

s→ t (here we need that t > 0).

∎∎

Problem 15.12. Solution: Assume that (f ●B)2 −A is a martingale where At is continuous

and increasing. Since (f ●B)2 − f2 ● ⟨B⟩ is a martingale, we conclude that

((f ●B)2 − f2 ● ⟨B⟩) − ((f ●B)2 −A) = f2 ● ⟨B⟩ −A

is a continuous martingale with BV paths. Hence, it is a.s. constant.

∎∎

Problem 15.13. Solution: By the Cauchy–Schwarz inequality we see that

E [∫
t

0
f(s)g(s)ds] ⩽

√
E [∫

t

0
∣f(s)∣2 ds]

√
E [∫

t

0
∣g(s)∣2 ds] <∞

which means that ∫ t0 f(s)g(s)ds is well-defined. Since f ± g ∈ L2
t , we get by polarization

4⟨f ●B,g ●B⟩t = ⟨(f + g) ●B⟩t − ⟨(f − g) ●B⟩t
Thm. 15.15b)= ∫

t

0
(f + g)2(s)ds − ∫

t

0
(f − g)2(s)ds

= ∫
t

0
[(f + g)2(s) − (f − g)2(s)] ds

= ∫
t

0
4f(s)g(s)ds,

and the claim follows.

∎∎

Problem 15.14. Solution: Observe that for ε ↓ 0 we have 1[sj−1+ε,sj+ε)(t)→ 1(sj−1,sj](t). If we

define fε with the weights φj and the shifted steps 1[sj−1+ε,sj+ε)(t), then fε → g as ε → 0.

By Itô’s isometry, it is clear that

E [(f ●B − fε ●B)2] = E(∫
T

0
∣f(s,ω) − fε(s,ω)∣d⟨B⟩s(ω))

ÐÐ→
ε→0

E(∫
T

0
∣f(s,ω) − g(s,ω)∣2 d⟨B⟩s(ω)) .

Since f and g differ, for each ω at at most finitely many points, and since the measure

induced by s↦ ⟨B⟩s does not have atoms, we see that

E [(f ●B − fε ●B)2]ÐÐ→
ε→0

E (0) = 0.

∎∎
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Problem 15.15. Solution: If Xn
L2

Ð→X then supnE(X2
n) <∞ and the claim follows from the

fact that

E ∣X2
n −X2

m∣ = E [∣Xn −Xm∣∣Xn +Xm∣]

⩽
√
E ∣Xn +Xm∣2

√
E ∣Xn −Xm∣2

⩽ (
√
E ∣Xn∣2 +

√
E ∣Xm∣2)

√
E ∣Xn −Xm∣2.

∎∎

Problem 15.16. Solution: Let Π = {t0 = 0 < t1 < . . . < tn = T} be a partition of [0, T ]. Then

we get

B3
T =

n

∑
j=1

(B3
tj −B

3
tj−1

)

=
n

∑
j=1

(Btj −Btj−1
)[B2

tj +BtjBtj−1 +B2
tj−1

]

=
n

∑
j=1

(Btj −Btj−1
)[B2

tj − 2BtjBtj−1 +B2
tj−1

+ 3BtjBtj−1
]

=
n

∑
j=1

(Btj −Btj−1
)[(Btj −Btj−1)2 + 3BtjBtj−1

]

=
n

∑
j=1

(Btj −Btj−1
)[(Btj −Btj−1)2 + 3B2

tj−1
+ 3Btj−1(Btj −Btj−1)]

=
n

∑
j=1

(Btj −Btj−1
)3 + 3

n

∑
j=1

B2
tj−1

(Btj −Btj−1
) + 3

n

∑
j=1

Btj−1
(Btj −Btj−1

)2

=
n

∑
j=1

(Btj −Btj−1
)3 + 3

n

∑
j=1

B2
tj−1

(Btj −Btj−1
) + 3

n

∑
j=1

Btj−1(tj − tj−1)

+ 3
n

∑
j=1

Btj−1
[(Btj −Btj−1

)2 − (tj − tj−1)]

= I1 + I2 + I3 + I4.

Clearly,

I2 ÐÐÐ→
∣Π∣→0

3∫
T

0
B2
s dBs and I3 ÐÐÐ→

∣Π∣→0
3∫

T

0
Bs ds

by Proposition 15.18 and by the construction of the stochastic resp. Riemann-Stieltjes

integral. The latter also converges in L2 since I2 and, as we will see in a moment, I1 and

I4 converge in L2-sense.

Let us show that I1, I4 → 0.

V I1 = V
⎛
⎝
n

∑
j=1

(Btj −Btj−1
)3⎞

⎠
(B1)=

n

∑
j=1

V ((Btj −Btj−1
)3)

(B2)=
n

∑
j=1

V (B3
tj−tj−1

)

scaling=
n

∑
j=1

(tj − tj−1)3V (B3
1)
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⩽ ∣Π∣2
n

∑
j=1

(tj − tj−1)V (B3
1)

= ∣Π∣2T V(B3
1)ÐÐÐ→∣Π∣→0

0.

Moreover,

E(I2
4) = E

⎛
⎜
⎝
⎛
⎝

3
n

∑
j=1

Btj−1
[(Btj −Btj−1

)2 − (tj − tj−1)]
⎞
⎠

2⎞
⎟
⎠

= 9E
⎛
⎝
n

∑
j=1

n

∑
k=1

Btj−1
[(Btj −Btj−1

)2 − (tj − tj−1)]Btk−1
[(Btk −Btk−1

)2 − (tk − tk−1)]
⎞
⎠

= 9E
⎛
⎝
n

∑
j=1

B2
tj−1

[(Btj −Btj−1
)2 − (tj − tj−1)]

2⎞
⎠

since the mixed terms break away, see below.

= 9
n

∑
j=1

E (B2
tj−1

[(Btj −Btj−1
)2 − (tj − tj−1)]

2)

(B1)= 9
n

∑
j=1

E (B2
tj−1

)E ([(Btj −Btj−1
)2 − (tj − tj−1)]

2)

(B2)= 9
n

∑
j=1

E (B2
tj−1

)E ([B2
tj−tj−1

− (tj − tj−1)]
2)

scaling= 9
n

∑
j=1

tj−1E (B2
1)(tj − tj−1)2E ([B2

1 − 1]2)

= 9
n

∑
j=1

tj−1(tj − tj−1)2V(B2
1)

⩽ 9T ∣Π∣
n

∑
j=1

(tj − tj−1)V(B2
1)

⩽ 9T 2∣Π∣V(B2
1)ÐÐÐ→∣Π∣→0

0.

Now for the argument with the mixed terms. Let j < k; then tj−1 < tj ⩽ tk−1 < tk, and by

the tower property,

E (Btj−1
[(Btj −Btj−1

)2 − (tj − tj−1)]Btk−1
[(Btk −Btk−1

)2 − (tk − tk−1)])
tower= E (E [Btj−1

[(Btj −Btj−1
)2 − (tj − tj−1)]Btk−1

[(Btk −Btk−1
)2 − (tk − tk−1)] ∣ Ftk−1

])
pull=
out
E (Btj−1

[(Btj −Btj−1
)2 − (tj − tj−1)]Btk−1

E [[(Btk −Btk−1
)2 − (tk − tk−1)] ∣ Ftk−1

])
(B1)= E (Btj−1

[(Btj −Btj−1
)2 − (tj − tj−1)]Btk−1

E [(Btk −Btk−1
)2 − (tk − tk−1)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

)

= 0.

∎∎

Problem 15.17. Solution: Let Π = {t0 = 0 < t1 < . . . < tn = T} be a partition of [0, T ]. Then

we get

f(tj)Btj − f(tj−1)Btj−1
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= f(tj−1)(Btj −Btj−1) +Btj−1(f(tj) − f(tj−1)) + (Btj −Btj−1)(f(tj) − f(tj−1)).

If we sum over j = 1, . . . , n we get

f(T )BT − f(0)B0

=
n

∑
j=1

f(tj−1)(Btj −Btj−1) +
n

∑
j=1

Btj−1(f(tj) − f(tj−1)) +
n

∑
j=1

(Btj −Btj−1)(f(tj) − f(tj−1))

= I1 + I2 + I3.

Clearly,

I1
L2

Ð→ ∫
T

0
f(s)dBs (stochastic integral)

I2
a.s.ÐÐ→ ∫

T

0
Bs df(x) (Riemann-Stieltjes integral)

and if we can show that I3 → 0 in L2, then we are done (as this also implies the L2-

convergence of I2). Now we have

E

⎡⎢⎢⎢⎢⎣

⎛
⎝
n

∑
j=1

(Btj −Btj−1)(f(tj) − f(tj−1))
⎞
⎠

2⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣

n

∑
j=1

n

∑
k=1

(Btj −Btj−1)(f(tj) − f(tj−1))(Btk −Btk−1
)(f(tk) − f(tk−1))

⎤⎥⎥⎥⎥⎦

the mixed terms break away because of the independent increments property of Brownian

motion

=
n

∑
j=1

E [(Btj −Btj−1)2(f(tj) − f(tj−1))2]

=
n

∑
j=1

(f(tj) − f(tj−1))2E [(Btj −Btj−1)2]

=
n

∑
j=1

(tj − tj−1)(f(tj) − f(tj−1))2

⩽ 2 ∣Π∣ ⋅ ∥f∥∞
n

∑
j=1

∣f(tj) − f(tj−1)∣

⩽ 2 ∣Π∣ ⋅ ∥f∥∞VAR1(f ; [0, T ])ÐÐÐ→
∣Π∣→0

0

where we used the fact that a BV-function is necessarily bounded:

∣f(t)∣ ⩽ ∣f(t) − f(0)∣ + ∣f(0)∣ ⩽ VAR1(f ; [0, t]) +VAR1(f ;{0}) ⩽ 2VAR1(f ; [0, T ])

for all t ∈ [0, T ].

∎∎

Problem 15.18. Solution: Replace, starting in the fourth line of the proof of Proposi-

tion 15.18, the argument as follows:
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By the maximal inequalities (15.23) for Itô integrals we get

E [sup
t⩽T

∣∫
t

0
[f(s) − fΠ(s)] dBs∣

2

]

⩽ 4∫
T

0
E [∣f(s) − fΠ(s)∣2]ds

= 4
n

∑
j=1
∫

sj

sj−1

E [∣f(s) − f(sj−1)∣2] ds

⩽ 4
n

∑
j=1
∫

sj

sj−1

sup
u,v∈[sj−1,sj]

E [∣f(u) − f(v)∣2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0, ∣Π∣→0

dsÐÐÐ→
∣Π∣→0

0.

∎∎

Problem 15.19. Solution: To simplify notation, we drop the n in Πn and write only 0 = t0 <
t1 < . . . < tk = T and

θαn,j = θj = αtj + (1 − α)tj−1.

We get

LT (α) ∶= L2(P)- lim
∣Π∣→0

k

∑
j=1

Bθj(Btj −Btj−1) = ∫
T

0
Bs dBs + αT.

Indeed, we have

k

∑
j=1

Bθj(Btj −Btj−1)

=
k

∑
j=1

Btj−1(Btj −Btj−1) +
k

∑
j=1

(Bθj −Btj−1)(Btj −Btj−1)

=
k

∑
j=1

Btj−1(Btj −Btj−1) +
k

∑
j=1

(Bθj −Btj−1)2 +
k

∑
j=1

(Btj −Bθj)(Bθj −Btj−1)

=X + Y +Z.

We know already that X
L2

ÐÐÐ→
∣Π∣→0

∫ T0 Bs dBs. Moreover,

VZ = V
⎛
⎝
k

∑
j=1

(Btj −Bθj)(Bθj −Btj−1)
⎞
⎠

=
k

∑
j=1

V [(Btj −Bθj)(Bθj −Btj−1)]

=
k

∑
j=1

E [(Btj −Bθj)2(Bθj −Btj−1)2]

=
k

∑
j=1

E [(Btj −Bθj)2]E [(Bθj −Btj−1)2]

=
k

∑
j=1

(tj − θj)(θj − tj−1)
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= α(1 − α)
k

∑
j=1

(tj − tj−1)(tj − tj−1)
as in Theorem 9.1ÐÐÐÐÐÐÐÐÐ→ 0.

Finally,

EY = E
⎛
⎝
k

∑
j=1

(Bθj −Btj−1)2⎞
⎠
=

k

∑
j=1

E(Bθj −Btj−1)2

=
k

∑
j=1

(θj − tj−1) = α
k

∑
j=1

(tj − tj−1) = αT.

The L2-convergence follows now literally as in the proof of Theorem 9.1.

Consequence: LT (α) = 1
2
(B2

T + (2α − 1)T), and this stochastic integral is a martingale if,

and only if, α = 0, i.e. if θj = tj−1 is the left endpoint of the interval.

For α = 1
2 we get the so-called Stratonovich or mid-point stochastic integral. This will

obey the usual calculus rules (instead of Itô’s rule). A first sign is the fact that

LT (1
2) =

1
2B

2
T

and we usually write

LT (1
2) = ∫

T

0
Bs ○ dBs

with the Stratonovich-circle ○ to indicate the mid-point rule.

∎∎

Problem 15.20. Solution:

a) Let τk be a sequence of stopping times with countably many, discrete values such

that τk ↓ τ . For example, τk ∶= (⌊2kτ⌋ + 1)/2k, see Lemma A.15 in the appendix.

Write s1 < . . . < sK for the values of τk. In particular,

1[0,T∧τk) =∑
j

1{T∧τk=T∧sj}1[0,T∧sj)

And so

{(s,ω) ∶ 1[0,T∧τk(ω))(s) = 1} =⋃
j

[0, T ∧ sj) × {T ∧ τk = T ∧ sj}.

Since {T ∧ τk = T ∧ sj} ∈ FT∧sj , it is clear that

{(s,ω) ∶ 1[0,T∧τk(ω))(s) = 1} ∩ ([0, t] ×Ω) ∈ B[0, t] ×Ft for all t ⩾ 0

and progressive measurability of 1[0,T∧τk) follows.

b) Since T ∧ τk ↓ T ∧ τ and T ∧ τk has only finitely many values, and we find

lim
k→∞

1[0,T∧τk) = 1[0,T∧τ]

almost surely. Consequently, 1[0,T∧τ(ω)](s) is also P-measurable.

In fact, we do not need to prove the progressive measurability of 1[0,T∧τ) to evaluate

the integral. If you want to show it nevertheless, have a look at Problem 16.2 below.
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c) Fix k and write 0 ⩽ s1 < . . . < sK for the values of T ∧ τk. Following the proof of

Theorem 15.11.c)

∫ 1[0,T∧τk)(s)dBs = ∫ ∑
j

1[T∧sj−1,T∧sj)(s)1[0,T∧τk)(s)dBs

=∑
j
∫ 1[T∧sj−1,T∧sj∧τk)(s)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T∧sj∧τk=T∧sj

1{T∧τk>T∧sj−1}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

FT∧sj−1-mble

dBs

=∑
j

1{T∧τk>T∧sj−1}∫ 1[T∧sj−1,T∧sj)(s)dBs

=∑
j

1{T∧τk>T∧sj−1}(BT∧sj −BT∧sj−1)

= BT∧τk .

d) 1[0,T∧τ) = L2- limk 1[0,T∧τk): This follows from

E∫ ∣1[0,T∧τk)(s) − 1[0,T∧τ)(s)∣2 ds = E∫ ∣1[T∧τ, T∧τk)(s)∣
2 ds

= E∫ 1[T∧τ, T∧τk)(s)ds

= E(T ∧ τk − T ∧ τ)ÐÐÐ→
k→∞

0

by dominated convergence.

e) By the very definition of the stochastic integral we find now

∫ 1[0,T∧τ)(s)dBs
d)= L2- lim

k
∫ 1[0,T∧τk)(s)dBs

c)= L2- lim
k
BT∧τk = BT∧τ

by the continuity of Brownian motion and dominated convergence: sups⩽T ∣Bs∣ is

integrable.

f) The result is, in the light of the localization principle of Theorem 15.15 not unex-

pected.

∎∎

Problem 15.21. Solution: Throughout the proof t ⩾ 0 is arbitrary but fixed.

• Clearly, ∅, [0, T ] ×Ω ∈ P.

• Let Γ ∈ P. Then

Γc ∩ ([0, t] ×Ω) = ([0, t] ×Ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈B[0,t]⊗Ft

∖ (Γ ∩ ([0, t] ×Ω))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈B[0,t]⊗Ft

∈ B[0, t]⊗Ft,

thus Γc ∈ P.

• Let Γn ∈ P. By definition

Γn ∩ ([0, t] ×Ω) ∈ B[0, t]⊗Ft
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and we can take the union over n to get

(⋃
n

Γn) ∩ ([0, t] ×Ω) =⋃
n

(Γn ∩ ([0, t] ×Ω)) ∈ B[0, t]⊗Ft

i.e. ⋃n Γn ∈ P.

∎∎

Problem 15.22. Solution: Let f(t, ω) be right continuous on the interval [0, T ]. (We consider

only T <∞ since the case of the infinite interval [0,∞) is actually easier.)

Set

fTn (s,ω) ∶= f( ⌊2n s⌋+1
2n ∧ T,ω)

then

fTn (s,ω) =∑
k

f(k+1
2n ∧ T,ω)1[k2−n,(k+1)2−n)(s) (s ⩽ T )

and, since (⌊2n s⌋ + 1)/2n ↓ s, we find by right continuity that fn → f as n → ∞. This

means that it is enough to consider the P-measurability of the step-function fn.

Fix n ⩾ 0, write tj = j2−n. Then t0 = 0 < t1 < . . . tN ⩽ T for some suitable N . Observe that

for any x ∈ R

{(s,ω) ∶ f(s,ω) ⩽ x} = {T} × {ω ∶ f(T,ω) ⩽ x} ∪
N

⋃
j=1

[tj−1, tj) × {ω ∶ f(tj , ω) ⩽ x}

and each set appearing in the union set on the right is in B[0, T ]⊗FT .

This shows that fTn and f are B[0, T ]⊗FT measurable.

Now consider f tn and f(t)1[0,t]. We conclude, with the same reasoning, that both are

B[0, t]⊗Ft measurable.

This shows that a right continuous f is progressive.

If f is left continuous, we use ⌊2n s⌋/2n ↑ s and define the approximating function as

gTn (s,ω) =∑
k

f( k
2n ∧ T,ω)1[k2−n,(k+1)2−n)(s) (s ⩽ T ).

The rest of the proof is similar.

∎∎

Problem 15.23. Solution: Let τk be a sequence as constructed in Lemma A.16. We have

τk ↓ τ , thus we see with dominated convergence that 1((0,τk]] → 1((0,τ]] in L2(λT ⊗P) for

any T > 0. So we can assume that τ has only contably many values in [0,∞) and only

finitely many values in every compact interval [0, t] where t ∈ [0, T ). Call the values of τ

0 = t0 < t1 < ⋅ ⋅ ⋅ < tj < . . .

We have

1((0,τ]] =
∞
∑
j=0

1(0,tj]1{τ=tj}.
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The problem is that, relative to the time-interval, the set {τ = tj} has the “wrong”

measurability (namely, for the endpoint). The following trick helps (mind that all sums

are actually finite sums!):

1(0,∞)×Ω − 1((0,τ]] =
∞
∑
j=0

(1(0,∞) − 1(0,tj])1{τ=tj} =
∞
∑
j=0

1(tj ,∞)1{τ=tj}.

Now we can apply the definition of Nt and get

Nt(1(0,∞)×Ω − 1((0,τ]]) = N(1(0,t]×Ω − 1((0,τ∧t]])

= Bt −
∞
∑
j=0

(Bt −Bt∧tj)1{τ=tj} =
∞
∑
j=0

Bt∧tj1{τ=tj} = Bt∧τ .

∎∎
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Problem 16.1. Solution: Yes. In view of Lemma 16.3 we have to show that L0
T ⊃ L2

T,loc. Let

f ∈ L2
T,loc and take some localizing sequence (σn)n⩾1 such that

σn
a.s.ÐÐÐ→
n→∞

∞ and ∫
T∧σn

0
∣f(s, ⋅)∣2 ds <∞

(the finiteness of the integral latter follows from the fact that f1[0,σn) is in L2
T for each n.

Moreover, f1[0,σn) is P-measurable, hence f1[0,T∧σn) → f1[0,T ) is P-measurable. Note

that the completeness of the filtration allows that σn →∞ holds only a.s.). Now observe

that for every fixed ω there is some n(T,ω) ⩾ 1 such that for all n ⩾ n(T,ω) we have

σn(ω) ⩾ T . Thus,

∫
T

0
∣f(s,ω)∣2 ds = ∫

T∧σn(ω)

0
∣f(s,ω)∣2 ds <∞.

∎∎

Problem 16.2. Solution: Solution 1: We have that the process t↦ 1[0,τ(ω))(t) is adapted

{ω ∶ 1[0,τ(ω))(t) = 0} = {τ ⩽ t} ∈ Ft

since τ is a stopping time. By Problem 15.22 we conclude that 1[0,τ) is progressive.

Solution 2: Set tj = j2−n and define

Itn(s,ω) ∶= 1[0,τ(ω))( ⌊2ns⌋
2n ∧ t) =∑

j

1[0,τ(ω))(tj+1 ∧ t)1[tj ,tj+1)(s ∧ t).

Since ⌊2ns⌋/2n ↓ s we find, by right continuity, Itn → 1[0,τ). Therefore, it is enough to

check that Itn is B[0, t]⊗Ft-measurable. But this is obvious from the form of Itn.

∎∎

Problem 16.3. Solution: Assume that σn are stopping times such that (Mσn
t 1{σn>0})t is a

martingale. Clearly,

• τn ∶= σn ∧ n ↑∞ almost surely as n→∞;

• {σn > 0} = {σn ∧ n > 0} = {τn > 0};

• by optional stopping, the following process is a martingale for each n:

Mσn
t∧n1{σn>0} =Mσn∧n

t 1{σn>0} =Mσn∧n
t 1{σn∧n>0} =M

τn
t 1{τn>0}.

161



R.L. Schilling: Brownian Motion (3rd edn)

Remark: This has an interesting consequence:

E [sup
s⩽T

∣M(s ∧ τn)∣2]
Doob

⩽ 4 E [∣M(τn)∣2] ⩽ 4 E [∣M(n)∣2].

∎∎

Problem 16.4. Solution: “⇐” If Mt∧σn is a martingale, then all rv are integrable, so M0 =
M0∧σn ∈ L1. Moreover, we get for any n ⩾ 1, F ∈ Fs and s ⩽ t

∫
F
Mt∧σn1{σn>0} dP = ∫

F
Mt∧σn dP−∫

F
Mt∧σn1{σn=0} dP

mg= ∫
F
Ms∧σn dP−∫

F
M01{σn=0} dP

= ∫
F
Ms∧σn dP−∫

F
Ms∧σn1{σn=0} dP

= ∫
F
Ms∧σn1{σn>0} dP

proving that Mt∧σn1{σn>0} is a martingale. Thus, Mt is a local martingale with M0 ∈ L1.

The reverse direction “⇒” follows from almost the same calculation.

∎∎

Problem 16.5. Solution:

a) The picture below show that Iσu = Iτu = u since t↦ It is continuous.

?a

?+l,r3
rl

nrb

Q- )a .r -)
rl

nA ?-D_,

3-n
11

?tn

Thus,

ω ∈ {σu ⩾ t} ⇐⇒ σu(ω) ⩾ t

⇐⇒ inf{s ⩾ 0 ∶ Is(ω) > u} ⩾ t
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It cts.⇐⇒ It(ω) ⩽ u

⇐⇒ ω ∈ {It ⩽ u}

and

ω ∈ {τu > t} ⇐⇒ τu(ω) > t

⇐⇒ inf{s ⩾ 0 ∶ Is(ω) ⩾ u} > t
It cts.⇐⇒ It(ω) < u

⇐⇒ ω ∈ {It < u}.

(b) We have

{τu ⩽ t} = {τu > t}c
(a)= {It < u} ∈ Ft

and

{σu ⩽ t} =⋂
k

{σu < t + 1
k
} =⋂

k

{σu ⩾ t + 1
k
}c =⋂

k

{It+ 1
k
⩽ u}c ∈⋂

k

Ft+ 1
k
= Ft+.

(c) Proof for σ: Clearly, σu ⩽ σu+ε for all ε ⩾ 0. Thus, σu ⩽ limε↓0 σu+ε.

In order to show that σu ⩾ limε↓0 σu+ε, it is enough to check that

lim
ε↓0

σu+ε ⩾ t Ô⇒ σu ⩾ t. (*)

Indeed: if limε↓0 σu+ε > σu, then there is some q such that limε↓0 σu+ε > q > σu, and

this contradicts (*).

Let us show (*):

lim
ε↓0

σu+ε ⩾ t Ô⇒ ∀ε < ε0 ∶ It ⩽ u + ε Ô⇒ It ⩽ u
(a)Ô⇒ σu ⩾ t.

Proof for τ : Clearly, τu−ε ⩽ τu for all ε ⩾ 0. Thus, τu ⩾ limε↓0 τu−ε.

In order to show that τu ⩽ limε↓0 τu−ε, it is enough to check that

lim
ε↓0

τu−ε ⩽ t Ô⇒ τu ⩽ t. (**)

Indeed: if limε↓0 τu−ε < τu, then there is some q such that limε↓0 τu−ε < q < τu and this

contradicts (**).

Let us show (**):

lim
ε↓0

τu−ε ⩽ t Ô⇒ ∀ε < ε0 ∶ It ⩾ u − ε Ô⇒ It ⩾ u
(a)Ô⇒ τu ⩽ t.

The following picture motivates why we should expect that τu = σu−:
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?a

?+l,r3
rl

nrb

Q- )a .r -)
rl

nA ?-D_,

3-n
11

?tn

(d) Clearly, σu−ε ⩽ τu for all ε > 0, i.e. σu− ⩽ τu.

We show now σu− ⩾ τu. For this it is enough to check that

σu− < t Ô⇒ τu ⩽ t. (***)

Indeed: if σu− < τu, then there is some q with σu− < q < τu contradicting (***).

Let us verify (***). We have

σu− < t ⇐⇒ lim
ε↓0

σu−ε < t

Ô⇒ ∀ε < ε0 ∶ σu−ε < t
(a)Ô⇒ ∀ε < ε0 ∶ It > u − ε

Ô⇒ It ⩾ u

Ô⇒ τu ⩽ t.

(e) Clear, since in this case It is continuously invertible and σ, τ are the left and right

continuous inverses.

∎∎
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17 Stochastic integrals: Martingale drivers

Problem 17.1. Solution: Proposition 17.2: Let Xt be a local martingale with continuous

paths of bounded variation. Without loss of generality we assume that X0 = 0. Let σn be

a localizing sequence and set Xn
t ∶= Xt∧σn . Clearly, Xn

t is a martingale with continuous

and BV paths, so Xn
t =Xn

0 =X0 = 0 a.s.

Corollary 17.3: The same type of argument applies here, too we just make sure that all

localizing sequences are the same. We can enforce this by using θn as the minimum of all

localizing sequences appearing somewhere in the argument.

∎∎

Problem 17.2. Solution: Let M = (Mt)t⩾0 be a local martingale. Without loss we assume

that M0 = 0. Let ρn be a localizing sequence and define stopping times σn ∶= inf{s ⩾ 0 ∶
∣Ms∣ > n}. Since t ↦Mt is continuous, σn ↑∞ as n →∞ and ∣Ms∧σn ∣ ⩽ n, i.e. the stopped

process Mσn is square integrable.

Thus, Mn
t ∶= Mρn∧σn

t is a square integrable martingale satisfying the assumptions of

Theorem 17.1. Set τn ∶= σn ∧ρn. Thus, there is a unique process such that M2
τn∧t − ⟨M τn⟩t

is a martingale. Moreover, for any refining sequence of partitions ∣Πm∣ → 0 we get, in

ucp-sense (uniform convergence in probability),

⟨Mn⟩t = lim
m

∑
tj ,tj−1∈Πm

(Mt∧tj∧τn −Mt∧tj−1∧τn) .

This shows that ⟨M⟩ can be defined via ⟨M τn⟩t = ⟨M⟩t∧τn = ⟨M⟩τnt .

Of course, in the statement of Theorem 17.1 we have now to claim that the process ⟨M⟩
is unique, increasing, continuous and such that M − ⟨M⟩ is a local martingale.

∎∎

Problem 17.3. Solution:

a) Note that the bracket is defined for M ±N ∈ M2
T,loc, so everything is well-defined.

The cross-variation is BV since it is the difference of two increasing processes.

b) By polarization we have

4 (MN − ⟨M,N⟩) = [(M +N)2 − ⟨M +N⟩]
∈Mc

T,loc

− [(M −N)2 − ⟨M −N⟩]
∈Mc

T,loc

.

Uniqueness (up to constants) follows from (the localized version of) Corollary 17.3,

see Problem 17.1.
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c) Assume first that M,N ∈M2,c
T . If we polarize the formula (17.1)

⟨M⟩t = ucp − lim
∣Π∣→0

∑
Π

(Mti −Mti−1)2

we get the claimed formula. Now use

⟨M,N⟩τk = ⟨M τk ,N τk⟩ and Lemma 17.14.

d) This follows immediately from part c) and the linearity of the limit.

e) This follows as in the case for scalar products:

0 ⩽ ⟨λM − λ−1N, λM − λ−1N⟩

= λ2⟨M⟩ − 2⟨M,n⟩ + λ−2⟨N⟩

and choose λ2 =
√

⟨N⟩/
√

⟨M⟩.

∎∎

Problem 17.4. Solution:

a) Use the Chebyshev–Markov inequality.

b) Use that for any processes U,V we have

(U + V )∗T ⩽ U∗
T + V ∗

T Ô⇒ {(U + V )∗T > c} ⊂ {U∗
T > c/2} ∪ {V ∗

T > c/2}.

c) We know that ET is L2(P)-dense in L2
T (M). Fix f ∈ L2

T,loc(M), pick some localizing

sequence τj . Then

f ∈ L2
T,loc(M) Ô⇒ f●∧τj ∈ L2

T (M)
a)Ô⇒ ET ∋ fΠ(n,j)

●∧τj
ucpÐÐÐ→
n→∞

f●∧τj
§ 17.14Ô⇒ ET ∋ fΠ(n,n) ucpÐÐÐ→

n→∞
f.

∎∎

Problem 17.5. Solution: Throughout we assume that fn → f in ucp-sense.

a) —part i) We have

P(sup
t⩽T

(f − fn)2 ● ⟨M⟩t > C) = P ((f − fn)2 ● ⟨M⟩T > C)

⩽ P(sup
t⩽T

(f − fn)2
t ⟨M⟩T > C)

= P(sup
t⩽T

∣f − fn∣t >
√
C/⟨M⟩T)

ucpÐÐÐ→
n→∞

0.

This is enough to prove the next two steps. In the end we show how to use the other

two steps to prove the claimed continuity.
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b) By Theorem 17.13.d) we get

P(sup
t⩽T

∣(f − fn) ●Mt > ε) ⩽ 4C

ε2
+P ((f − fn)2 ● ⟨M⟩T ⩾ C)

a), part i)ÐÐÐÐÐ→
n→∞

4C

ε2
ÐÐ→
C→0

0.

c) Let Mn →M in ucp. Define

σnε ∶= inf{t ∈ [0, T ] ∶ (M −Mn)∗t > ε},

τnk ∶= joint localizing sequence for Mn,M.

For all C > 0 we see

P(⟨M −Mn⟩T > C)

⩽ P (⟨M −Mn⟩T > C, σnε > T
=(M−Mn)∗T ⩽ε

) +P ((M −Mn)∗T > ε)

⩽ P (⟨M −Mn⟩T > C, σnε > T, τnk ⩾ T) +P (τnk < T) +P ((M −Mn)∗T > ε)

⩽ P (⟨M −Mn⟩T∧σnε ∧τnk > C) +P (τnk < T) +P ((M −Mn)∗T > ε)

⩽ 1

C2
E (⟨M −Mn⟩T∧σnε ∧τnk ) +P (τnk < T) +P ((M −Mn)∗T > ε)

= 1

C2
E (∣M −Mn∣2T∧σnε ∧τnk ) +P (τnk < T) +P ((M −Mn)∗T > ε)

⩽ ε2

C2

3o: ε→0

+P (τnk < T)
1o: k→∞

+P ((M −Mn)∗T > ε)
2o: n→∞

ÐÐÐÐÐÐÐÐÐ→
k→∞, n→∞, ε→0

0

d) —part ii) Now we use that

fn
ucpÐÐ→ f Ô⇒ fn ●M § 17.13.b), ucpÐÐÐÐÐÐÐÐ→ f ●M Ô⇒ ⟨fn ●M⟩ § 17.13.c), ucpÐÐÐÐÐÐÐ→ ⟨●M⟩

and this is the claimed continuity of f2 ● ⟨M⟩ = ⟨f ●M⟩.

∎∎

Problem 17.6. Solution:

a) By definition, ∣f(t, ω)∣ < ∞ for each t ∈ [0, T ] (finite left limits at T !). Moreover,

supt∈[0,T ] ∣f(t, ω)∣ ⩽ c(ω) < ∞. Assume that this were not true. Then we’d find a

sequence tn ∈ [0, T ] such that ∣f(tn, ω)∣→∞. Since [0, T ] is compact, we may assume

that tn → t (otherwise: extract convergent subsequence) and tn ↑ t or tn ↓ t (again:

subsequence). Then we get ∣f(t−, ω)∣ =∞ or ∣f(t+, ω)∣ = ∣f(t, ω)∣ =∞, contradicting

the càdlàg property. Thus,

∣∫
T

0
f(t, ω)d⟨M⟩t∣ ⩽ ∫

T

0
∣f(t, ω)∣d⟨M⟩t ⩽ c(ω)⟨M⟩T (ω) <∞

almost surely.
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b) Take a localizing sequence τk for M which also satisfies that ∫ τk0 f(t)d⟨M⟩t < ∞.

Then we know from Theorem 17.9.c), d) that (fΠ ●M)τk → (f ●M)τk in L2(P), even

uniformly in t ∈ [0, T ]. Thus the claim follows from the localization principle for

ucp-convergence, cf. Lemma 17.14.

∎∎

Problem 17.7. Solution: We have for any sufficiently large c

P(∫
T

0
f2(s)d⟨M⟩s > c) ⩽ P(∫

T

0
(f − fn)2(s)d⟨M⟩s > 1) +P(∫

T

0
f2
n(s)d⟨M⟩s > c − 1)

⩽ P(sup
s⩽T

(f − fn)2(s) > 1/⟨M⟩T) +P(∫
T

0
f2
n(s)d⟨M⟩s > c − 1)

n fixedÐÐÐÐ→
c→∞

P(sup
s⩽T

(f − fn)2(s) > 1/⟨M⟩T)

ucpÐÐÐ→
n→∞

0.

∎∎

Problem 17.8. Solution: By definition, there is a sequence fn of elementary processes, i.e. of

processes of the form

fn(s,ω) =∑
j

φj−1(s)1[tj−1,tj)(s)

where φj−1 is Ftj−1 measurable such that fn → f in L2(µT ⊗P). In particular, there is a

subsequence such that

lim
k→∞∫

t

0
∣fn(k)(s)∣2 dAs = ∫

t

0
∣f(s)∣2 dAs a.s.

so that it is enough to check that the integrals ∫ t0 ∣fn(j)(s)∣2 dAs are adapted. By defintion

∫
t

0
∣fn(j)(s)∣2 dAs =∑

j

φ2
j−1(Atj∧t −Atj−1∧t)

and from this it is clear that the integral is Ft measurable for each t.

∎∎
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18 Itô’s formula

Problem 18.1. Solution: We try to identify the bits and pieces as parts of Itô’s formula. For

f(x) = ex we get f ′(x) = f ′′(x) = ex and so

eBt − 1 = ∫
t

0
eBs dBs +

1

2
∫

t

0
eBs ds.

Thus,

Xt = eBt − 1 − 1

2
∫

t

0
eBs ds.

With the same trick we try to find f(x) such that f ′(x) = xex2
. A moment’s thought

reveals that f(x) = 1
2 e

x2
will do. Moreover f ′′(x) = ex2 + 2x2ex

2
. This then gives

1

2
eB

2
t − 1

2
= ∫

t

0
Bse

B2
s dBs +

1

2
∫

t

0
(eB2

s + 2B2
se
B2
s )ds

and we see that

Yt =
1

2
(eB2

t − 1 − ∫
t

0
(eB2

s + 2B2
se
B2
s )ds) .

Note: the integrand B2
se
B2
s is not of class L2

T , thus we have to use a stopping technique

(as in step 4o of the proof of Itô’s formula or as in Chapter 16).

∎∎

Problem 18.2. Solution: For γ = 1 we get a telescoping sum

T = tN − t0 =
N

∑
j=1

(tj − tj−1) =
N

∑
j=1

(tj − tj−1)γ .

If γ = 1 + ε > 1 we get

N

∑
j=1

(tj − tj−1)1+ε ⩽ ∣Π∣ε
N

∑
j=1

(tj − tj−1) = ∣Π∣ε T ÐÐÐ→
∣Π∣→0

0,

and if γ = 1 − ε < 1 we have

N

∑
j=1

(tj − tj−1)1−ε ⩾ ∣Π∣−ε
N

∑
j=1

(tj − tj−1) = ∣Π∣−ε T ÐÐÐ→
∣Π∣→0

∞.

∎∎

Problem 18.3. Solution: Let 0 = t0 < t1 < . . . < tN = T be a generic partition of [0, T ] and

write ∆j = Btj −Btj−1 . Then we get

(∑
j

∆2
j)

4

=∑
j
∑
k

∑
l

∑
m

∆2
j∆

2
k∆

2
l ∆

2
m
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= c1,1,1,1∑∑∑∑
j<k<l<m

∆2
j∆

2
k∆

2
l ∆

2
m

+ c1,1,2∑∑∑
j<k<l

∆2
j∆

2
k(∆2

l )2 + c1,2,1∑∑∑
j<k<l

∆2
j(∆2

k)2∆2
l + c2,1,1∑∑∑

j<k<l
(∆2

j)2∆2
k∆

2
l

+ c2,2∑∑
j<k

(∆2
j)2(∆2

k)2 + c1,3∑∑
j<k

∆2
j(∆2

k)3 + c3,1∑∑
j<k

(∆2
j)3∆2

k

+ c4∑
j

(∆2
j)4.

By the scaling property E(∆2
j)n = (tj − tj−1)nEB2n

1 = δnj EB2n
1 where δj = tj − tj−1. Using

the independent increments property we get

E [(∑
j

∆2
j)

4

] =∑
j
∑
k

∑
l

∑
m

E (∆2
j∆

2
k∆

2
l ∆

2
m)

= c′1,1,1,1∑∑∑∑
j<k<l<m

δjδkδlδm

+ c′1,1,2∑∑∑
j<k<l

δjδkδ
2
l + c′1,2,1∑∑∑

j<k<l
δjδ

2
kδl + c′2,1,1∑∑∑

j<k<l
δ2
j δkδl

+ c′2,2∑∑
j<k

δ2
j δ

2
k + c′1,3∑∑

j<k
δjδ

3
k + c′3,1∑∑

j<k
δ3
j δk

+ c′4∑
j

δ4
j

= c′1,1,1,1(∑
j

δj)
4

+ c′′1,1,2∑∑∑
j<k<l

δjδkδ
2
l + c′′1,2,1∑∑∑

j<k<l
δjδ

2
kδl + c′′2,1,1∑∑∑

j<k<l
δ2
j δkδl

+ c′′2,2∑∑
j<k

δ2
j δ

2
k + c′′1,3∑∑

j<k
δjδ

3
k + c′′3,1∑∑

j<k
δ3
j δk

+ c′′4 ∑
j

δ4
j .

Since ∑j δj = T and since we can estimate the terms containing powers of δj by, for

example,

∑∑∑
j<k<l

δjδ
2
kδl ⩽ ∣Π∣∑∑∑

j<k<l
δjδkδl ⩽ ∣Π∣∑

j
∑
k

∑
l

δjδkδl = ∣Π∣T 3 ÐÐÐ→
∣Π∣→0

0

we get

E [(∑
j

(Btj −Btj−1
)2)

4

]ÐÐÐÐÐÐ→
∣Π∣→0

c′1,1,1,1T
4.

We will use this on page 301 (of Brownian Motion) when we estimate ∣J2∣:

∣J2∣2 ⩽ max
1⩽l⩽N

∣g(ξl) − g(Btl−1
)∣2 [

N

∑
l=1

(Btl −Btl−1
)2]

2

,

and taking now the Cauchy-Schwarz inequality gives

E [J2
2] ⩽

√
E ( max

1⩽l⩽n
∣g(ξl) − g(Btl−1

)∣4)
√
E [(S ∶ 2Π(B; [0, t]))4].
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The second factor is, however, bounded by CT 2, see the considerations from above, and

the L2-convergence follows.

Alternative Solution: Let 0 = t0 < t1 < . . . < tn = T be a generic partition of [0, T ] and

write ∆j = Btj −Btj−1 . By the independence and stationarity of the increments, we have

for any ξ ∈ R

E exp
⎛
⎝
i ξ

n

∑
j=1

∆2
j

⎞
⎠
=

n

∏
j=1

E exp (i ξ (tj − tj−1)B2
1) =

n

∏
j=1

1√
1 − 2i ξ(tj − tj−1)

=∶
n

∏
j=1

gj(ξ)

using that B2
1 is χ2

1-distributed. Obviously,

dk

dξk
gj(ξ) = ck

(tj − tj−1)k

(1 − 2i ξ(tj − tj−1))1/2+k

for some constants ck, k ⩾ 1, which do not depend on ξ, j. In particular,

∣ d
k

dξk
gj(ξ)∣

RRRRRRRRRRRξ=0

= ∣ck ⋅ (tj − tj−1)k∣ ⩽ ∣ck∣ ⋅ ∣Π∣k.

From

E

⎡⎢⎢⎢⎢⎣

⎛
⎝
n

∑
j=1

∆2
j

⎞
⎠

4⎤⎥⎥⎥⎥⎦
= d4

dξ4

⎡⎢⎢⎢⎢⎣
E exp

⎛
⎝
i ξ

n

∑
j=1

∆2
j

⎞
⎠

⎤⎥⎥⎥⎥⎦
∣
ξ=0

we conclude, by applying Leibniz’ product rule,

E

⎡⎢⎢⎢⎢⎣

⎛
⎝
n

∑
j=1

∆2
j

⎞
⎠

4⎤⎥⎥⎥⎥⎦
= ∑
α∈Nn0
∣α∣=4

⎛
⎝
Cα

n

∏
j=1

dαj

dξαj
gj(ξ)

⎞
⎠
∣
ξ=0

⩽ C ∑
α∈Nn0
∣α∣=4

(Cα
n

∏
j=1

(tj − tj−1)αj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽∣Π∣∣α∣=∣Π∣4

) ⩽ C ∣Π∣4 n4.

By the definition of the mesh size we have n ⩽ T /∣Π∣; thus,

E

⎡⎢⎢⎢⎢⎣

⎛
⎝
n

∑
j=1

∆2
j

⎞
⎠

4⎤⎥⎥⎥⎥⎦
⩽ CT 4.

Note that the constant C does not depend on the partition Π. The rest of the proof

follows as in the preceding solution.

∎∎

Problem 18.4. Solution: Multiply out the outer square: (∑l sl)2 = ∑l∑m slsm. In the last

equality only the pure squares survive when we multiply out the outer square. This is due

to the fact that (B2
t − t)t⩾0 is a martingale: Indeed, if l <m, then tl−1 < tl ⩽ tm−1 < tm. For

brevity we write

gl−1 ∶= g(Btl−1
), ∆lB ∶= Btl −Btl−1

, ∆lt ∶= tl − tl−1.

By the tower property,

E (gl−1{(∆lB)2 −∆lt}gm−1{(∆mB)2 −∆mt})
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= E (E [gl−1{(∆lB)2 −∆lt}gm−1{(∆mB)2 −∆mt} ∣ Ftm−1])

= E ( gl−1{(∆lB)2 −∆lt}gm−1

Ftm−1 measurable

⋅E [{(∆mB)2 −∆mt} ∣ Ftm−1]
=0 martingale, cf. 5.2.c)

) = 0,

i.e. the mixed terms break away.

∎∎

Problem 18.5. Solution:

a) Assume first that f ∈ C1
b . Let Π = {0 = t0 < t1 < . . . < tn = t} be any partition. We

have

Btf(Bt) =
n

∑
l=1

(Btlf(Btl) −Btl−1
f(Btl−1

)).

Using

Btf(Bt) −Bsf(Bs)

= Bs(f(Bt) − f(Bs)) + f(Bs)(Bt −Bs) + (f(Bt) − f(Bs))(Bt −Bs)

= Bs(f(Bt) − f(Bs)) + f(Bs)(Bt −Bs) + f ′(ξ)(Bt −Bs)2

with some intermediate value ξ between Bs and Bt, the identity follows.

Letting ∣Π∣ → 0 in this identity, we see that the left-hand side converges (it is con-

stant!) and the second and third term on the right converge, in probability, to

∫
t

0
f(Bs)dBs and ∫

t

0
f ′(Bs)ds,

respectively, cf. Lemma 18.4. Therefore, the first term has to converge, i.e.

∫
t

0
Bs df(Bs)

makes sense (and this is all we need!).

If f ′ is not bounded, we can use a stopping and cutting technique as in the proof of

Theorem 18.1 (step 4o ).

(b) This follows from (a) after having taken the limit.

(c) Applying (b) to f(x) = xn−1 gives

dBn
t = d(Bn−1

t Bt) = Bt dBn−1
t +Bn−1

t dBt + (n − 1)Bn−2
t dt

and iterating this yields

dBn
t = nBn−1

t dBt +
1

2
n(n − 1)Bn−2

t dt = npn−1(Bt)dBt +
1

2
p′′n(Bt)dt

where we use pn(x) = xn for the monomial of order n. Since the Itô integral is linear,

we get the claim for all polynomials of any order.
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(d) This follows directly from Itô’s isometry:

E [∣∫
T

0
(g(s) − gn(s))dBs∣

2

] = ∫
T

0
E [∣g(s) − gn(s)∣2] ds.

(e) We can assume that f has compact support, supp f ⊂ [−K,K], say. Otherwise, we

use the stopping and cutting technique from the proof (step 4o ) of Theorem 18.1,

to remove this assumption.

The classical version of Weierstraß’ approximation theorem tells us that f can be

uniformly approximated on [−K,K] by a sequence of polynomials (pfn)n, see e.g. [18,

Theorem 28.6]. We apply this theorem to f ′′ and observe that f ′ and f are still

uniformly approximated by the primitives P fn ∶= ∫ pfn and Qfn ∶= ∫ P fn = ∬ pfn.

The rest follows from the previous step (d) which allows us to interchange (stochastic)

integration and limits. (The Riemann part in Itô’s formula is clear, since we have

uniform convergence!).

∎∎

Problem 18.6. Solution:

a) Set F (x, y) = xy and G(t) = (f(t), g(t)).

Then f(t)g(t) = F ○G(t). If we differentiate this using the chain rule we get

d

dt
(F ○G) = ∂xF ○G(t) ⋅ f ′(t) + ∂yF ○G(t) ⋅ g′(t) = g(t) ⋅ f ′(t) + f(t) ⋅ g′(t)

(surprised?) and if we integrate this up we see

F ○G(t) − F ○G(0) = ∫
t

0
f(s)g′(s)ds + ∫

t

0
g(s)f ′(s)ds

= ∫
t

0
f(s)dg(s) + ∫

t

0
g(s)df(s).

Note: For the first equality we have to assume that f ′, g′ exist Lebesgue a.e. and

that their primitives are f and g, respectively. This is tantamount to saying that f, g

are absolutely continuous with respect to Lebesgue measure.

b) f(x, y) = xy. Then ∂xf(x, y) = y, ∂yf(x, y) = x and ∂x∂yf(x, y) = ∂y∂xf(x, y) = 1

and ∂2
xf(x, y) = ∂2

yf(x, y) = 0. Thus, the two-dimensional Itô formula yields

btβt = ∫
t

0
bs dβs + ∫

t

0
βs dbs+

+ 1

2
∫

t

0
∂2
xf(bs, βs)ds +

1

2
∫

t

0
∂2
yf(bs, βs)ds + ∫

t

0
∂x∂yf(bs, βs)d⟨b, β⟩s

= ∫
t

0
bs dβs + ∫

t

0
βs dbs + ⟨b, β⟩t.

If b á β we have ⟨b, β⟩ ≡ 0 (note our Itô formula has no mixed second derivatives!)

and we get the formula as in the statement. Otherwise we have to take care of
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⟨b, β⟩. This is not so easy to calculate since we need more information on the joint

distribution. In general, we have

⟨b, β⟩t = lim
∣Π∣→0

∑
tj ,tj−1

(b(tj) − b(tj−1))(β(tj) − β(tj−1)).

Where Π stands for a partition of the interval [0, t].

∎∎

Problem 18.7. Solution: The following proof works without changes if f ∈ C2,2. Formally

it works in C1,2, too, but for this we need some justification. Here it is:

• üheither you go through the proof of the Itô formula and you see that, whenever we

deal with the t-coordinate, we only need derivatives up to order one.

• or your use that C2,2 is dense in C1,2, you work first in C2,2 and then approximate.

This will work since the final result holds for C1,2

A bit more details are given in the sketch of the proof of Theorem 18.11.

The main point of this exercise is that you learn that the extended process (t,Bt) is

sometimes a good choice to play with.

Consider the two-dimensional Itô process Xt = (t,Bt) with parameters

σ ≡
⎛
⎝

0

1

⎞
⎠

and b ≡
⎛
⎝

1

0

⎞
⎠
.

Applying the Itô formula (18.14) we get

f(t,Bt) − f(0,0) = f(Xt) − f(X0)

= ∫
t

0
(∂1f(Xs)σ11 + ∂2f(Xs)σ21)dBs

+ ∫
t

0
(∂1f(Xs)b1 + ∂2f(Xs)b2 +

1

2
∂2∂2f(Xs)σ2

21) ds

= ∫
t

0
∂2f(Xs)dBs + ∫

t

0
(∂1f(Xs)b1 +

1

2
∂2∂2f(Xs)) ds

= ∫
t

0

∂f

∂x
(s,Bs)dBs + ∫

t

0
(∂f
∂t

(s,Bs) +
1

2

∂2f

∂x2
(s,Bs)) ds.

In the same way we obtain the d-dimensional counterpart:

Let (B1
t , . . . ,B

d
t )t⩾0 be a BMd and f ∶ [0,∞)×Rd → R be a function of class C1,2. Consider

the (d + 1)-dimensional Itô process Xt = (t,B1
t , . . . ,B

d
t ) with parameters

σ ∈ R(d+1)×d, σik =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if i = k + 1;

0, else;
and b =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

0

⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.
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The multidimensional Itô formula (18.14) yields

f(t,B1
t , . . . ,B

d
t ) − f(0,0, . . . ,0)

= f(Xt) − f(X0)

=
d

∑
k=1
∫

t

0

⎡⎢⎢⎢⎢⎣

d+1

∑
j=1

∂jf(Xs)σjk
⎤⎥⎥⎥⎥⎦
dBk

s +
d+1

∑
j=1
∫

t

0
∂jf(Xs)bj ds +

1

2

d+1

∑
i,j=1

∫
t

0
∂i∂jf(Xs)

d

∑
k=1

σikσjk ds

=
d

∑
k=1
∫

t

0
∂k+1f(Xs)dBk

s + ∫
t

0
∂1f(Xs)ds +

1

2

d+1

∑
j=2
∫

t

0
∂j∂jf(Xs)ds

=
d

∑
k=1
∫

t

0

∂f

∂xk
(s,B1

s , . . . ,B
d
s )dBk

s + ∫
t

0
(∂f
∂t

(s,B1
s , . . . ,B

d
s ) +

1

2

d

∑
k=1

∂2f

∂x2
k

(s,B1
s , . . . ,B

d
s )) ds.

∎∎

Problem 18.8. Solution: Let Bt = (B1
t , . . . ,B

d
t ) be a BMd and f ∈ C1,2((0,∞) ×Rd,R) as in

Theorem 5.6. Then the multidimensional time-dependent Itô’s formula shown in Problem

18.7 yields

Mf
t = f(t,Bt) − f(0,B0) − ∫

t

0
Lf(s,Bs)ds

= f(t,Bt) − f(0,B0) − ∫
t

0
( ∂
∂t
f(s,Bs) +

1

2
∆xf(s,Bs)) ds

=
d

∑
k=1
∫

t

0

∂f

∂xk
(s,B1

s , . . . ,B
d
s )dBk

s .

By Theorem 15.15 it follows that Mf
t is a martingale (note that the assumption (5.5)

guarantees that the integrand is of class L2
T !)

∎∎

Problem 18.9. Solution: First we show that Xt = et/2 cosBt is a martingale. We use the

time-dependent Itô’s formula from Problem 18.7. Therefore, we set f(t, x) = et/2 cosx.

Then

∂f

∂t
(t, x) = 1

2
et/2 cosx,

∂f

∂x
(t, x) = −et/2 sinx,

∂2f

∂x2
(t, x) = −et/2 cosx.

Hence we obtain

Xt = et/2 cosBt = f(t,Bt) − f(0,0) + 1

= ∫
t

0

∂f

∂x
(s,Bs)dBs + ∫

t

0
(∂f
∂t

(s,Bs) +
1

2

∂2f

∂x2
(s,Bs)) ds + 1

= −∫
t

0
es/2 sinBs dBs + ∫

t

0
(1

2
es/2 cosBs −

1

2
es/2 cosBs) ds + 1

= −∫
t

0
es/2 sinBs dBs + 1,

and the claim follows from Theorem 15.15.
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Analogously, we show that Yt = (Bt + t)e−Bt−t/2 is a martingale. We set f(t, x) = (x +
t)e−x−t/2. Then

∂f

∂t
(t, x) = e−x−t/2 − 1

2
(x + t)e−x−t/2,

∂f

∂x
(t, x) = e−x−t/2 − (x + t)e−x−t/2,

∂f

∂x2
(t, x) = −2e−x−t/2 + (x + t)e−x−t/2.

By the time-dependent Itô’s formula we have

Yt = (Bt + t)e−Bt−t/2

= f(t,Bt) − f(0,0)

= ∫
t

0
(e−Bs−s/2 − (Bs + s)e−Bs−s/2) dBs +

+ ∫
t

0
(e−Bs−s/2 − 1

2
(Bs + s)e−Bs−s/2 +

1

2
(−2e−Bs−s/2 + (Bs + s)e−Bs−s/2)) ds

= ∫
t

0
(e−Bs−s/2 − (Bs + s)e−Bs−s/2)dBs.

Again, from Theorem 15.15 we deduce that Yt is a martingale.

∎∎

Problem 18.10. Solution:

a) The stochastic integrals exist if bs/rs and βs/rs are in L2
T . As ∣bs/rs∣ ⩽ 1 we get

∥b/r∥2
L2(λT⊗P) = ∫

T

0
[E (∣bs/rs∣2)]ds ⩽ ∫

T

0
1ds = T <∞.

Since bs/rs is adapted and has continuous sample paths, it is progressive and so an

element of L2
T . Analogously, ∣βs/rs∣ ⩽ 1 implies βs/rs ∈ L2

T .

b) We use Lévy’s characterization of a BM1, Theorem 9.13 or 19.5. From Theorem

15.15 it follows that

• t ↦ ∫ t0 bs/rs dbs, t ↦ ∫ t0 βs/rs dβs are continuous; thus t ↦ Wt is a continuous

process.

• ∫ t0 bs/rs dbs, ∫
t

0 βs/rs dβs are square integrable martingales, and so is Wt.

• the quadratic variation is given by

⟨W ⟩t = ⟨b/r ● b⟩t + ⟨β/r ● β⟩t

= ∫
t

0
b2s/r2

s ds + ∫
t

0
β2
s /r2

s ds

= ∫
t

0

b2s + β2
s

r2
s

ds

= ∫
t

0
ds = t,

i.e. (W 2
t − t)t⩾0 is a martingale.
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Therefore, Wt is a BM1.

Note, that the above processes can be used to calculate Lévy’s stochastic area formula,

see Protter [13, Chapter II, Theorem 43]

∎∎

Problem 18.11. Solution: The function f = u + iv is analytic, and as such it satisfies the

Cauchy–Riemann equations, see e.g. Rudin [16, Theorem 11.2],

ux = vy and uy = −vx.

First, we show that u(bt, βt) is a BM1. Therefore we apply Itô’s formula

u(bt, βt) − u(b0, β0)

= ∫
t

0
ux(bs, βs)dbs + ∫

t

0
uy(bs, βs)dβs +

1

2
∫

t

0
(uxx(bs, βs) + uyy(bs, βs))ds

= ∫
t

0
ux(bs, βs)dbs + ∫

t

0
uy(bs, βs)dβs,

where the last term cancels as uxx = vyx and uyy = −vxy. Theorem 15.15 implies

• t↦ u(bt, βt) = ∫ t0 ux(bs, βs)dbs + ∫
t

0 uy(bs, βs)dβs is a continuous process.

• ∫ t0 ux(bs, βs)dbs, ∫
t

0 uy(bs, βs)dβs are square integrable martingales, and so u(bt, βt)
is a square integrable martingale.

• the quadratic variation is given by

⟨u(b, β)⟩t = ⟨ux(b, β) ● b⟩t + ⟨uy(b, β) ● β⟩t

= ∫
t

0
u2
x(bs, βs)ds + ∫

t

0
u2
y(bs, βs)ds = ∫

t

0
1ds = t,

i.e. (u2(bt, βt) − t)t⩾0 is a martingale.

Due to Lévy’s characterization of a BM1, Theorem 9.13 or 19.5, we know that u(bt, βt)
is a BM1. Analogously, we see that v(bt, βt) is also a BM1. Just note that, due to the

Cauchy–Riemann equations we get from u2
x + u2

y = 1 also v2
y + v2

x = 1.

The quadratic covariation is (we drop the arguments, for brevity):

⟨u, v⟩t =
1

4
(⟨u + v⟩t − ⟨u − v⟩t)

= 1

4
(∫

t

0
(ux + vx)2 ds + ∫

t

0
(uy + vy)2 ds − ∫

t

0
(ux − vx)2 ds − ∫

t

0
(uy − vy)2 ds)

= ∫
t

0
(uxvx + uyvy)ds

= ∫
t

0
(−vyuy + uyvy)ds = 0.

As an abbreviation we write ut = u(bt, βt) and vt = v(bt, βt). Applying Itô’s formula to

the function g(ut, vt) = ei(ξut+ηvt) and s < t yields

g(ut, vt) − g(us, vs) = iξ∫
t

s
g(ur, vr)dur + iη∫

t

s
g(ur, vr)dvr −

1

2
(ξ2 + η2)∫

t

s
g(ur, vr)dr,
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as the quadratic covariation ⟨u, v⟩t = 0. Since ∣g∣ ⩽ 1 and since g(ut, vt) is progressive,

the integrand is in L2
T and the above stochastic integrals exist. From Theorem 15.15 we

deduce that

E(∫
t

s
g(ur, vr)dur 1F) = 0 and E(∫

t

s
g(ur, vr)dvr 1F) = 0.

for all F ∈ σ(ur, vr ∶ r ⩽ s) =∶ Fs. If we multiply the above equality by e−i(ξus+ηvs) 1F and

take expectations, we get

E (g(ut − us, vt − vs)1F )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Φ(t)

= P(F ) − 1

2
(ξ2 + η2)∫

t

0
E (g(ur − us, vr − vs)1F )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Φ(r)

dr.

Since this integral equation has a unique solution (use Gronwall’s lemma, Theorem A.42),

we get

E(ei(ξ(ut−us)+η(vt−vs))1F ) = P(F ) e−
1
2
(t−s)(ξ2+η2)

= P(F ) e−
1
2
(t−s)ξ2

e−
1
2
(t−s)η2

= P(F ) E(eiξ(ut−us))E(eiη(vt−vs)).

From this we deduce with Lemma 5.4 that (u(bt, βt), v(bt, βt)) is a BM2.

Note that the above calculation is essentially the proof of Lévy’s characterization theorem.

Only a few modifications are necessary for the proof of the multidimensional version, see

e.g. Karatzas, Shreve [10, Theorem 3.3.16].

∎∎

Problem 18.12. Solution: Let Xt = ∫ t0 σ(s)dBs + ∫
t

0 b(s)ds be an d-dimensional Itô process.

Assuming that f = u + iv and thus u = Re f = 1
2 f +

1
2 f̄ and v = Im f = 1

2i f +
1
2i f̄ are

C2-functions, we may apply the real d-dimensional Itô formula (18.14) to the functions

u, v ∶ Rd → R,

f(Xt) − f(X0)

= u(Xt) − u(X0) + i(v(Xt) − v(X0))

= ∫
t

0
∇u(Xs)⊺σ(s)dBs + ∫

t

0
∇u(Xs)⊺b(s)ds +

1

2
∫

t

0
trace(σ(s)⊺D2u(Xs)σ(s))ds

+ i(∫
t

0
∇v(Xs)⊺σ(s)dBs + ∫

t

0
∇v(Xs)⊺b(s)ds +

1

2
∫

t

0
trace(σ(s)⊺D2v(Xs)σ(s))ds)

= ∫
t

0
∇f(Xs)⊺σ(s)dBs + ∫

t

0
∇f(Xs)⊺b(s)ds +

1

2
∫

t

0
trace(σ(s)⊺D2f(Xs)σ(s))ds,

by the linearity of the differential operators and the (stochastic) integral.

∎∎

Problem 18.13. Solution:
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a) By definition we have suppχ ⊂ [−1,1] hence it is obvious that for χn(x) ∶= nχ(nx)
we have suppχn ⊂ [−1/n,1/n]. Substituting y = nx we get

∫
1/n

−1/n
χn(x)dx = ∫

1/n

−1/n
nχ(nx)dx = ∫

1

−1
χ(y)dy = 1

b) For derivatives of convolutions we know that ∂(f ⋆χn) = f ⋆ (∂χn). Hence we obtain

∣∂kfn(x)∣ = ∣f ⋆ (∂kχn)(x)∣

= ∣∫
B(x,1/n)

f(y)∂kχn(x − y)dy∣

⩽ sup
y∈B(x,1/n)

∣f(y)∣∫
R
n ∣∂kχ(n(x − y))∣dy

= sup
y∈B(x,1/n)

∣f(y)∣∫
R
nk ∣∂kχ(z)∣dz

= sup
y∈B(x,1/n)

∣f(y)∣nk ∥∂kχ∥L1 ,

where we substituted z = n(y − x) in the penultimate step.

c) For x ∈ R we have

∣f ⋆ χn(x) − f(x)∣ = ∣∫
R
(f(y) − f(x))χn(x − y)dy∣

⩽ ∣ sup
y∈B(x,1/n)

∣f(y) − f(x)∣ ⋅ ∥χ∥L1

= sup
y∈B(x,1/n)

∣f(y) − f(x)∣.

This shows that limn→∞ ∣f ⋆ χn(x) − f(x)∣ = 0, i.e. limn→∞ f ⋆ χn(x) = f(x), at all x

where f is continuous.

d) Using the above result and taking the supremum over all x ∈ R we get

sup
x∈R

∣f ⋆ χn(x) − f(x)∣ ⩽ sup
x∈R

sup
y∈B(x,1/n)

∣f(y) − f(x)∣.

Thus limn→∞ ∥f ⋆ χn − f∥∞ = 0 whenever the function f is uniformly continuous.

∎∎

Problem 18.14. Solution: We follow the hint and use Lévy’s characterization of a BM1,

Theorem 9.13 or 19.5.

• t↦ βt is a continuous process.

• the integrand sgnBs is bounded, hence it is in L2
T for any T > 0.

• by Theorem 15.15 βt is a square integrable martingale

• by Theorem 15.15 the quadratic variation is given by

⟨β⟩t = ⟨∫
●

0
sgn(Bs)dBs⟩

t
= ∫

t

0
(sgn(Bs))2 ds = ∫

t

0
ds = t,

i.e. (β2
t − t)t⩾0 is also a martingale.
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Thus, β is a BM1.

∎∎

Problem 18.15. Solution: 1o — Consider the Itô processes

dXj(t) = σj(t)dBt + bj(t)dt, Xj(0) = 0, (j = 1,2)

where σj ∈ L2
T and bj is bounded. Then we get from the two-dimensional Itô’s formula

X1(t)X2(t) = ∫
t

0
σ1(s)σ2(s)ds + ∫

t

0
X1(s)dX2(s) + ∫

t

0
X2(s)dX1(s).

Taking expectations, the martingale parts containing dB(s) vanish, so

E (X1(t)X2(t)) = E∫
t

0
σ1(s)σ2(s)ds +E∫

t

0
X1(s) b2(s)ds +E∫

t

0
X2(s) b1(s)ds.

2o — Now let X1 = f ● B and X2 = Φ(g ● B) with Φ ∈ C2
b(R). Then, by Itô’s formula

(18.1),

dX1(t) = f(t)dBt,

dX2(t) = dΦ(g ●Bt) = Φ′(g ●Bt) g(t)dBt +
1

2
Φ′′(g ●Bt) g2(t)dt.

3o — Combining steps 1o and 2o gives

E (∫ t0 f(r)dBr ⋅Φ (∫ t0 g(r)dBr) ) = E(∫
t

0
f(s)g(s)Φ′ (∫ s0 g(r)dBr) ds

+ 1

2
∫

t

0
∫ s0 f(r)dBr Φ′′ (∫ s0 g(r)dBr) g

2(s)ds)

∎∎

Problem 18.16. Solution: Let σ
Π
, b

Π
∈ ET such that σ

Π

L2(λT⊗P)ÐÐÐÐÐÐ→
∣Π∣→0

σ, b
Π

L2(λT⊗P)ÐÐÐÐÐÐ→
∣Π∣→0

b. By the

Chebyshev inequality, Doob’s maximal inequality, and Itô’s isometry, we have

P( sup
t⩽T

∣∫
t

0
g(XΠ

s )σ
Π
(s)dBs − ∫

t

0
g(Xs)σ(s)dBs∣ > ε)

⩽ 1

ε2
E(sup

t⩽T
∣∫

t

0
(g(XΠ

s )σ
Π
(s) − g(Xs)σ(s))dBs∣

2

)

⩽ 4

ε2
E(∣∫

T

0
(g(XΠ

s )σ
Π
(s) − g(Xs)σ(s))dBs∣

2

)

= 4

ε2
E(∫

T

0
∣g(XΠ

s )σ
Π
(s) − g(Xs)σ(s)∣2 ds) .

From

g(XΠ
s )σ

Π
(s) − g(Xs)σ(s) = g(XΠ

s )(σ
Π
(s) − σ(s)) − σ(s)(g(Xs) − g(XΠ

s ))

and the inequality (a + b)2 ⩽ 2a2 + 2b2 we conclude

P(sup
t⩽T

∣∫
t

0
g(XΠ

s )σ
Π
(s)dBs − ∫

t

0
g(Xs)σ(s)dBs∣ > ε)
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⩽ 8

ε2
E(∫

T

0
g(XΠ

s )2 ∣σ
Π
(s) − σ(s)∣2 ds) + 8

ε2
E(∫

T

0
σ(s)2 ∣g(XΠ

s ) − g(Xs)∣2 ds)

=∶ I1 + I2.

Since g is bounded and σ
Π

L2(λT⊗P)ÐÐÐÐÐÐ→
∣Π∣→0

σ, it follows that I1 → 0 as ∣Π∣ → 0. For the second

term we note that, by Lemma 18.5,

sup
s⩽T

∣g(XΠ
s ) − g(Xs)∣

PÐÐÐ→
∣Π∣→0

0.

Hence, by Vitali’s convergence theorem, I2 → 0 as ∣Π∣→ 0.

A similar, but simpler, calculation shows

P(sup
t⩽T

∣∫
t

0
g(XΠ

s )b
Π
(s)ds − ∫

t

0
g(Xs)b(s)ds∣ > ε)ÐÐÐ→

∣Π∣→0
0.

Consequently,

P(sup
t⩽T

∣∫
t

0
g(XΠ

s )dXΠ
s − ∫

t

0
g(Xs)dXs∣ > ε)ÐÐÐ→

∣Π∣→0
0.

∎∎

Problem 18.17. Solution: Use Corollary 17.3 and localize it, choosing a common localization

sequence for all objects appearing in the statement.

∎∎
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19 Applications of Itô’s formula

Problem 19.1. Solution: Lemma. Let (Bt,Ft)t⩾0 be a BMd, f = (f1, . . . , fd), fj ∈ L2
P(λT⊗P)

for all T > 0, and assume that ∣fj(s,ω)∣ ⩽ C for some C > 0 and all s ⩾ 0,1 ⩽ j ⩽ d, and

ω ∈ Ω. Then

exp
⎛
⎝
d

∑
j=1
∫

t

0
fj(s)dBj

s −
1

2

d

∑
j=1
∫

t

0
f2
j (s)ds

⎞
⎠
, t ⩾ 0, (19.1)

is a martingale for the filtration (Ft)t⩾0.

Proof. Set Xt = ∑dj=1 ∫
t

0 fj(s)dB
j
s − 1

2 ∑
d
j=1 ∫

t
0 f

2
j (s)ds. Itô’s formula, Theorem 18.7, yields

eXt − 1 =
d

∑
j=1
∫

t

0
eXs fj(s)dBj

s −
1

2

d

∑
j=1
∫

t

0
eXs f2

j (s)ds +
1

2

d

∑
j=1
∫

t

0
eXs f2

j (s)ds

=
d

∑
j=1
∫

t

0
exp(

d

∑
k=1
∫

s

0
fk(r)dBk

r −
1

2

d

∑
k=1
∫

s

0
f2
k (r)dr) fj(s)dBj

s

=
d

∑
j=1
∫

t

0

d

∏
k=1

exp(∫
s

0
fk(r)dBk

r −
1

2
∫

s

0
f2
k (r)dr) fj(s)dBj

s .

If we can show that the integrand is in L2
P(λT ⊗P) for every T > 0, then Theorem 15.15

applies and shows that the stochastic integral, hence eXt , is a martingale.

We will see that we can reduce the d-dimensional setting to a one-dimensional setting.

The essential step in the proof is the analogue of the estimate on page 250, line 6 from

above. In the d-dimensional setting we have for each k = 1, . . . , d

E [∣e∑
d
j=1 ∫

T
0 fj(r)dBjr− 1

2 ∑
d
j=1 ∫

T
0 f2

j (r)dr fk(T )∣
2
] ⩽ C2 E [e2∑dj=1 ∫

T
0 fj(r)dBjr]

= C2 E

⎡⎢⎢⎢⎢⎣

d

∏
j=1

e2 ∫ T0 fj(r)dBjr
⎤⎥⎥⎥⎥⎦

⩽ C2
d

∏
j=1

(E [e2d ∫ T0 fj(r)dBjr])
1/d

.

In the last step we used the generalized Hölder inequality

∫
n

∏
k=1

φk dµ ⩽
n

∏
k=1

(∫ ∣φk∣pk dµ)
1/pk

∀(p1, . . . , pn) ∈ [1,∞)n ∶ ∑nk=1
1
pk

= 1

with n = d and p1 = . . . = pd = d. Now the one-dimensional argument with dfj playing the

role of f shows (cf. page 250, line 9 from above)

E [∣e∑
d
j=1 ∫

T
0 fj(r)dBjr− 1

2 ∑
d
j=1 ∫

T
0 f2

j (r)dr fk(T )∣
2
] ⩽ C2

d

∏
j=1

(E [e2d ∫ T0 fj(r)dBjr])
1/d

⩽ C2e2dC2T <∞.
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∎∎

Problem 19.2. Solution: As for a Brownian motion one can see that the independent incre-

ments property of a Poisson process is equivalent to saying that Nt − Ns á FN
s for all

s ⩽ t, cf. Lemma 2.14 or Section 5.1. Thus, we have for s ⩽ t

E(Nt − t ∣ FN
s ) = E(Nt −Ns − (t − s) ∣ FN

s ) +E(Ns − s ∣ FN
s )

Nt−NsáFN
s=

pull out
E(Nt −Ns − (t − s)) +Ns − s

Nt−Ns∼Nt−s= E(Nt −Ns) − (t − s) +Ns − s

= E(Nt−s) − (t − s) +Ns − s

= Ns − s.

Observe that

(Nt − t)2 − t = (Nt −Ns − (t − s) + (Ns − s))
2 − t

= (Nt −Ns − (t − s))2 + (Ns − s)2 + 2(Ns − s)(Nt −Ns − t + s) − t.

Thus,

((Nt − t)2 − t) − ((Ns − s)2 − s)

= (Nt −Ns − (t − s))2 + 2(Ns − s)(Nt −Ns − t + s) − (t − s).

Now take E(⋯ ∣ FN
s ) in the last equality and observe that Nt −Ns áFs. Then

E [((Nt − t)2 − t) − ((Ns − s)2 − s) ∣ FN
s ]

Nt−NsáFN
s= E [(Nt −Ns − (t − s))2] + 2E [(Ns − s)(Nt −Ns − t + s) ∣ FN

s ] − (t − s)
Nt−Ns∼Nt−s=

pull out
E [(Nt−s − (t − s))2] + 2(Ns − s)E [(Nt −Ns − t + s) ∣ FN

s ] − (t − s)

Nt−NsáFN
s= VNt−s + 2(Ns − s)E(Nt −Ns − t + s) − (t − s)

= t − s + 2(Ns − s) ⋅ 0 − (t − s) = 0.

Since t↦ Nt is not continuous, this does not contradict Theorem 19.5.

∎∎

Problem 19.3. Solution: We want to use Lévy’s characterization, Theorem 19.5. Clearly,

t ↦ Wt is continuous and W0 = 0. Set F b
t = σ(br ∶ r ⩽ t), F β

t = σ(βr ∶ r ⩽ t) and

FW
t = σ(br, βr ∶ r ⩽ t) = σ(F b

t ,F
β
t ), and

λ = σ1/
√
σ2

1 + σ2
2,

µ = σ2/
√
σ2

1 + σ2
2.

We have

E(Wt ∣ FW
s ) = E(λbt ∣ FW

s ) +E(µβt ∣ FW
s )
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Fb
t áF

β
t= λE(bt ∣ F b

s ) + µE(βt ∣ F β
s ) = λbs + µβs =Ws.

proving that (Wt,F
W
t ) is a martingale. Similarly one shows that (W 2

t − t,FW
t )t⩾0 is a

martingale. Now Theorem 19.5 applies.

∎∎

Problem 19.4. Solution: Solution 1: Note that

Q(W (tj) ∈ Aj ,∀j = 1, . . . , n) = ∫
n

∏
j=1

1Aj(W (tj))dQ

= ∫
n

∏
j=1

1Aj(B(tj) − ξtj) eξB(T )− 1
2
ξ2T dP .

By the tower property and the fact that eξB(t)− 1
2
ξ2t is a martingale we get

∫
n

∏
j=1

1Aj(B(tj) − ξtj) eξB(T )− 1
2
ξ2T dP

= E
⎡⎢⎢⎢⎢⎣
E

⎛
⎝
n

∏
j=1

1Aj(B(tj) − ξtj) eξB(T )− 1
2
ξ2T ∣ Ftn

⎞
⎠

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣

n

∏
j=1

1Aj(B(tj) − ξtj)E(eξB(T )− 1
2
ξ2T ∣ Ftn)

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣

n

∏
j=1

1Aj(B(tj) − ξtj) eξB(tn)− 1
2
ξ2tn

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣
E

⎛
⎝
n

∏
j=1

1Aj(B(tj) − ξtj) eξB(tn)− 1
2
ξ2tn ∣ Ftn−1

⎞
⎠

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣

n−1

∏
j=1

1Aj(B(tj) − ξtj) eξB(tn−1)− 1
2
ξ2tn−1×

×E(1An(B(tn) − ξtn) eξ(B(tn)−B(tn−1))− 1
2
ξ2(tn−tn−1) ∣ Ftn−1)

⎤⎥⎥⎥⎥⎦
Now, since B(tn) −B(tn−1) áFtn−1 we get

E(1An(B(tn) − ξtn) eξ(B(tn)−B(tn−1))− 1
2
ξ2(tn−tn−1) ∣ Ftn−1)

= E(1An((B(tn) −B(tn−1)) − ξ(tn − tn−1) +B(tn−1) − ξtn−1)×

× eξ(B(tn)−B(tn−1))− 1
2
ξ2(tn−tn−1) ∣ Ftn−1)

= E(1An((B(tn) −B(tn−1)) − ξ(tn − tn−1) + y)×

× eξ(B(tn)−B(tn−1))− 1
2
ξ2(tn−tn−1))∣

y=B(tn−1)−ξtn−1

A direct calculation now gives

E(1An((B(tn) −B(tn−1)) − ξ(tn − tn−1) + y)eξ(B(tn)−B(tn−1))− 1
2
ξ2(tn−tn−1))
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= E(1An(B(tn − tn−1) − ξ(tn − tn−1) + y)eξB(tn−tn−1)− 1
2
ξ2(tn−tn−1))

= 1√
2π(tn − tn−1)

∫ 1An(x − ξ(tn − tn−1) + y)eξx−
1
2
ξ2(tn−tn−1) e

− 1
2(tn−tn−1)x2

dx

= 1√
2π(tn − tn−1)

∫ 1An(x − ξ(tn − tn−1) + y)e−
1

2(tn−tn−1) (x−ξ(tn−tn−1))2

dx

= 1√
2π(tn − tn−1)

∫ 1An(z + y)e
− 1

2(tn−tn−1) z2

dz

= E1An(B(tn) −B(tn−1) + y)

In the next iteration we get

E1An((B(tn) −B(tn−1)) + (B(tn−1) −B(tn−2) + y))1An−1((B(tn−1) −B(tn−2) + y))

= E1An((B(tn) −B(tn−2) + y))1An−1((B(tn−1) −B(tn−2) + y))

etc. and we finally arrive at

Q(W (tj) ∈ Aj ,∀j = 1, . . . , n) = E
n

∏
j=1

1Aj(∑
j

k=1
(B(tk) −B(tk−1))).

Solution 2: As in the first part of Solution 1 we see that we can assume that T = tn. Since

we know the joint distribution of (B(t1), . . . ,B(tn)), cf. (2.10b), we get (using x0 = t0 = 0)

Q(W (t1) ∈ A1, . . . ,W (tn) ∈ An)

= ∫
n

∏
j=1

1Aj(B(tj) − ξtj) eξB(tn)− 1
2
ξ2tn dP

=[
n

∏
j=1

1Aj(xj − ξtj) eξxn−
1
2
ξ2tn e

− 1
2 ∑

n
j=1

(xj−xj−1)2
tj−tj−1

dx1 . . . dxn

(2π)n/2∏n
j=1

√
tj − tj−1

=[
⎛
⎝
n

∏
j=1

⎡⎢⎢⎢⎢⎣
1Aj(xj − ξtj) e

− 1
2

(xj−xj−1)2
tj−tj−1

⎤⎥⎥⎥⎥⎦

⎞
⎠
e∑

n
j=1 (ξ(xj−xj−1)− 1

2
ξ2(tj−tj−1)) dx1 . . . dxn

(2π)n/2∏n
j=1

√
tj − tj−1

=[
n

∏
j=1

⎡⎢⎢⎢⎢⎣
1Aj(xj − ξtj) e

− 1
2

(xj−xj−1)2
tj−tj−1

+ξ(xj−xj−1)− 1
2
ξ2(tj−tj−1)

⎤⎥⎥⎥⎥⎦

dx1 . . . dxn

(2π)n/2∏n
j=1

√
tj − tj−1

=[
n

∏
j=1

⎡⎢⎢⎢⎢⎣
1Aj(xj − ξtj) e

− 1
2(tj−tj−1)((xj−xj−1)+ξ(tj−tj−1))

2⎤⎥⎥⎥⎥⎦

dx1 . . . dxn

(2π)n/2∏n
j=1

√
tj − tj−1

=[
n

∏
j=1

[1Aj(zj) e
− 1

2(tj−tj−1) (zj−zj−1)2

] dz1 . . . dzn

(2π)n/2∏n
j=1

√
tj − tj−1

= P (B(t1) ∈ A1, . . . ,B(tn) ∈ An).

∎∎

Problem 19.5. Solution: We have

P(Bt + αt ⩽ x, sup
s⩽t

(Bs + αs) ⩽ y)
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= ∫ 1(−∞,x](Bt + αt)1(−∞,y]( sups⩽t(Bs + αs))dP

= ∫ 1(−∞,x](Bt + αt)1(−∞,y]( sups⩽t(Bs + αs))
1

βt
dQ

where Q = βt ⋅P with βt = exp ( − αBt − 1
2 α

2t)

= ∫ 1(−∞,x](Bt + αt)1(−∞,y]( sups⩽t(Bs + αs)) eαBt+
1
2
α2t dQ

= ∫ 1(−∞,x](Bt + αt)1(−∞,y]( sups⩽t(Bs + αs)) eα(Bt+αt) e−
1
2
α2t dQ

Girsanov= e−
1
2
α2t∫ 1(−∞,x](Wt)1(−∞,y]( sups⩽tWs) eαWt dQ

= e−
1
2
α2t∫

Rd
1(−∞,x](ξ) eαξQ(Wt ∈ dxi, sups⩽tWs ⩽ y).

where (Ws)s⩽t is a Brownian motion for the probability measure Q.

From Solution 2 of Problem 6.12 (or with Theorem 6.19) we have

Q( sups⩽tWt < y,Wt ∈ dxi) = lim
a→−∞

Q( infs⩽tWs > a, sups⩽tWt < y,Wt ∈ dxi)

(6.20)= dxi√
2πt

[e−
ξ2

2t − e−
(ξ−2y)2

2t ]

and we get the same result for Q( sups⩽tWt ⩽ y,Wt ∈ dxi). Thus,

P(Bt + αt ⩽ x, sup
s⩽t

(Bs + αs) ⩽ y)

= ∫
x

−∞
eαξe−

1
2
tα2 1√

2πt
(e−

ξ2

2t − e−
(ξ−2y)2

2t ) dxi

= 1√
2πt

∫
x

−∞
(e−

(ξ−αt)2
2t − e2αy e−

(ξ−2y−αt)2
2t ) dxi

= 1√
2πt

∫
x−αt√
t

−∞
e−

z2

2 dz − e2αy

√
2πt

∫
x−2y−αt√

t

−∞
e−

z2

2 dz

= Φ(x−αt√
t
) − e2αy Φ(x−2y−αt√

t
).

∎∎

Problem 19.6. Solution:

a) Since Xt has continuous sample paths we find that

τ̂ b = inf {t ⩾ 0 ∶ Xt ⩾ b}.

Moreover, we have

{τ̂ b ⩽ t} = { sups⩽tXs ⩾ b}.

Indeed,

ω ∈ { sups⩽tXs ⩾ b} Ô⇒ ∃s ⩽ t ∶ Xs(ω) ⩾ b (continuous paths!)

Ô⇒ τ̂ b(ω) ⩽ t

Ô⇒ ω ∈ {τ̂ b ⩽ t},
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and so {τ̂ b ⩽ t} ⊃ { sups⩽tXs ⩾ b}. Conversely,

ω ∈ {τ̂ b ⩽ t} Ô⇒ τ̂ b(ω) ⩽ t

Ô⇒ X
τ̂ b(ω)

(ω) ⩾ b, τ̂ b(ω) ⩽ t

Ô⇒ sup
s⩽t

Xs(ω) ⩾ b

Ô⇒ ω ∈ { sups⩽tXs ⩾ b},

and so {τ̂ b ⩽ t} ⊂ { sups⩽tXs ⩾ b}.

By the previous problem, Problem 19.5, P(sups⩽tXs = b) = 0. This means that

P (τ̂ b > t) = P ( sups⩽tXs < b)

= P ( sups⩽tXs ⩽ b)

= P (Xt ⩽ b, sups⩽tXs ⩽ b)
Prob.=

5
Φ( b−αt√

t
) − e2αbΦ(−b−αt√

t
)

= Φ( b√
t
− α

√
t) − e2αbΦ( − b√

t
− α

√
t).

Differentiating in t yields

− d
dt
P (τ̂ b > t) = e2αb( b

2t
√
t
− α

2
√
t
)Φ′( − b√

t
− α

√
t) + ( b

2t
√
t
+ α

2
√
t
)Φ′( b√

t
− α

√
t)

= 1√
2π

(e2αb( b
2t

√
t
− α

2
√
t
) e−

(b+αt)2
2t + ( b

2t
√
t
+ α

2
√
t
) e−

(b−αt)2
2t )

= 1√
2π

(( b
2t

√
t
− α

2
√
t
) e−

(b−αt)2
2t + ( b

2t
√
t
+ α

2
√
t
) e−

(b−αt)2
2t )

= 1√
2π

2b

2t
√
t
e−
(b−αt)2

2t

= b

t
√

2πt
e−
(b−αt)2

2t

b) We have seen in part a) that

P (τ̂ b > t) = Φ( b−αt√
t
) − e2αbΦ(−b−αt√

t
)

ÐÐ→
t→∞

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Φ(−∞) − e2αbΦ(−∞) = 0 if α > 0

Φ(0) − e0Φ(0) = 0 if α = 0

Φ(∞) − e2αbΦ(∞) = 1 − e2αb if α < 0

Therefore, we get

P (τ̂ b <∞) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if α ⩾ 0

e2αb if α < 0.

∎∎
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Problem 19.7. Solution: Basically, the claim follows from Lemma 19.11. Indeed, if we set

g(s) ∶=
n

∑
j=1

(ξj + . . . + ξn)1[tj−1,tj)(s),

then

∫
T

0
g(s)dBs =

n

∑
j=1

(ξj + . . . + ξn)(Btj −Btj−1)

=
n

∑
j=1

((ξj + . . . + ξn) − (ξj+1 + . . . + ξn))Btj

=
n

∑
j=1

ξjBtj .

Lemma 19.11 shows that ei ∫
T

0 g(s)dBs = ei ∑
n
j=1 ξjBtj is in H2

T ⊕ iH2
T .

If you want to be a bit more careful, you should treat the real and imaginary parts of

exp (i ∫ T0 g(s)dBs) = cos (∫ T0 g(s)dBs)+ i sin (∫ T0 g(s)dBs) separately. Let us do this for

the real part.

We apply the two-dimensional Itô-formula (18.14) to f(x, y) = cos(x)ey/2 and the process

(Xt, Yt) = (∫ t0 g(s)dBs, ∫
t

0 g
2(s)ds): Since

∂xf(x, y) = − sin(x)ey/2

∂2
xf(x, y) = − cos(x)ey/2

∂yf(x, y) =
1

2
cos(x)ey/2

we get

cos(XT )eYT /2 − 1

= −∫
T

0
sin(Xs)eYs/2 dXs +

1

2
∫

T

0
cos(Xs)eYs/2 dYs −

1

2
∫

T

0
cos(Xs)eYs/2g2(s)ds

= −∫
T

0
sin(Xs)eYs/2g(s)dBs.

Thus, by the definition of g, X and Y ,

cos
⎛
⎝
n

∑
j=1

ξjBtj
⎞
⎠
= cos(∫

T

0
g(s)dBs)

= e− ∫
T

0 g2(s)ds − ∫
T

0
sin(∫

s

0
g(r)dBr) e−

1
2 ∫

T
s g2(r)drg(s)dBs.

Since the integrand of the stochastic integral is continuous and bounded, it is clear that

it is in L2
P(λT ⊗P). Hence cos (∑nj=1 ξjBtj) ∈H2

T .

The imaginary part can be treated in a similar way.

∎∎
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Problem 19.8. Solution: Denote by H the closure of H in L. Then we have the unique

orthogonal decomposition L = H ⊕H� where H� = {y ∈ L ∶ y �H}. (Note that H� is

automatically a closed subspace.)

If H is dense, then H = L and we get H� = {0}, so that the property holds.

Conversely, the property says that H� = {0}, so H = L, i.e. H is dense in L.

∎∎

Problem 19.9. Solution: Set Σt1,...,tn ∶= σ(Bt1 , . . . ,Btn). There are several possibilities to

prove this result.

Possibility 1: Set tn = (t1, . . . , tn) and Σ(tn) = Σt1,...,tn . Then the family of σ-algebras

Σ(tn) is upwards filtering, i.e. whenever we have tn and sm there is some un+m such that

Σ(sm)∪Σ(tn) ⊂ Σ(un+m). Therefore we can use Lévy’s (upwards) martingale convergence

theorem and conclude that

E(Y ∣ FB
T ) = L1- limE(Y ∣ Σ(tn)) = 0.

Since FB
T and F̄B

T differ only by trivial sets (with probability zero or one), we get a. s.

Y = E(Y ∣ F̄B
T ) = E(Y ∣ FB

T ) = 0.

Possibility 2: Set ΣT ∶= ⋃0⩽t1<⋯<tn=T
n⩾1

Σt1,...,tn . Then σ(ΣT ) = FB
T and ΣT is stable under

intersections. Consider the measures

µ±(F ) ∶= ∫
F
Y ± dP ∀F ∈ ΣT .

By assumption, µ+(F ) = µ−(F ) on ΣT , and by the uniqueness theorem for measures we

get µ+ = µ− on FT . But then we get ∫F Y dP = 0 for all F ∈ FB
T .

If we add to ΣT all P null set, the above considerations remain valid (without changes!)

and we get ∫F Y dP = 0 for all F ∈ F̄B
T , hence Y = 0 as Y is F̄T measurable.

∎∎

Problem 19.10. Solution: Because of the properties of conditional expectations we have for

s ⩽ t
E (Mt ∣ Hs) = E (Mt ∣ σ(Fs,Gs)) MáG∞= E (Mt ∣ Fs) =Ms.

Thus, (Mt,Ht)t⩾0 is still a martingale; (Bt,Ht)t⩾0 is treated in a similar way.

∎∎

Problem 19.11. Solution: Recall that

τ(s) = inf{t ⩾ 0 ∶ a(t) > s}.

Since for any ε > 0

{t ∶ a(t) ⩾ s} ⊂ {t ∶ a(t) > s − ε} ⊂ {t ∶ a(t) ⩾ s − ε}
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we get

inf{t ∶ a(t) ⩾ s} ⩾ inf{t ∶ a(t) > s − ε} ⩾ inf{t ∶ a(t) ⩾ s − ε}

and

inf{t ∶ a(t) ⩾ s} ⩾ lim
ε↑0

inf{t ∶ a(t) > s − ε}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=limε↑0 τ(s−ε)=τ(s−)

⩾ lim
ε↑0

inf{t ∶ a(t) ⩾ s − ε}.

Thus, inf{t ∶ a(t) ⩾ s} ⩾ τ(s−). Assume that inf{t ∶ a(t) ⩾ s} > τ(s−). Then

a(τ(s−)) < s.

On the other hand, by Lemma 19.16 b)

s − ε ⩽ a(τ(s − ε)) ⩽ a(τ(s−)) < s ∀ε > 0.

This leads to a contradiction, and so inf{t ∶ a(t) ⩾ s} ⩽ τ(s−).

The proof for a(s−) is similar.

Assume that τ(s) ⩾ t. Then a(t−) = inf{s ⩾ 0 ∶ τ(s) ⩾ t} ⩽ s. On the other hand,

a(t−) ⩽ s Ô⇒ ∀ε > 0 ∶ a(t − ε) ⩽ s 19.16 d)Ô⇒ ∀ε > 0 ∶ τ(s) > t − ε Ô⇒ τ(s) ⩾ t.

∎∎

Problem 19.12. Solution: We have

{⟨M⟩t ⩽ s} = ⋂
n⩾1

{⟨M⟩t < s + 1/n} = ⋂
n⩾1

{⟨M⟩t ⩾ s + 1/n}c

19.16=
c)
⋂
n⩾1

{τs+1/n− ⩽ s}
c ∈ ⋂

n⩾1

Fτ
s+1/n

A.15= Fτs+.

As Ft is right continuous, Fτs+ = Fτs
= Gs and we conclude that ⟨M⟩t is a Gt stopping

time.

∎∎

Problem 19.13. Solution: Solution 1: Assume that f ∈ C2. Then we can apply Itô’s formula.

Use Itô’s formula for the deterministic process Xt = f(t) and apply it to the function xa

(we assume that f ⩾ 0 to make sure that fa is defined for all a > 0):

fa(t) − fa(0) = ∫
t

0
[ d
dx
xa]

x=f(s)
df(s) = ∫

t

0
afa−1(s)df(s).

This proves that the primitive ∫ fa−1 df = fa/a. The rest is an approximation argument

(f ∈ C1 is pretty immediate).

Solution 2: Any absolutely continuous function has an Lebesgue a.e. defined derivative f ′

and f = ∫ f ′ ds. Thus,

∫
t

0
fa−1(s)df(s) = ∫

t

0
fa−1(s)f ′(s)ds = ∫

t

0

1

a

d

ds
fa(s)ds = [f

a(s)
a

]
t

0

= f
a(t) − fa(0)

a
.

∎∎
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Problem 19.14. Solution: Theorem. Let Bt = (B1
t , . . . ,B

d
t ) be a d-dimensional Brownian

motion and f1, . . . , fd ∈ L2
P(λT ⊗P) for all T > 0. Then, we have for 2 ⩽ p <∞

E

⎡⎢⎢⎢⎢⎣
(∫

T

0

d

∑
k=1

∣fk(s)∣2 ds)
p/2⎤⎥⎥⎥⎥⎦

≍ E [sup
t⩽T

∣∑
k
∫

t

0
fk(s)dBk

s ∣
p

] (19.2)

with finite comparison constants which depend only on p.

Proof. Let Xt = ∑k ∫
t

0 fk(s)dBk
s . Then we have

⟨X⟩t = ⟨∑
k
∫

t

0
fk(s)dBk

s , ∑
l
∫

t

0
fl(s)dBl

s⟩

=∑
k,l

⟨∫
t

0
fk(s)dBk

s , ∫
t

0
fl(s)dBl

s⟩

=∑
k,l
∫

t

0
fk(s)fl(s)d ⟨Bk, Bl⟩

s

=∑
k
∫

t

0
f2
k (s)ds

since dBk
s dB

l
s = d⟨Bk,Bl⟩s = δkl ds.

With these notations, the proof of Theorem 17.16 goes through almost unchanged and we

get the inequalities for p ⩾ 2.

Remark: Often one needs only one direction (as we do later in the book) and one can use

19.21 directly, without going through the proof again. Note that

∣
d

∑
k=1
∫

t

0
fk(s)dBk

s ∣
p

⩽ (
d

∑
k=1

∣∫
t

0
fk(s)dBk

s ∣)
p

⩽ cd,p
d

∑
k=1

∣∫
t

0
fk(s)dBk

s ∣
p

.

Thus, by (19.21)

E
⎡⎢⎢⎢⎣
sup
t⩽T

∣
d

∑
k=1
∫

t

0
fk(s)dBk

s ∣
p⎤⎥⎥⎥⎦

⩽ cd,p
d

∑
k=1

E [sup
t⩽T

∣∫
t

0
fk(s)dBk

s ∣
p

]

≍ cd,p
d

∑
k=1

E
⎡⎢⎢⎢⎣
(∫

T

0
∣fk(s)∣2 ds)

p/2⎤⎥⎥⎥⎦

≍ cd,pE
⎡⎢⎢⎢⎢⎣
(∫

T

0

d

∑
k=1

∣fk(s)∣2 ds)
p/2⎤⎥⎥⎥⎥⎦

.

∎∎

Problem 19.15. Solution: The proof that supp[dLat (ω)] ⊂ {t ⩾ 0 ∶ Bt(ω) = a} holds for all

ω ∉ Na, P(Na) = 0, for each a ∈ R, works with the same argument that we have used for the

lemma, if we replace Bt by Bt − a. If a ∈ Q we can use the null set N = ⋃a∈QNa. If a ∈ R,

we use the continuity of the local time. Enlarge, if necessary, N such that (t, a)↦ Lat (ω)
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is continuous for all ω ∉ N . Suppose that for ω ∉ N , some a ∈ R and 0 ⩽ s < t we have

Lat (ω) > Las(ω) and Br(ω) ≠ a for every r ∈ [s, t]. Then there is some rational q ∈ Q ⊂ R,

sufficiently close to a, such that Lqt (ω) > L
q
s(ω) and still Br(ω) ≠ a for every r ∈ [s, t] – but

this is impossible since we already have supp[dLqt (ω)] ⊂ {t ⩾ 0 ∶ Bt(ω) = a} for all ω ∉ N .

∎∎

Problem 19.16. Solution: Existence: The function

a(t) = 0 ∨ sup
s⩽t

(−b(s)) = − [0 ∧ inf
s⩽t
b(s)]

is obviously positive, continuous and increasing. Moreover, a(t) increases strictly when-

ever b(t) reaches a new running infimum. Setting p(t) ∶= b(t) + a(t) shows that the pair

{p(t), a(t)} satisfies i)–iii).

Uniqueness: Let {p(t), a(t)} be another decomposition such that i)–iii) hold. From p(t)−
a(t) = b(t) = p(t)−a(t) we see that p(t)−p(t) = a(t)−a(t). Assume that there is some t1 > 0

such that p(t1) > p(t1), and define t0 ∶= inf{t < t1 ∶ p(t) = p(t)}. Since (p − p)∣(t0,t1] > 0,

we know that p∣(t0,t1] > p∣(t0,t1] ⩾ 0, i.e. a(t0) = a(t1) because of property iii). Since a is

increasing, we see

0 < p(t1) − p(t1) = a(t1) − a(t1)
iii)= a(t0) − a(t1)

ii)

⩽ a(t0) − a(t0) = p(t0) − p(t0) = 0.

This is a contradiction, and so p(t) ⩽ p(t) for all t ⩾ 0. A similar argument shows

p(t) ⩽ p(t), i.e. p = p and a = a.

∎∎

Problem 19.17. Solution: As in the third step of the proof of Theorem 19.28 we can use

Tanaka’s formula to get

L0
t+s −L0

t = ∣Bt+s∣ − ∣Bt∣ − ∫
t+s

t
sgn(Br)dBr

= ∣Bs ○ θt∣ − ∣B0 ○ θt∣ − ∫
s

0
sgn(Br ○ θt)d(Br ○ θt)

and the latter is L0
s ○θt – it is the local time for the Brownian motion Ws = Bs ○θt−B0 ○θt,

if we condition on Bt = a; observe that (Ws)s⩾0 is independent of (Br)r⩽t, cf. Theorem 6.1.

∎∎

Problem 19.18. Solution: Note that the probability space on which τv is defined is governed

by P which derives from the underlying Brownian motion. Denote by Px the probability

measure for Bt such that B0 = x a.s. P is then a short-hand for P0. We use the strong

Markov property for (Bt)t⩾0 and observe that Bτu = 0 (by definition of τu). Thus,

P0 (τui − τui−1 ∈ Ai, i = 1, . . . , n)

= P0 (τun−un−1 ○ θτun−1
∈ An, τui − τui−1 ∈ Ai, i = 1, . . . , n − 1)
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= E0 (1{τun−un−1○θτun−1
∈An,τui−τui−1∈Ai,i=1,...,n−1})

= E0 (PB(τtn−1) [τun−un−1 ∈ An]1{τui−τui−1∈Ai,i=1,...,n−1})

= E0 (P0 [τun−un−1 ∈ An]1{τui−τui−1∈Ai,i=1,...,n−1})

= P0 [τun−un−1 ∈ An]E0 (1{τui−τui−1∈Ai,i=1,...,n−1})

and we can now proceed recursively.

∎∎

Problem 19.19. Solution: From our assumption we get immediately E [eiξ(Xt−Xs) ∣ Gs] =
E [eiξXt−s]. Taking expectations on both sides, yields E [eiξ(Xt−Xs)] = E [eiξXt−s], hence

Xt −Xs ∼Xt−s. Denote by φ(t− s) ∶= E [eiξXt−s]. We can now use the tower property just

as in the proof of Lemma 5.4 to see that consecutive increments (Xti −Xti−1), 0 = t0 < t1 <
⋅ ⋅ ⋅ < tn <∞ are independent. See also [21, Lemma 49.1].

∎∎
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20 Wiener Chaos and iterated Wiener–Itô

integrals

Problem 20.1. Solution: Let

φ(s, t) =∑
i≠k
aik1[ti−1,ti)×[tk−1,tk)(s, t) = ∑

m≠n
bik1[sm−1,sm)×[sn−1,sn)(s, t)

and take the common refinement of the underlying partitions. This gives a third repre-

sentation and we show that each of the above representations and the common-refinement

representation leads to the same result. WLOG we can assume that the partition with the

ti’s is already finer. Therefore, [sm−1, sm) = ⊍i∶[sm−1,sm)⊃[ti−1,ti)[ti−1, ti). Since everything

is linear, we can consider a single step of the sm-Partition:

1[sm−1,sm)×[sn−1,sn)(s, t) = ∑
[ti−1,ti)⊂[sm−1,sm)

∑
[tk−1,tk)⊂[sn−1,sn)

1[ti−1,ti)×[tk−1,tk)(s, t)

Since m ≠ n, the ti-and-tk-intervals are also disjoint, i.e. off-diagonal. Now observe that

Bsm −Bsm−1 = ∑
[ti−1,ti)⊂[sm−1,sm)

(Bti −Bti−1)

and so we get that the above two representations have the same double Itô integral.

∎∎

Problem 20.2. Solution: Recall that ∫ ba = ∫[a,b). Since we do not know that one-point sets

have zero µ-measure, we have to take care about sets being open or closed. Using Fubini

and the symmetry of the integrand f(s, t) = f(t, s) we have

∫
b

a
∫

b

a
f(s, t)µ(ds)µ(dt)

= ∫[a,b)∫[a,b)
f(s, t)µ(ds)µ(dt)

= ∫[a,b)∫[a,t)
f(s, t)µ(ds)µ(dt) + ∫[a,b)∫[t,b)

f(s, t)µ(ds)µ(dt)

= ∫[a,b)∫[a,t)
f(s, t)µ(ds)µ(dt) + ∫[a,b)∫[a,s]

f(s, t)µ(dt)µ(ds)

= ∫[a,b)∫[a,t)
f(s, t)µ(ds)µ(dt) + ∫[a,b)∫[a,s)

f(s, t)µ(dt)µ(ds) + ∫[a,b)∫{s}
f(s, t)µ(dt)µ(ds)

= ∫[a,b)∫[a,t)
f(s, t)µ(ds)µ(dt) + ∫[a,b)∫[a,t)

f(t, s)µ(ds)µ(dt) + ∫[a,b)
µ{s}f(s, s)µ(ds)

= 2∫[a,b)∫[a,t)
f(s, t)µ(ds)µ(dt) + ∫[a,b)

µ{s}f(s, s)µ(ds)
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and this shows that the diagonal term does have an influence. This also explains why it

is important to consider off-diagonal simple functions.

∎∎

Problem 20.3. Solution: This is a standard argument (in many areas of analysis and prob-

ability). Let φn → f and ψn → f be two sequences of step-functions converging to f in

L2(R2
+). Then we have

∥φn − ψn∥L2 ⩽ ∥φn − f∥L2 + ∥f − ψn∥L2 → 0

and so

∥I2(φn) − I2(ψn)∥L2(Ω) = ∥I2(φn − ψn)∥L2(Ω) = 2∥φ̂n − ψ̂n∥L2(dt,ds)

⩽ 2∥φn − ψn∥L2(dt,ds) → 0

i.e. both sequences lead to the same L2(Ω)-limit.

∎∎

Problem 20.4. Solution: We have to show that

N

∑
k=1

λkHn(k)(x) = 0 ∀x Ô⇒ λ1 = ⋅ ⋅ ⋅ = λN = 0.

The idea behind the following proof is that the Hermite polynomials Hn increase in order

as n goes up.

WLOG n(1) < ⋅ ⋅ ⋅ < n(N). If we re-arrange the above sum we get

N

∑
k=1

λkHn(k)(x) = λNxn(N) +
n(N)−1

∑
i=0

ckx
i = 0 ∀x

Now divide by xn(N) and let x→∞. This shows

λN = 0.

This reduces our problem to

N−1

∑
k=1

λkHn(k)(x) = 0 ∀x Ô⇒ λ1 = ⋅ ⋅ ⋅ = λN−1 = 0.

and we can repeat our reasoning. Finally we get that all λi = 0.

∎∎

Problem 20.5. Solution: Fix ξ, η ∈ R. We have

E eiξI1(f)+iηI1(g) = E eiI1(ξf+ηg)

= e−
1
2 ∫

∞
0 ξ2f2(t)+η2g2(t)+2ξηf(t)g(t)dt

f�g=∫ fg dt=0
e−

1
2
ξ2 ∫ ∞0 f2(t)dte−

1
2
η2 ∫ ∞0 g2(t)dt
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= e−
1
2
ξ2 ∫ ∞0 f2(t)dte−

1
2
η2 ∫ ∞0 g2(t)dt

= E eiξI1(f)E eiηI1(g)

Since ξ, η are arbitrary, we conclude that I1(f), I1(g) are independent (Theorem of M.

Kac).

∎∎

Problem 20.6. Solution: We can make a direct calculation, but the following trick is much

more effective: X, Y and X ± Y are one-dimensional mean zero Gaussian and therefore

E(X ± Y )3 = EX3 = EY 3 = 0. Thus,

0 = E(X ± Y )3 = EX3 ±EY 3 ± 3EX2Y + 3EXY 2 Ô⇒ EXY 2 = ±EX2Y

and this is only possible if EXY 2 = EY X2 = 0.

We have to show that for any g ∈ L2(R+)

E [(I2
1(f) − ∥f∥2

L2)I1(g)] = 0.

Note that E(∥f∥2
L2)I1(g) = ∥f∥2

L2 E I1(g) = 0. Moreover,

E(I2
1(f)I1(g)) = 0

since (X,Y ) = (I1(f), I1(g)) is mean zero Gaussian — and now we can use the first part

of the problem.

∎∎

Problem 20.7. Solution:

a) When calculating the product eα(t)eβ(t) we match the tk-coordinates, which we

arrange in blocks:

t = (t1, t2, . . . , tα1)(tα1+1, tα1+2, . . . , tα1+α2)(tα1+α2+1, tα1+α2+2, . . . , tα1+α2+α3) . . .

Thus, we get (note that all products are finite since our multiindices have only finitely

many entries ≠ 0)

∞
∏
k=1

αk

∏
j=1

ek(tj+α1+⋅⋅⋅+αk−1
)
∞
∏
k=1

βk

∏
j=1

ek(tj+β1+⋅⋅⋅+βk−1
)

If α = β, this means that we have “perfect matches” of the form ⟨ek, ek⟩L2(R+) = 1

only and these scalar products produce always a 1.

If α ≠ β, there is at least one (well, necessarily two) mismatch in one coordinate i.e.

⟨ek, ej⟩L2(R+) = 0 since k ≠ j. This means that the whole product becomes zero.
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b) We continue the notation from above but we also write σ, τ ∶ {1, . . . , n} → {1, . . . , n}
for permutations and we assume that ∣α∣ = ∣β∣ = n. Moreover, if t = (t1, . . . , tn), then

σ(t) = (tσ(1), . . . , tσ(n)) – and τ(t) is understood in a similar way. By definition

êα(t) =
1

n!
∑
σ

eα(σ(t))

and we get

∥êα∥2
L2(Rn+) = ∫Rn+

( 1

n!
∑
σ

eα(σ(t)))
2

dt

= ( 1

n!
)

2

∑
σ
∑
τ
∫
Rn+
eα(σ(t))eα(τ(t))dt.

All we have to do is to multiply this out in an orderly manner. Observe the following

σ = τ : In this case ∫Rn+ eα(σ(t))eα(τ(t))dt = 1. This gives us n!-many “1” in the

double sum ∑σ∑τ .

σ ≠ τ but σ,τ differ only in the coordinate block t1, . . . , tα1 : In this case we have

α1! additional possibilities to get a “perfect match” leading to ∫Rn+ eα(σ(t))eα(τ(t))dt =
1.

. . .

σ ≠ τ but σ,τ differ only in the αk-coordinate block: this gives us αk! new possibil-

ities.

By the counting principle, we thus get

n! ⋅
∞
∏
k=1

αk! (0! = 1)

“ones”, i.e.

∥êα∥2
L2(Rn+) = ∫Rn+

( 1

n!
∑
σ

eα(σ(t)))
2

dt

= ( 1

n!
)

2

n! ⋅
∞
∏
k=1

αk!

= ∏
∞
k=1 αk!

n!

as claimed.

∎∎

Problem 20.8. Solution:

a) We have F = f(I1(e1), . . . , I1(en)) and G = g(I1(e1), . . . , I1(en)) (wlog F,G depend

on the same number of variables I1(ek)). We have for any el

⟨D(FG), el⟩H =Del(FG) = ∂l(FG)
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and we know already that ∂l satisfies the product rule:

∂l(FG) = G∂lF + F∂lG

= GDelF + FDelG

= G⟨DF, el⟩ + F ⟨DG,el⟩

= ⟨GDF, el⟩ + ⟨FDG, el⟩

= ⟨GDF + FDG, el⟩

We can also make a direct calculation in the following way:

D(FG) =
n

∑
i=1

∂

∂xi
(fg)(I1(e1), . . . , I1(en))

and now use the product rule for ∂
∂xi

...

b) Similar to the previous calculation, just use the classical Leibniz rule.

∎∎

Problem 20.9. Solution: A solution using induction based on n = m + 1 can be found in

Nualart’s book [11, Proposition 1.1.3, p. 12]. We will now give a combinatorial argument.

In what follows, α = (α1, . . . , αk), β = (β1, . . . , βk) = Nk
0 are multiindices and we use the

standard notation for multiindices: ξα = ∏k
1 ξ

αi
i for vectors ξ = (ξ1, . . . , ξk) and ∣α∣ =

α1 + ⋅ ⋅ ⋅ + αk. Moreover, we agree that (p
q
) = 0 if q > p (also a standard convention)

We have the following combinatorial identity: for any r,m,n and ∣α∣ = m and ∣β∣ = n we

have

∑
r1,...,rk⩾0
r1+⋅⋅⋅+rk=r

r1!(α1

r1
)(β1

r1
) ⋅ . . . ⋅ rk!(

αk
rk

)(βk
rk

) = r!(m
r
)(n
r
). (*)

In order to see this, rewrite this identity as

∑
r1,...,rk⩾0
r1+⋅⋅⋅+rk=r

r!

r1! ⋅ . . . ⋅ rk!
r1!(α1

r1
)r1!(β1

r1
) ⋅ . . . ⋅ rk!(

αk
rk

)rk!(
βk
rk

) = r!(m
r
)r!(n

r
).

and this can be interpreted in the following way: We draw r distinguishable balls from

an urn M containing m balls and from urn N with n balls. The right-hand side gives all

possible drawings.

Now imagine that the urns have k sub-compartments M1, . . . ,Mk and N1, . . . ,Nk contain-

ing αi ⩾ 0 and βi ⩾ 0 balls. The right-hand side gives all possibilities of drawings from

these urns, and the additional multinomial factor gives the number of possible drawings

such that we take ri balls from each of Mi and Ni.

Since both drawing schemes give the same outcomes, the claimed identity holds.

By a density argument, it is clearly enough to show the formula of the problem for f =
∑ki=1 ξiei and g = ∑ki=1 ηiei where ξ, η ∈ Rk and (ei)i⩾1 is a some ONB of L2(0,∞). We may

199



R.L. Schilling: Brownian Motion (3rd edn)

also assume that ∥f∥L2 = ∥g∥L2 = 1, which amounts to saying that ∑ki=1 ξ
2
i = ∑ki=1 η

2
i = 1

(use Parvseval’s identity). Finally we set e = (e1, . . . , ek) and use the notation eα = e⊗α =
⊗k

1 e
⊗αi
i .

We have

Im(f)In(g)

= ∑
∣α∣=m
∣β∣=n

ξαηβIm(e⊗α)In(e⊗β)

= ∑
∣α∣=m
∣β∣=n

ξαηβ
k

∏
i=1

Hαi(I1(ei))
k

∏
j=1

Hβj(I1(ej)) (use Corollary 20.21)

= ∑
∣α∣=m
∣β∣=n

ξαηβ
k

∏
i=1

Hαi(I1(ei))Hβi(I1(ei))

= ∑
∣α∣=m
∣β∣=n

ξαηβ
k

∏
i=1

αi∧βi
∑
ri=1

ri!(
αi
ri

)(βi
ri
)Hαi+βi−2ri(I1(ei)) (Theorem 20.13.i))

= ∑
∣α∣=m
∣β∣=n

ξαηβ ∑
r1,...,rk⩾0

r1!(α1

r1
)(β1

r1
) ⋅ . . . ⋅ rk!(

αk
rk

)(βk
rk

)
k

∏
i=1

Hαi+βi−2ri(I1(ei))

= ∑
∣α∣=m
∣β∣=n

ξαηβ
m∧n
∑
r=0

∑
r1,...,rk⩾0
r1+⋅⋅⋅+rk=r

r1!(α1

r1
)(β1

r1
) ⋅ . . . ⋅ rk!(

αk
rk

)(βk
rk

)Im+n−2r(e⊗(α′+β′))

here we use Corollary 20.21, α = α′ + γ, β = β′ + γ and ∣γ∣ = r)

=
m∧n
∑
r=0

∑
r1,...,rk⩾0
r1+⋅⋅⋅+rk=r

r1!(α1

r1
)(β1

r1
) ⋅ . . . ⋅ rk!(

αk
rk

)(βk
rk

) ∑
α=α′+γ,∣α∣=m,∣γ∣=r

β=β′+γ,∣β∣=n
ξαηβIm+n−2r(e⊗(α′+β′))

=
m∧n
∑
r=0

r!(m
r
)(n
r
) ∑
α=α′+γ,∣α∣=m,∣γ∣=r

β=β′+γ,∣β∣=n
ξαηβIm+n−2r(e⊗(α′+β′)) (use the identity (*))

=
m∧n
∑
r=0

r!(m
r
)(n
r
)Im+n−2r

⎛
⎝
(
k

∑
i=1

ξiei)
⊗α

⊗r (
k

∑
i=1

ηiei)
⊗β⎞

⎠

=
m∧n
∑
r=0

r!(m
r
)(n
r
)Im+n−2r (f ⊗r g) .

The penultimate equality follows from the definition of the contraction operation ⊗k. Note

that, b/o orthogonality, we have to contract the same ej ’s, otherwise we get zeros. This

explains the structure of α = α′ + γ and β = β′ + γ.

∎∎

Problem 20.10. Solution: The idea is to use the following Integration-by-Parts formula which

is a consequence of the Itô formula:

MTNT −M0N0 = ∫
T

0
Mt dNt + ∫

T

0
Nt dMt + ⟨M,N⟩T . (*)
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We will use this several times. Moreover, we use that

1

2!
I2(f) = ∫

∞

0
dBt2 ∫

t1

0
dBt1 f(t1, t2)

(we use physics notation where the integrator accompanies the integral and the integrand

comes at the end). Thus

1

4
I2(f)I2(g) = (∫

∞

0
dBt2 ∫

t2

0
dBt1 f(t1, t2))(∫

∞

0
dBt4 ∫

t4

0
dBt3 g(t3, t4))

(*)= ∫
∞

0
dBt4 (∫

t4

0
dBt2 ∫

t2

0
dBt1f(t1, t2))(∫

t4

0
dBt3g(t3, t4))

+ similar term with f, g interchanged

+ ⟨I2(f), I2(g)⟩.

Now we observe that (cf. Theorem 20.15 and its proof)

⟨I2(f), I2(g)⟩ =
1

4
∫

∞

0
∫

∞

0
f(t1, t2)g(t1, t2)dt1 dt2 =

1

4
I0(f ⊗2 g)

which means that the r = 2 term appears and has the right multiplicity (factor 1).

We will now deal with the two other terms. For symmetry reasons it is enough to consider

the term which is spelled out explicitly (and we should keep in mind to multiply every

factor by 2, in the end....). We have, using integration by parts again for the product

appearing under the first integral in the formula below,

∫
∞

0
dBt4 (∫

t4

0
dBt2 ∫

t2

0
dBt1f(t1, t2))(∫

t4

0
dBt3g(t3, t4))

= ∫
∞

0
dBt4 ∫

t4

0
dBt3 ∫

t3

0
dBt2 ∫

t2

0
dBt1f(t1, t2)g(t3, t4)

+ ∫
∞

0
dBt4 ∫

t4

0
dBt3 (∫

t3

0
dBt2g(t4, t2))(∫

t3

0
dBt1f(t1, t3))

There is no bracket term since the iterated integrals appearing in the bracket have different

length (2 vs. 1)

= 1

4!
I4(f ⊗ g)

+ ∫
∞

0
dBt4 ∫

t4

0
dBt3 (∫

t3

0
dBt2g(t4, t2))(∫

t3

0
dBt1f(t1, t3))

And yet again using integration by parts for the product in the second integral yields

= 1

4!
I4(f ⊗ g)

+ ∫
∞

0
dBt4 ∫

t4

0
dBt3 (∫

t3

0
dBt1f(t1, t3)∫

t1

0
dBt2g(t4, t2))

+ similar term with f , g interchanged

+ ∫
∞

0
dBt4 ∫

t4

0
dBt3 ⟨∫

●

0
g(t4, t2)dBt2 , ∫

●

0
f(t2, t3)dBt2⟩

t3

= 1

4!
I4(f ⊗ g)
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+ ∫
∞

0
dBt4 ∫

t4

0
dBt3 ∫

t3

0
dBt1 ∫

t1

0
dBt2f(t1, t3)g(t4, t2)

+ similar term with f , g interchanged

+ ∫
∞

0
dBt4 ∫

t4

0
dBt3 ∫

t3

0
g(t4, t2)f(t2, t3)dt2

= 1

4!
I4(f ⊗ g) +

1

4!
I4(f ⊗ g) +

1

4!
I4(f ⊗ g)

+ ∫
∞

0
dBt4 ∫

t4

0
dBt3 ∫

t3

0
g(t4, t2)f(t2, t3)dt2

= 1

4

1

2
I4(f ⊗ g)

+ ∫
∞

0
dBt4 ∫

t4

0
dBt3 ∫

t3

0
g(t4, t2)f(t2, t3)dt2

This shows that the r = 0 term I4(f ⊗ g) appears once (don’t forget that we have to

multiply by 2, b/o the “similar terms” in the very first calculation and that our left-hand

side was 1
4I2(f)I2(g).

So, finally for the r = 1-term I2(f⊗1g) which has multiplicity 4. Set φs(a, b) ∶= φ(a, b)1[0,s]2(a, b)
and observe that

∫
∞

0
dBt4 ∫

t4

0
dBt3 ∫

t3

0
g(t4, t2)f(t2, t3)dt2 = ∫

∞

0
dBt4 ∫

t4

0
dBt3g

t3 ⊗1 f
t3(t3, t4)

= 1

2!
I2(g ⊗1 f).

Again we have two of these terms (mind the factor 2 for the very first long calculation),

and the lhS is 1
4I2(f)I2(g) which brings us to 4I2(g ⊗1 f).

∎∎

Problem 20.11. Solution: Since BT ∼
√
TB1, we have

E [B2n
T e−B

2
T ] = E [TnB2n

1 e−TB
2
1]

= 1√
2π
∫
R
Tnx2ne−Tx

2

e−x
2/2 dx

= 1√
2π
∫
R
Tn

y2n

(2T + 1)n e
−y2/2 dy√

2T + 1

= ( T

2T + 1
)
n 1√

2T + 1
EB2n

1 .

Now we can use EB2n
1 = (2n − 1)!!, see § 2.3.

∎∎

Problem 20.12. Solution: This is essentially Example 20.20, but we do it once again. The

idea is to use the identity (20.11)

In(g⊗n) =Hn(I1(g), ∥g∥2
L2)

and a concrete Hermite expansion for erx−
1
2
r2t

F = exp [I1(g) −
1

2
∥g∥2

L2] = exp [rx − 1

2
r2t]∣

r=1,t=∥g∥2
L2 ,x=I1(g)

.
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Since erx−
1
2
r2t is the generating function of the (extended) Hermite polynomials, we see

(Theorem 20.13.c)) that

ex−t/2 =
∞
∑
n=0

1

n!
Hn(x, t)

and from this we get

F =
∞
∑
n=0

1

n!
Hn(I1(g), ∥g∥2

L2) =
∞
∑
n=0

1

n!
In(g⊗n) = 1 +

∞
∑
n=1

In ( 1

n!
g⊗n)

which is the desired expansion. In view of the Taylor–Stroock theorem (Theorem 20.25)

we can read off from this the values EDn
t1,...,tnF , but the problem asks for the derivatives

without expected value. To find those we observe that F is essentially a cylindrical

function

F = exp [I1(g) −
1

2
∥g∥2

L2] = φ(I1(g))

with φ(x) = exp[x − 1
2c] and c = ∥g∥2

L2 . So,

DtF = (∂φ)(I1(g))g(t), D2
stF = (∂2φ)(I1(g))g(t)g(s), . . . ,

Dn
t1...tnF = (∂nφ)(I1(g))g(t1) . . . g(tn) = (∂nφ)(I1(g))g⊗n(t1, . . . , tn),

and we note that ∂nφ(x) = ∂nxex−c/2 = ex−c/2, so

DtF = Fg(t), D2
stF = Fg(t)g(s), . . . , Dn

t1...tnF = Fg(t1) . . . g(tn).

Since EF = 1, this result is in-line with the Taylor–Stroock formula.

∎∎

Problem 20.13. Solution:

a) This is a special case of the previous exercise, Problem 12. Taking g(t) = 1[0,T )(t),
we see that BT = I1(1[0,T ) and ∥g∥2

L2 = ∫ T0 1[0,T )(t)dt = T . Therefore

eBT−
1
2
T = 1 +

∞
∑
n=1

1

n!
In(1⊗n[0,T )).

b) We use here the Taylor–Stroock formula. Set F = B5
T = (I1(1[0,T )))5 and φ(x) = x5.

Then

B5
T =

∞
∑
n=0

1

n!
In(EDn

t1,...,tnF ) =
∞
∑
n=0

1

n!
In(E∂nφ(x)∣x=BT1⊗n[0,T )).

Since odd powers of Brownian motion have zero expectation, we get

B5
T = I1(5EB4

T1[0,T )) +
1

6
I3(60EB2

T1
⊗3
[0,T )) +

1

120
I5(1201⊗5

[0,T ))

= 15T 2I1(1[0,T )) + 10TI3(1⊗3
[0,T )) + I5(1⊗5

[0,T )).
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c) The idea is the following: ∫ 1
0 FtdBt is just I1(Ft). So, if we work out the representa-

tion of Ft as

Ft =
∞
∑
n=0

In(fn(t, ⋅)) Ô⇒ I1(Ft) =
∞
∑
n=0

I1(In(fn(t, ⋅))) =
∞
∑
n=0

1

n + 1
In+1(f̃n(t, ⋅))

where f̃n(t, ⋅) means the symmetrization of (t, tn, . . . , t1) ↦ fn(t, tn, . . . , t1). The

second equality in the display formula from above comes from the representation of

In as iterated integral, see also the previous part of the problem.

Now let Ft = r3B3
t + 2tB2

t = r3I1(1[0,t))3 + 2tI1(1[0,t))2 = [r3x3 + 2tx2]
x=Bt . Applying

the Taylor-Stroock formula we get

EDsFt = E [3r3x2 + 4tx]
x=Bt

1[0,t)(s) = 3r3t1[0,t)(s)

ED2
suFt = E [6r3x + 4t]

x=Bt
1[0,t)(s)1[0,t)(u) = 4t1[0,t)(s)1[0,t)(u)

ED3
suwFt = E [6r3]

x=Bt
1[0,t)(s)1[0,t)(u)1[0,t)(w) = 6r31[0,t)(s)1[0,t)(u)1[0,t)(w)

and, thus,

Ft = EFt +
6r3t

1!
I1(1[0,t)) +

4t

2!
I2(1⊗2

[0,t)) +
6r3

3!
I3(1⊗3

[0,t))

= 2t2 + 6r3tI1(1[0,t)) + 2tI2(1⊗2
[0,t)) + r

3I3(1⊗3
[0,t)).

Finally, with the observation made at the beginning, we get

F = 2tI1(t21[0,1)(t)) + 3r3I2(1⊗2
[0,1)(t, u)) +

2

3
I3(t1⊗3

[0,1)(t, u, v)) +
1

4
I4(1⊗4

[0,1)(t, u, v,w)).

d) Here we use the same strategy as for the previous problem. Write Ft = teBt for the

integrand, set φ(x) = tex and use the Taylor–Stroock formula to get

DkFt = (∂kxφ)(Bt)1⊗k[0,t) Ô⇒ EDkFt = tE eBt1⊗k[0,t) = te
t/21⊗k[0,t).

Thus,

Ft =
∞
∑
k=0

1

k!
tet/2Ik(1⊗k[0,t))

and

F = I1(F●) =
∞
∑
k=0

1

k!
I1 (tet/2Ik(1⊗k[0,t)))

I1 acts on t

=
∞
∑
k=0

1

(k + 1)!Ik+1 (tet/21⊗(k+1)
[0,1) (t, tk, . . . , t1)) ;

mind the abuse of notation in the latter integral: t, tk, . . . , t1 are all integration

variables for the (k + 1)-fold integral Ik+1.

∎∎

Problem 20.14. Solution: Observe that sinhx = 1
2(e

x − e−x) and coshx = 1
2(e

x + e−x). Since

E eBT = E e−BT = eT /2, we see that E sinhBT = 0 and E coshBT = eT /2.
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a) Using the Taylor–Stroock formula we get

D2k+1(sinhBT ) = ∂2k+1
x sinhx∣

x=BT
1
⊗(2k+1)
[0,T ) = coshBT1

⊗(2k+1)
[0,T )

Ô⇒ E [coshBT ]1⊗(2k+1)
[0,T ) = eT /21⊗(2k+1)

[0,T ) .

and

D2k(sinhBT ) = ∂2k
x sinhx∣

x=BT
1⊗2k
[0,T ) = sinhBT1

⊗2k
[0,T )

Ô⇒ E [sinhBT ]1⊗2k
[0,T ) = 0.

Therefore,

sinhBT =
∞
∑
k=0

1

(2k + 1)!e
T /2I2k+1 (1⊗(2k+1)

[0,T ) ) .

b) The calculation for the cosh is completely similar, only we get an even expansion:

coshBT =
∞
∑
k=0

1

(2k)!e
T /2I2k (1⊗2k

[0,T )) .

Remark. An alternative solution can be based on the series representations for exp[±BT ],
using Problem 12 or Problem 13(a).

∎∎

Problem 20.15. Solution: If Σ is dense in L2(µ), then u = ∑n λnφn for some suitable φn ∈D.

Thus,

∥u∥2 =∑
n

λn⟨u,φn⟩ =∑
n

λn ⋅ 0 = 0

and we get u = 0 in L2(µ).

Conversely, since Σ is a linear subspace of L2(µ), we get L2(µ) = Σ ⊕ Σ
�
. Thus, the

condition ⟨u,φ⟩ = 0 for all φ ∈ D entails that u�D, hence u�Σ, hence u�Σ. If this entails

u = 0, we get Σ
� = {0} or Σ = L2(µ).

Alternatively, we could use Hahn-Banach: ⟨u,φ⟩ = 0 for all φ ∈ D entails that ⟨u,ψ⟩ = 0

for all ψ ∈ Σ. If Σ ≠ L2(µ), we can extend u, by Hahn-Banach, in such a way that u ≠ 0

but u∣Σ = 0. This gives a contradiction to u = 0, hence Σ = L2(µ).

∎∎
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Problem 21.1. Solution: We have

dXt = b(t)dt + σ(t)dBt

where b, σ are non-random coefficients such that the corresponding (stochastic) integrals

exist. Without loss of generality we assume that X0 = x = 0. Obviously,

(dXt)2 = σ2(t) (dBt)2 = σ2(t)dt

and we get for 0 ⩽ s ⩽ t <∞, using Itô’s formula,

eiξXt − eiξXs = ∫
t

s
iξeiξXr b(r)dr + ∫

t

s
iξeiξXr σ(r)dBr

− 1

2
∫

t

s
ξ2eiξXr σ2(r)dr.

Now take any F ∈ Fs and multiply both sides of the above formula by e−ξXs1F . We get

eiξ(Xt−Xs)1F − 1F = ∫
t

s
iξeiξ(Xr−Xs)1F b(r)dr + ∫

t

s
iξeiξ(Xr−Xs)1F σ(r)dBr

− 1

2
∫

t

s
ξ2eiξ(Xr−Xs)1F σ

2(r)dr.

Taking expectations gives

E (eiξ(Xt−Xs)1F ) = P(F ) + ∫
t

s
iξE (eiξ(Xr−Xs)1F ) b(r)dr

− 1

2
∫

t

s
ξ2E (eiξ(Xr−Xs)1F )σ2(r)dr

= P(F ) + ∫
t

s
(iξb(r) − 1

2
ξ2 σ2(r))E (eiξ(Xr−Xs)1F )dr.

Define φs,t(ξ) ∶= E (eiξ(Xt−Xs)1F ). Then the integral equation

φs,t(ξ) = P(F ) + ∫
t

s
(iξb(r) − 1

2
ξ2 σ2(r))φr,s(ξ)dr

has the unique solution (use Gronwall’s lemma, cf. also the proof of Theorem 19.5)

φs,t(ξ) = P(F ) eiξ ∫
t
s b(s)ds−

1
2
ξ2 ∫ ts σ2(r)dr

and so

E (eiξ(Xt−Xs)1F ) = P(F ) eiξ ∫
t
s b(r)dr−

1
2
ξ2 ∫ ts σ2(r)dr. (*)

If we take in (*) F = Ω and s = 0, we see that

Xt ∼ N(µt, σ2
t ), µt = ∫

t

0
b(r)dr, σ2

t = ∫
t

0
σ2(r)dr.
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If we take in (*) F = Ω then the increment satisfies Xt −Xs ∼ N(µt − µs, σ2
t − σ2

s). If F is

arbitrary, (*) shows that

Xt −Xs áFs,

see the Lemma at the end of this section.

The above considerations show that

E e∑
n
j=1 ξj(Xtj−Xtj−1) =

n

∏
j=1

exp(iξ∫
tj

tj−1

b(r)dr − 1

2
ξ2∫

tj

tj−1

σ2(r)dr) ,

i.e. (Xt1 ,Xt2 −Xt1 , . . . ,Xtn −Xtn−1) is a Gaussian random vector with independent com-

ponents. Since Xtk = ∑kj=1(Xtj −Xtj−1) we see that (Xt1 , . . . ,Xtn) is a Gaussian random

variable.

Let us, finally, compute E(XsXt). By independence, we have

E(XsXt) = E(X2
s ) +EXs(Xt −Xs)

= E(X2
s ) +EXsE(Xt −Xs)

= E(X2
s ) +EXsEXt − (EXs)2

= VXs +EXsEXt

= ∫
s

0
σ2(r)dr + ∫

s

0
b(r)dr∫

t

0
b(r)dr.

In fact, since the mean is not zero, it would have been more elegant to compute the

covariance

Cov(Xs,Xt) = E(Xs − µs)(Xt − µt) = E(XsXt) −EXsEXt = VXs = ∫
s

0
σ2(r)dr.

Lemma. Let X be a random variable and F a σ field. Then

E (eiξX1F ) = E eiξX ⋅P(F ) ∀ξ ∈ R Ô⇒ X áF .

Proof. Note that eiη1F = eiη1F + 1F c . Thus,

E (eiξX 1F c) = E (eiξX) −E (eiξX 1F )

= E (eiξX) −E (eiξX) P(F )

= E (eiξX) P(F c)

and this implies

E (eiξX eiη1F ) = E (eiξX)E (eiη1F ) ∀ξ, η ∈ R.

This shows that X á 1F and X á F for all F ∈ F .
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∎∎

Problem 21.2. Solution:

a) We have ∆t = 2−n and

∆Xn(tk−1) =Xn(tk) −Xn(tk−1) = −1
2 Xn(tk−1)2−n +B(tk) −B(tk−1)

and this shows

Xn(tk) =Xn(tk−1) − 1
2 Xn(tk−1)2−n +B(tk) −B(tk−1)

= (1 − 2−n−1)Xn(tk−1) +B(tk) −B(tk−1)

= (1 − 2−n−1)[(1 − 2−n−1)Xn(tk−2) +B(tk−1) −B(tk−2)] + [B(tk) −B(tk−1)]

⋮

= (1 − 2−n−1)kXn(t0) + (1 − 2−n−1)k−1[B(t1) −B(t0)] + . . . +

+ (1 − 2−n−1)[B(tk−1) −B(tk−2)] + [B(tk) −B(tk−1)]

= (1 − 2−n−1)kA +
k−1

∑
j=1

(1 − 2−n−1)j[B(tk−j) −B(tk−j−1)]

Observe that B(tj) −B(tj−1) ∼ N(0,2−n) for all j and A ∼ N(0,1). Because of the

independence we get

Xn(tn) =Xn(k2−n) ∼ N(0, (1 − 2−n−1)2k +∑k−1

j=1
(1 − 2−n−1)2j ⋅ 2−n)

For k = 2n−1 we get tk = 1
2 and so

Xn(1
2
) ∼ N(0, (1 − 2−n−1)2n +∑2n−1

j=1
(1 − 2−n−1)2j ⋅ 2−n).

Using

lim
n→∞

(1 − 2−n−1)2n = e−
1
2

and

2n−1

∑
j=1

(1 − 2−n−1)2j ⋅ 2−n = 1 − (1 − 2−n−1)2n

1 − (1 − 2−n−1)2
⋅ 2−n = 1 − (1 − 2−n−1)2n

1 − 2−n−2
ÐÐÐ→
n→∞

1 − e−
1
2

finally shows that Xn(1
2
) dÐÐÐ→
n→∞

X ∼ N(0,1).

b) The solution of this SDE follows along the lines of Example 21.7 where α(t) ≡ 0,

β(t) ≡ −1
2 , δ(t) ≡ 0 and γ(t) ≡ 1:

dX○
t = 1

2 X
○
t dt Ô⇒ X○

t = et/2

Zt = et/2Xt, Z0 =X0

dZt = et/2 dBt Ô⇒ Zt = Z0 + ∫
t

0
es/2 dBs

Xt = e−t/2A + e−t/2∫
t

0
es/2 dBs.
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For t = 1
2 we get

X1/2 = Ae−1/4 + e−1/4∫
1/2

0
es/2 dBs

Ô⇒ X1/2 ∼ N(0, e−1/2 + e−1/2∫
1/2

0 es ds) = N(0,1).

So, we find for all s ⩽ t

C(s, t) = EXsXt = e−s/2e−t/2EA2 + e−s/2e−t/2E(∫
s

0
er/2 dBr ∫

t

0
eu/2 dBu)

= e−(s+t)/2 + e−(s+t)/2∫
s

0
er dr

= e−(t−s)/2.

This finally shows that C(s, t) = e−∣t−s∣/2.

∎∎

Problem 21.3. Solution: We can rewrite the SDE as

Xt = x + b∫
t

0
Xs ds + ∫

t

0
Xs d(σ1 bs + σ2 βs)

= x + b∫
t

0
Xs ds +

√
σ2

1 + σ2
2 ∫

t

0
Xs dWs

where

Ws ∶=
σ1√
σ2

1 + σ2
2

bt +
σ2√
σ2

1 + σ2
2

βt

is, by Problem 19.3, a BM1. This reduces the problem to a geometric Brownian motion

as in Example a:

Xt = x exp([b − 1

2
(σ2

1 + σ2
2)] t +

√
σ2

1 + σ2
2 Wt)

= x exp([b − 1

2
(σ2

1 + σ2
2)] t + σ1 bt + σ2 βt) .

Alternative Solution: As in Example 21.6, we assume that the initial condition X0 = x is

positive and apply Itô’s formula (18.15) to Zt ∶= logXt:

Zt −Z0 = ∫
t

0

1

Xs
dXs +

1

2
∫

t

0
(− 1

X2
s

) (dXs)2

= ∫
t

0
b ds + ∫

t

0
σ1 dbs + ∫

t

0
σ2 dβ2 −

1

2
∫

t

0
(σ2

1 + σ2
2)ds

= (b − 1

2
(σ2

1 + σ2
2)) ⋅ t + σ1 bt + σ2 βt.

Since, by assumption,

dXs = bXs ds + σ1Xs dβs + σ2Xs dbs

Ô⇒ (dXs)2 = (σ1Xs dβs)2 + (σ2Xs dbs)2 = (σ2
1 + σ2

2)X2
s ds.
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Consequently,

Xt = x exp(σ1 bt + σ2 βt + (b − 1

2
(σ2

1 + σ2
2)) t) .

A direct calculation shows that Xt is indeed a solution of the given SDE.

∎∎

Problem 21.4. Solution: Since X○
t is such that 1/X○

t solves the homogeneous SDE from

Example 21.6, we see that

X○
t = exp(−∫

t

0
(β(s) − 1

2 δ
2(s)) ds) exp(−∫

t

0
δ(s)dBs)

(mind that the ‘minus’ sign comes from 1/X○
t ).

Observe that X○
t = f(I1

t , I
2
t ) where It is an Itô process with

I1
t = −∫

t

0
(β(s) − 1

2 δ
2(s)) ds

I2
t = −∫

t

0
δ(s)dBs.

Now we get from Itô’s multiplication table

dI1
t dI

1
t = dI1

t dI
2
t = 0 and dI2

t dI
2
t = δ2(t)dt

and, by Itô’s formula

dX○
t = ∂1f(I1

t , I
2
t )dI1

t + ∂2f(I1
t , I

2
t )dI2

t + 1
2

2

∑
j,k=1

∂j∂k dI
j
t dI

k
t

=X○
t (dI1

t + dI2
t + 1

2 dI
2
t dI

2
t )

=X○
t (−β(t)dt + 1

2 δ
2(t)dt − δ(t)dBt + 1

2 δ
2(t)dt)

=X○
t (−β(t) + δ2(t))dt −X○

t δ(t)dBt.

Remark:

1. We used here the two-dimensional Itô formula (18.14) but we could have equally well

used the one-dimensional version (18.13) with the Itô process I1
t + I2

t .

2. Observe that Itô’s multiplication table gives us exactly the second-order term in

(18.14).

Since

dZt = (α(t) − γ(t)δ(t))X○
t dt + γ(t)X○

t dBt and Xt = Zt/X○
t

we get

Xt =
1

X○
t

(X0 + ∫
t

0
(α(s) − γ(s)δ(s))X○

s ds + ∫
t

0
γ(s)X○

s dBs) .

∎∎

Problem 21.5. Solution:
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a) We have Xt = e−βtX0 + ∫ t0 σe−β(t−s) dBs. This can be shown in four ways:

Solution 1: you guess the right result and use Itô’s formula (18.7) to verify that the

above Xt is indeed a solution to the SDE. For this rewrite the above solution as

eβtXt =X0 + ∫
t

0
σeβs dBs Ô⇒ d(eβtXt) = σeβt dBt.

Now with the two-dimensional Itô formula for f(x, y) = xy and the two-dimensional

Itô-process (eβt,Xt) we get

d(eβtXt) = βXte
βt dt + eβt dXt

so that

βXt e
βt dt + eβt dXt = σeβt dBt ⇐⇒ dXt = −βXt dt + σ dBt.

Admittedly, this is unfair as one has to know the solution beforehand. On the other

hand, this is exactly the way one verifies that the solution one has found is the

correct one.

Solution 2: you apply the time-dependent Itô formula from Problem 18.7 or the two-

dimensional Itô formula, Theorem 18.8 to

Xt = u(t, It) and It = ∫
t

0
eβs dBs and u(t, x) = eβtX0 + σeβtx

to get—as dt dBt = 0—

dXt = ∂tu(t, It)dt + ∂xu(t, It)dIt + 1
2 ∂

2
x u(t,Bt)dt.

Again, this is best for the verification of the solution since you need to know its form

beforehand.

Solution 3: you use Example 21.7 with α(t) ≡ 0, β(t) ≡ −β, γ(t) ≡ σ and δ(t) ≡ 0.

But, honestly, you will have to look up the formula in the book. We get

dX○
t = βX○

t dt, X○
0 = 1 Ô⇒ X○

t = eβt;

Zt = eβtXt, Z0 =X0 = ξ = const.;

dZt = σeβt dBt;

Zt = σ∫
t

0
eβs dBs +Z0;

Xt = e−βt ξ + e−βt σ∫
t

0
eβs dBs, t ⩾ 0.

Solution 4: by bare hands and with Itô’s formula! Consider first the deterministic

ODE

xt = x0 − β ∫
t

0
xs ds
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which has the solution xt = x0 e
−βt, i.e. eβtxt = x0 = const. This indicates that the

transformation

Yt ∶= eβtXt

might be sensible. Thus, Yt = f(t,Xt) where f(t, x) = eβtx. Thus,

∂t f(t, x) = βf(t, x) = βxeβt, ∂x f(t, x) = eβt, ∂2
x fxx(t, x) = 0.

By assumption,

dXt = −βXt dt + σ dBt Ô⇒ (dXt)2 = σ2 (dBt)2 = σ2 dt,

and by Itô’s formula (18.8) we get

Yt − Y0

= ∫
t

0
( ft(s,Xs) − βXsfx(s,Xs)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+ 1
2 σ

2fxx(s,Xs)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

)ds + ∫
t

0
σfx(s,Xs)dBs

= ∫
t

0
σfx(s,Xs)dBs.

So we have the solution, but we still have to go through the procedure in Solution 1

or 2 in order to verify our result.

b) SinceXt is the limit of normally distributed random variables, it is itself Gaussian (see

also part d))—if ξ is non-random or itself Gaussian and independent of everything

else. In particular, if X0 = ξ = const.,

Xt ∼ N (e−βt ξ, σ2e−2βt∫ t0 e2βs ds) = N (e−βt ξ, σ2

2β (1 − e
−2βt)) .

Now

C(s, t) = EXsXt = e−β(t+s) ξ2 + σ
2

2β
e−β(t+s)(e2βs − 1), t ⩾ s ⩾ 0,

and, therefore

C(s, t) = e−β(t+s) ξ2 + σ
2

2β
(e−β∣t−s∣ − e−β(t+s)) for all s, t ⩾ 0.

c) The asymptotic distribution, as t→∞, is X∞ ∼ N(0, σ2(2β)−1).

d) We have

E
⎛
⎝

exp

⎡⎢⎢⎢⎢⎣
i
n

∑
j=1

λjXtj

⎤⎥⎥⎥⎥⎦

⎞
⎠

= E
⎛
⎝

exp

⎡⎢⎢⎢⎢⎣
i
n

∑
j=1

λje
−βtjξ + iσ

n

∑
j=1

λje
−βtj ∫

tj

0
eβs dBs

⎤⎥⎥⎥⎥⎦

⎞
⎠

= exp
⎛
⎜
⎝
−σ

2

4β

⎡⎢⎢⎢⎢⎣

n

∑
j=1

λje
−βtj

⎤⎥⎥⎥⎥⎦

2⎞
⎟
⎠
E

⎛
⎝

exp

⎡⎢⎢⎢⎢⎣
iσ

n

∑
j=1

ηjYj

⎤⎥⎥⎥⎥⎦

⎞
⎠
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where

ηj = λje−βtj , Yj = ∫
tj

0
eβs dBs, t0 = 0, Y0 = 0.

Moreover,
n

∑
j=1

ηjYj =
n

∑
k=1

(Yk − Yk−1)
n

∑
j=k

ηj

and

Yk − Yk−1 = ∫
tk

tk−1

eβs dBs ∼ N(0, (2β)−1(e2βtk − e2βtk−1)) are independent.

Consequently, we see that

E
⎛
⎝

exp

⎡⎢⎢⎢⎢⎣
i
n

∑
j=1

λjXtj

⎤⎥⎥⎥⎥⎦

⎞
⎠

= exp [−σ
2

4β
(∑n

j=1
λje

−βtj)
2
]
n

∏
k=1

exp [−σ
2

4β
(e2βtk − e2βtk−1)(∑n

j=k λje
−βtj)

2
]

= exp [−σ
2

4β
(∑n

j=1
λje

−βtj)
2
{1 + e2βt1 − 1}]×

×
n

∏
k=2

exp [−σ
2

4β
(1 − e−2β(tk−tk−1)) ⋅ (∑n

j=k λje
−β(tj−tk))

2
]

= exp [−σ
2

4β
(∑n

j=1
λje

−β(tj−t1))
2
]×

×
n

∏
k=2

exp [−σ
2

4β
(1 − e−2β(tk−tk−1)) ⋅ (∑n

j=k λje
−β(tj−tk))

2
] .

Note: the distribution of (Xt1 , . . . ,Xtn) depends on the difference of the consecutive

epochs t1 < . . . < tn.

e) We write for all t ⩾ 0

X̃t = eβtXt and Ũt = eβtUt

and we show that both processes have the same finite-dimensional distributions.

Clearly, both processes are Gaussian and both have independent increments. From

X̃0 =X0 = 0 and Ũ0 = U0 = 0

and for s ⩽ t

X̃t − X̃s = σ∫
t

s
eβr dBr

∼ N(0, σ
2

2β
(e2βt − e2βs)),

Ũt − Ũs =
σ√
2β

(B(e2βt − 1) −B(e2βs − 1))

∼ σ

2β
B(e2βt − e2βs)

∼ N(0, σ
2

2β
(e2βt − e2βs))

we see that the claim is true.
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∎∎

Problem 21.6. Solution: We use the time-dependent Itô formula from Problem 18.7 (or the

two-dimensional Itô-formula for the process (t,Xt)) with f(t, x) = ect ∫ x0
dy
σ(y) . Note that

the parameter c is still a free parameter.

Using Itô’s multiplication rule—(dt)2 = dt dBt = 0 and (dBt)2 = dt we get

dXt = b(Xt)dt + σ(Xt)dBt Ô⇒ (dXt)2 = d⟨X⟩t = σ2(Xt)dt.

Thus,

dZt = df(t,Xt) = ∂tf(t,Xt)dt + ∂xf(t,Xt)dXt + 1
2 ∂

2
xf(t,Xt) (dXt)2

= cect∫
Xt

0

dy

σ(y) dt + e
ct 1

σ(Xt)
dXt −

1

2
ect

σ′(Xt)
σ2(Xt)

σ2(Xt)dt

= cect∫
Xt

0

dy

σ(y) dt + e
ct b(Xt)
σ(Xt)

dt + ect dBt −
1

2
ect σ′(Xt)dt

= ect [c∫
Xt

0

dy

σ(dy) −
1

2
σ′(Xt) +

b(Xt)
σ(Xt)

] dt + ect dBt.

Let us show that the expression in the brackets [⋯] is constant if we choose c appropriately.

For this we differentiate this expression:

d

dx
[c∫

x

0

dy

σ(dy) −
1

2
σ′(x) + b(x)

σ(x)] =
c

σ(x) −
d

dx
[1

2
σ′(x) − b(x)

σ(x)]

= c

σ(x) − [1

2
σ′′(x) − d

dx

b(x)
σ(x)]

= 1

σ(x)(c − σ(x) [
1

2
σ′′(x) − d

dx

b(x)
σ(x)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=const. by assumption

)

This shows that we should choose c in such a way that the expression c− σ ⋅ [⋯] becomes

zero, i.e.

c = σ(x) [1

2
σ′′(x) − d

dx

b(x)
σ(x)] .

∎∎

Problem 21.7. Solution: Set f(t, x) = tx. Then

∂tf(t, x) = x, ∂xf(t, x) = t, ∂2
xf(t, x) = 0.

Using the time-dependent Itô formula (cf. Problem 18.7) or the two-dimensional Itô for-

mula (cf. Theorem 18.8) for the process (t,Bt) we get

dXt = ∂tf(t,Bt)dt + ∂xf(t,Bt)dBt + 1
2 ∂

2
xf(t,Bt)dt

= Bt dt + t dBt

= Xt

t
dt + t dBt.
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Together with the initial condition X0 = 0 this is the SDE which has Xt = tBt as solution.

The trouble is, that the solution is not unique! To see this, assume that Xt and Yt are

any two solutions. Then

dZt ∶= d(Xt − Yt) = dXt − dYt = (Xt

t
− Yt
t
)dt = Zt

t
dt, Z0 = 0.

This is an ODE and all (deterministic) processes Zt = ct are solutions with initial condition

Z0 = 0. If we want to enforce uniqueness, we need a condition on Z ′
0. So

dXt =
Xt

t
dt + t dBt and

d

dt
Xt∣

t=0
= x′0

will do. (Note that tBt is differentiable at t = 0!).

∎∎

Problem 21.8. Solution:

a) With the argument from Problem 21.7, i.e. Itô’s formula, we get for f(t, x) = x/(1+t)

∂tf(t, x) = −
x

(1 + t)2
, ∂xf(t, x) =

1

1 + t , ∂2
xf(t, x) = 0.

And so

dUt = −
Bt

(1 + t)2
dt + 1

1 + t dBt

= − Ut
1 + t dt +

1

1 + t dBt.

The initial condition is U0 = 0.

b) Using Itô’s formula for f(x) = sinx we get, because of sin2 x + cos2 x = 1, that

dVt = cosBt dBt − 1
2 sinBt dt

=
√

1 − sin2Bt dBt − 1
2 sinBt dt

=
√

1 − V 2
t dBt − 1

2 Vt dt

and the initial condition is V0 = 0.

Attention: We loose all information on the sign of cosBt when taking the square root
√

1 − sinBt. This means that the SDE corresponds to Vt = sinBt only when cosBt is

positive, i.e. for t < inf {s > 0 ∶ Bs ∉ [−1
2π,

1
2π]}.

c) Using Itô’s formula in each coordinate we get

d(Xt

Yt
) = (−a sinBt

b cosBt
)dBt +

1

2
(−a cosBt
−b sinBt

)dt

= (
−ab b sinBt
b
a a cosBt

)dBt −
1

2
(a cosBt
b sinBt

)dt

= (
−ab Yt
b
a Xt

)dBt −
1

2
(Xt

Yt
)dt.

The initial condition is (X0, Y0) = (a,0).
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∎∎

Problem 21.9. Solution:

a) We use Example 21.7 (and 21.6) where we set

α(t) ≡ b, β(t) ≡ 0, γ(t) ≡ 0, δ(t) ≡ σ.

Then we get

dX○
t = σ2X○

t dt − σX○
t dBt

dZt = bX○
t dt

and, by Example 21.6 we see

X○
t =X○

0 exp(∫
t

0
(σ2 − 1

2σ
2)ds − ∫

t

0
σ dBs)

=X○
0 exp (1

2σ
2t − σBt)

Zt = ∫
t

0
bX○

s ds

Thus,

Zt = ∫
t

0
b e

1
2
σ2s−σBs ds

Xt =
Zt
X○
t

= be−
1
2
σ2t+σBt ∫

t

0
e

1
2
σ2s−σBs ds.

We finally have to adjust the initial condition by adding X0 = x0 to the Xt we have

just found:

Ô⇒ Xt =X0 + be−
1
2
σ2t+σBt ∫

t

0
e

1
2
σ2s−σBs ds.

Alternative Solution (by R. Baumgarth, TU Dresden): This solution does

not use Example 21.7 First, we solve the homogeneous SDE, i.e. b = 0:

dXt = σXt dBt.

Using Zt ∶= logXt and Itô’s formula (or simply Example we see that this equation

has the unique solution

Xt = x0e
− 1

2
σ2t+σBt ,

which is of the form

constant = x0 =Xte
1
2
σ2t−σBt =XtX

o
t .

Because of the form of the homogeneous solution, we now use stochastic integration

by parts1

d(XtX
o
t ) =Xt dX

0
t +X0

t dXt + d⟨X,X0⟩t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=dXtdX0

t

. (*)

1Note this formula can be shown by applying Itô’s formula on f(x,x0) = xx0.
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So we need to find dX0
t . Using f(y) = ey for the process Yt = 1

2σ
2t − σBt gives

dXo
t = df(Yt) = f ′(Yt)dYt +

1

2
f ′′(Yt)(dYt)2

=Xo
t (

1

2
σ2 dt − σ dBt +

1

2
σ2 dt)

= σ2X0
t dt − σXo

t dBt.

Inserting everything in (*) yields

d(XtX
o
t ) =XtX

o
t (σ2 dt − σ dBt) +Xo

t (b dt + σXt dBt)

=Xo
t b dt,

and so the solution is

Xt −X0 =
1

Xo
t

b∫
t

0
Xo
s ds

Xt =X0 + b e−
1
2
σ2t+σBt ∫

t

0
e

1
2
σ2s−σBs ds.

b) We use Example 21.7 (and 21.6) where we set

α(t) ≡m, β(t) ≡ −1, γ(t) ≡ σ, δ(t) ≡ 0.

Then we get

dX○
t =X○

t dt

dZt =mX○
t dt + σX○

t dBt

Thus,

X○
t =X○

0 e
t

Zt = ∫
t

0
mes ds + σ∫

t

0
es dBs

=m (et − 1) + σ∫
t

0
es dBs

Xt =
Zt
X○
t

=m (1 − e−t) + σ∫
t

0
es−t dBs

and, if we take care of the initial condition X0 = x0, we get

Ô⇒ Xt = x0 +m (1 − e−t) + σ∫
t

0
es−t dBs.

Alternative Solution (by R. Baumgarth, TU Dresden): This does not use

Example 21.7. Consider the deterministic ODE σ = 0 and, to simplify the problem,

m = 0.

ẋ(t) = −x(t)
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has the unique solution

x(t) = x0e
−t.

Thus, the solution is of the form

constant = x0 = x(t)et = f(t, xt).

Now use Itô’s formula for Yt = f(t,Xt):

df(t,Xt) = ∂tf(t,Xt)dt + ∂xf(t,Xt)dXt +
1

2
∂2
xf(t,Xt)(dXt)2

=Xte
t dt + et ((m −Xt)dt + σ dBt) + 0

= et (mdt + σ dBt) .

Hence,

Xte
t −X0 =m∫

t

0
es ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= (et−1)

+σ∫
t

0
es dBs

or

Xt =X0 +m (1 − e−t) + σ∫
t

0
es−t dBs.

∎∎

Problem 21.10. Solution: Set

b(x) =
√

1 + x2 + 1
2 x and σ(x) =

√
1 + x2.

Then we get (using the notation of Lemma 21.10)

σ′(x) = x√
1 + x2

and κ(x) = b(x)
σ(x) −

1
2 σ

′(x) = 1.

Using the Ansatz of Lemma 21.10 we set

d(x) = ∫
x

0

dy

σ(y) = arsinhx and Zt = f(Xt) = d(Xt).

Using Itô’s formula gives

dZt = ∂xf(Xt)dXt + 1
2 ∂

2
xf(Xt)σ2(Xt)dt

= 1

σ(Xt)
dXt + 1

2
( 1
σ
)′ (Xt)σ2(Xt)dt

= (1 + Xt

2
√

1 +X2
t

)dt + dBt + 1
2 (− Xt

(1 +X2
t )3/2)(1 +X2

t )dt

= dt + dBt,
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and so Zt = Z0 + t +Bt. Finally,

Xt = sinh(Z0 + t +Bt) where Z0 = arsinhX0.

Alternative Solution (by R. Baumgarth, TU Dresden): In order to guess the

correct Ansatz, consider first the ODE

dx(t) = (
√

1 + x(t)2 +///////
1

2
x(t)) dt.

If we do not get rid of the second tern, things get messy when integrating. Hence, this

ODE is very easy to solve by separation of variables and we see

arsinhx(t) = t + c,

so a suitable Ansatz for Itô’s formula is Yt ∶= f(t,Xt) = arsinhXt − t.

dYt = ft(t,Xt)dt + fx(t,Xt)dXt +
1

2
fxx(t,Xt) (dXt)2

= −dt + 1√
1 +X2

t

dXt +
1

2

⎛
⎝
− Xt√

(1 +X2
t )3

⎞
⎠
(1 +X2

t ) dt

= −dt + 1√
1 +X2

t

[(
√

1 +X2
t +

1

2
Xt) dt +

√
1 +X2

t dBt] −
Xt

2
√

1 +X2
t

dt

= −dt + dt + Xt

2
√

1 +X2
t

dt + dBt −
Xt

2
√

1 +X2
t

dt

= dBt,

hence Yt = Y0 +Bt and Xt = sinh(X0 +Bt + t).

∎∎

Problem 21.11. Solution: Set b = b(t, x), b0 = b(t,0) etc. Observe that ∥b∥ = (∑j ∣bj(t, x)∣2)
1/2

and ∥σ∥ = (∑j,k ∣σjk(t, x)∣2)
1/2

are norms; therefore, we get using the triangle estimate

and the elementary inequality (a + b)2 ⩽ 2(a2 + b2)

∥b∥2 + ∥σ∥2 = ∥b − b0 + b0∥2 + ∥σ − σ0 + σ0∥2

⩽ 2∥b − b0∥2 + 2∥σ − σ0∥2 + 2∥b0∥2 + 2∥σ0∥2

⩽ 2L2∣x∣2 + 2∥b0∥2 + 2∥σ0∥2

⩽ 2L2(1 + ∣x∣)2 + 2(∥b0∥2 + ∥σ0∥2)(1 + ∣x∣)2

⩽ 2(L2 + ∥b0∥2 + ∥σ0∥2)(1 + ∣x∣)2.

∎∎

Problem 21.12. Solution:

a) If b(x) = −ex and Xx
0 = x we have to solve the following ODE/integral equation

Xx
t = x − ∫

t

0
eX

x
s ds
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and it is not hard to see that the solution is

Xx
t = log ( 1

t + e−x) .

This shows that

lim
x→∞

Xx
t = lim

x→∞
log ( 1

t + e−x) = log
1

t
= − log t.

This means that Corollary 21.31 fails in this case since the coefficient of the ODE

grows too fast.

b) Now assume that ∣b(x)∣ + ∣σ(x)∣ ⩽M for all x. Then we have

∣∫
t

0
b(Xs)ds∣ ⩽Mt.

By Itô’s isometry we get

E [∣∫
t

0
σ(Xx

s )dBs∣
2

] = E [∫
t

0
∣σ2(Xx

s )∣ds] ⩽M2t.

Using (a + b)2 ⩽ 2a2 + 2b2 we see

E(∣Xx
t − x∣2) ⩽ 2E [∣∫

t

0
b(Xs)ds∣

2

] + 2E [∣∫
t

0
σ(Xx

s )dBs∣
2

]

⩽ 2(Mt)2 + 2M2t

= 2M2t(t + 1).

By Fatou’s lemma

E
⎛
⎝

lim
∣x∣→∞

∣Xx
t − x∣2

⎞
⎠
⩽ lim

∣x∣→∞
E(∣Xx

t − x∣2) ⩽ 2M2t(t + 1)

which shows that ∣Xx
t ∣ cannot be bounded as ∣x∣→∞.

c) Assume now that b(x) and σ(x) grow like ∣x∣p/2 for some p ∈ (0,2). A calculation as

above yields

∣∫
t

0
b(Xs)ds∣

2 Cauchy

⩽
Schwarz

t∫
t

0
∣b(Xs)∣2 ds ⩽ cpt∫

t

0
(1 + ∣Xs∣p)ds

and, by Itô’s isometry

E [∣∫
t

0
σ(Xx

s )dBs∣
2

] = E [∫
t

0
∣σ2(Xx

s )∣ds] ⩽ c′∫
t

0
E(1 + ∣Xs∣p)ds.

Using (a + b)2 ⩽ 2a2 + 2b2 and Theorem 21.28 we get

E ∣Xx
t − x∣2 ⩽ 2cpt∫

t

0
(1 +E(∣Xs∣p))ds + 2c′∫

t

0
(1 +E(∣Xs∣p))ds

⩽ ct,p + c′t,p∫
t

0
∣x∣p dt

= ct,p + t c′t,p∣x∣p.
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Again by Fatou’s theorem we see that the left-hand side grows like ∣x∣2 (if Xx
t is

bounded) while the (larger!) right-hand side grows like ∣x∣p, p < 2, and this is impos-

sible.

Thus, (Xx
t )x is unbounded as ∣x∣→∞.

∎∎

Problem 21.13. Solution: We have to show

∣x − y∣
(1 + ∣x∣)(1 + ∣y∣)

!

⩽ ∣ x∣x∣2 −
y

∣y∣2 ∣

⇐⇒ ∣x − y∣2
(1 + ∣x∣)2(1 + ∣y∣)2

⩽ ∣ x∣x∣2 −
y

∣y∣2 ∣
2

⇐⇒ ∣x∣2 − 2⟨x, y⟩ + ∣y∣2
(1 + ∣x∣)2(1 + ∣y∣)2

⩽ ∣x∣2
∣x∣4 −

2⟨x, y⟩
∣x∣2∣y∣2 +

∣y∣2
∣y∣4

⇐⇒ 2⟨x, y⟩ ( 1

∣x∣2∣y∣2 −
1

(1 + ∣x∣)2(1 + ∣y∣)2
) ⩽ 1

∣x∣2 +
1

∣y∣2 −
∣x∣2 + ∣y∣2

(1 + ∣x∣)2(1 + ∣y∣)2

⇐⇒ 2⟨x, y⟩ ( 1

∣x∣2∣y∣2 −
1

(1 + ∣x∣)2(1 + ∣y∣)2
) ⩽ (∣x∣2 + ∣y∣2)( 1

∣x∣2∣y∣2 −
1

(1 + ∣x∣)2(1 + ∣y∣)2
) .

By the Cauchy-Schwarz inequality we get 2⟨x, y⟩ ⩽ 2∣x∣ ⋅ ∣y∣ ⩽ ∣x∣2+ ∣y∣2, and this shows that

the last estimate is correct.

Alternative Solution (by R. Baumgarth, TU Dresden): We can also use the

following direct calculation:

∣x − y∣2

(1 + ∣x∣)2 (1 + ∣y∣)2
= ∣x∣2 − 2⟨x, y⟩ + ∣y∣2

(1 + ∣x∣)2 (1 + ∣y∣)2

⩽ ∣x∣2 − 2⟨x, y⟩ + ∣y∣2
∣x∣2 ∣y∣2

= 1

∣y∣2 −
2⟨x, y⟩
∣x∣2 ∣y∣2 +

1

∣x∣2

= ∣ x∣x∣2 −
y

∣y∣2 ∣
2

.

∎∎

Problem 21.14. Solution:

a) We have seen in Corollary 21.24 that the transition function is given by

p(t, x;B) = P(Xx
t ∈ B), t ⩾ 0, x ∈ R, B ∈ B(R).

Consequently,

Ttf(x) = ∫ f(y)p(t, x;dy) = E(f(Xx
t )).

By Theorem 21.27 we know that x ↦ Ttf(x) = E(f(Xx
t )) is continuous for each

f ∈ Cb(R). Since

∣Ttf(x)∣ ⩽ E ∣f(Xx
t )∣ ⩽ ∥f∥∞

we conclude that Tt maps Cb(R) into itself.
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b) Let f ∈ C∞(R), t ⩾ 0. By part (a), Ttf ∈ Cb(R). Therefore, it suffices to show

lim
∣x∣→∞

∣Ttf(x)∣ = lim
∣x∣→∞

∣E(f(Xx
t ))∣ = 0.

Since f ∈ C∞(R) we obtain by applying Corollary 21.31,

lim
∣x∣→∞

∣f(Xx
t )∣ = 0 almost surely.

The claim follows from the dominated convergence theorem.

c) Let f ∈ C2
c(R), x ∈ R. By Itô’s formula,

f(Xx
t ) − f(x) = ∫

t

0
f ′(Xx

s )dXx
s +

1

2
∫

t

0
f ′′(Xx

s )σ2(Xx
s )ds

= ∫
t

0
f ′(Xx

s )σ(Xx
s )dBs + ∫

t

0
(f ′(Xx

s )b(Xx
s ) +

1

2
f ′′(Xx

s )σ2(Xx
s )) ds.

The first term on the right is a martingale, its expectation equals 0. Thus,

E(f(Xx
t )) − f(x)
t

= 1

t
E [∫

t

0
(f ′(Xx

s )b(Xx
s ) +

1

2
f ′′(Xx

s )σ2(Xx
s )) ds]

= 1

t
∫

t

0
E(f ′(Xx

s )b(Xx
s ) +

1

2
f ′′(Xx

s )σ2(Xx
s )) ds.

Using Theorem 7.22, we get

Af(x) = lim
t→0

Ttf(x) − f(x)
t

= f ′(x)b(x) + 1

2
f ′′(x)σ2(x).

Since the right-hand side is in C∞, Theorem 7.22 applies and shows that C2
c(R) ⊂

D(A). Moreover, the same calculation shows that

D(A) ⊃ {u ∈ C∞(R) ∶ u′, u′′ ∈ C(R), bu′ + 1
2σ

2u′′ ∈ C∞}

i.e. the domain of A takes into account the growth of σ and b.

Since A is a second-order differential operator, it clearly has an extension onto C2
b (R).

d) Let u ∈ C1,2([0,∞) ×R). By the time-dependent Itô formula we have

u(t,Xx
t ) − u(0, x)

= ∫
t

0
∂xu(s,Xx

s )dXx
s + ∫

t

0
(∂tu(s,Xx

s ) +
1

2
∂2
xu(s,Xx

s )σ2(Xx
s )) ds

= ∫
t

0
∂xu(s,Xx

s )σ(Xx
s )dBs + ∫

t

0
(∂tu(s,Xx

s ) + ∂xu(s,Xx
s )b(Xx

s ) +

+ 1

2
∂2
xu(s,Xx

s )σ2(Xx
s ))ds.

We have shown in part (c) that (for an extension of A)

Axu(s,Xx
s ) = b(Xx

s )∂xu(s,Xx
s ) +

1

2
σ2(Xx

s )∂2
xu(s,Xx

s ) for all fixed s ⩾ 0.

Consequently,

u(t,Xx
t ) − u(0, x) = ∫

t

0
∂xu(s,Xx

s )σ(Xx
s )dBs + ∫

t

0
(∂tu(s,Xx

s ) +Axu(s,Xx
s ))ds.

223



R.L. Schilling: Brownian Motion (3rd edn)

In particular we find that

Mu,x
t ∶= u(t,Xx

t ) − u(0, x) − ∫
t

0
(∂tu(s,Xx

s ) +Axu(s,Xx
s ))ds

is a martingale. By our assumptions, it is a bounded martingale and so we can use

Doob’s optional stopping theorem for the stopping time τ ∧ n

Eu(t,Xx
τ∧n) = u(0, x) +E(∫

τ∧n

0
(∂tu(s,Xx

s ) +Axu(s,Xx
s ))ds)

and, since everything is bounded and since E τ <∞, dominated convergence proves

the claim.

Remark: A close inspection of our argument reveals that we do not need boundedness

of b, σ if we replace E τ <∞ by

E(∫
τ

0
σ2(Xx

s )ds) +E(∫
τ

0
∣b(Xx

σ)∣ds) <∞.

∎∎
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22 Stratonovich’s stochastic calculus

Problem 22.1. Solution: We have, using the time-dependent Itô formula (18.18) with d =
m = 1,

df(t,Xt) = ∂tf(t,Xt)dt + ∂xf(t,Xt)b(t)dt + ∂xf(t,Xt)σ(t)dBt + 1
2∂

2
xf(t,Xt)σ2(t)dt

(18.18)= ∂tf(t,Xt)dt + ∂xf(t,Xt)b(t)dt + ∂xf(t,Xt)σ(t) ○dBt

and this is exactly what we would get if we would use normal calculus rules and if dBt =
β̇t dt: By the usual chain rule

f(t, ξt) = ∂tf(t, ξt) + ∂xf(t, ξt)ξ̇t
= ∂tf(t, ξt) + ∂xf(t, ξt)σ(t)β̇t + ∂xf(t, ξt)b(t)

where we used that ξt = ξ0 + ∫ t0 σ(s)β̇(s)ds + ∫
t

0 b(s)ds.

∎∎

Problem 22.2. Solution: Then we have

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
x

x0

dξ

σ(ξ) , if 0 < x0 < x,

−∫
x0

x

dξ

σ(ξ) , if 0 < x ⩽ x0.

The Function g and its inverse u = g−1 are shown in the pictures below. Note the difference

between the cases ∫0+
dξ
σ(ξ) =∞ and <∞.

Yo

So. *'*

The solution to the SDE is now given by

τ ∶= inf {t ⩾ 0 ∶ u(Bt) = 0} ,
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Xt ∶=u(Bt)1{τ>t}.

Note that the fact that σ(0) = 0 means that in the SDE Xt cannot move once it reaches

0. The pictures above illustrate that

∫
0+

dξ

σ(ξ) =∞ Ô⇒ τ =∞

∫
0+

dξ

σ(ξ) <∞ Ô⇒ τ <∞.

∎∎

Problem 22.3. Solution: Denote by Lf , Lg the global Lipschitz constants and observe that

the global Lipschitz property entails linear growth:

∣g(x)∣ ⩽ ∣g(0)∣ + ∣g(x) − g(0)∣ ⩽ ∣g(0)∣ +Lg ∣x∣.

Now let −r ⩽ x, y ⩽ r. Then

∣h(x) − h(y)∣ = ∣f(x)g(x) − f(y)g(y)∣

⩽ ∣f(x)g(x) − f(y)g(x)∣ + ∣f(y)g(x) − f(y)g(y)∣

⩽ ∣f(x) − f(y)∣∣g(x)∣ + ∥f∥∞∣g(x) − g(y)∣

⩽ Lf sup
∣x∣⩽r

∣g(x)∣∣x − y∣ + ∥f∥∞Lg ∣x − y∣,

and the local Lipschitz property follows. Finally,

∣h(x)∣ = ∣f(x)∣∣g(x)∣ ⩽ ∥f∥∞(∣g(0)∣ +Lg ∣x∣),

and we are done.

∎∎
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23 On diffusions

Problem 23.1. Solution: We have

Au = Lu = 1

2

d

∑
i,j=1

aij∂i∂ju +
d

∑
i=1

bi∂iu

and we know that L ∶ C∞c → C. Fix R > 0 and i, j ∈ {1, . . . , d} where x = (x1, . . . , xd) ∈ Rd

and χ ∈ C∞c (Rd) such that χ∣B(0,R) ≡ 1.

For all u,χ ∈ C2 we get

L(φu) = 1

2
∑
i,j

aij∂i∂j(φu) +∑
i

bi∂i(φu)

= 1

2
∑
i,j

aij(∂i∂jφ + ∂i∂ju + ∂iφ∂ju + ∂iu∂jφ) +∑
i

bi(u∂iφ + φ∂iu)

= φLu + uLφ +∑
i,j

aij∂iφ∂ju

where we used the symmetry aij = aji in the last step.

Now use u(x) = xi and φ(x) = χ(x). Then uχ ∈ C∞c , L(uχ) ∈ C and so

L(uχ)(x) = bi(x) for all ∣x∣ < R Ô⇒ bi∣B(0,R) continuous.

Now use u(x) = xixj and φ(x) = χ(x). Then uχ ∈ C∞c , L(uχ) ∈ C and so

L(uχ)(x) = aij + xjbi(x) + xibj(x) for all ∣x∣ < R Ô⇒ aij ∣B(0,R) continuous.

Since R > 0 is arbitrary, the claim follows.

∎∎

Problem 23.2. Solution: This is a straightforward application of the differentiation Lemma

which is familiar from measure and integration theory, cf. Schilling [18, Theorem 12.5]:

observe that by our assumptions

∣∂
2p(t, x, y)
∂xj∂xk

∣ ⩽ C(t) for all x, y ∈ Rd

which shows that for u ∈ C∞
c (Rd)

∣∂
2p(t, x, y)
∂xj∂xk

u(y)∣ ⩽ C(t) ∣u(y)∣ ∈ L1(Rd) (*)
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for each t > 0. Thus we get

∂2

∂xj∂xk
∫ p(t, x, y)u(y)dy = ∫

∂2

∂xj∂xk
p(t, x, y)u(y)dy.

Moreover, (*) and the fact that p(t, ⋅, y) ∈ C∞(Rd) allow us to change limits and integrals

to get for x→ x0 and ∣x∣→∞

lim
x→x0

∫
∂2

∂xj∂xk
p(t, x, y)u(y)dy = ∫ lim

x→x0

∂2

∂xj∂xk
p(t, x, y)u(y)dy

= ∫
∂2

∂xj∂xk
p(t, x0, y)u(y)dy

Ô⇒ Tt maps C∞c (Rd) into C(Rd);

lim
∣x∣→∞∫

∂2

∂xj∂xk
p(t, x, y)u(y)dy = ∫ lim

∣x∣→∞

∂2

∂xj∂xk
p(t, x, y)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

u(y)dy = 0

Ô⇒ Tt maps C∞c (Rd) into C∞(Rd).

Addition: With a standard uniform boundedness and density argument we can show that

Tt maps C∞ into C∞: fix u ∈ C∞(Rd) and pick a sequence (un)n ⊂ C∞c (Rd) such that

lim
n→∞

∥u − un∥∞ = 0.

Then we get

∥Ttu − Ttun∥∞ = ∥Tt(u − un)∥∞ ⩽ ∥u − un∥∞ ÐÐÐ→
n→∞

0

which means that Ttun → Ttu uniformly, i.e. Ttu ∈ C∞ as Ttun ∈ C∞.

∎∎

Problem 23.3. Solution: Let u ∈ C2
∞. Then there is a sequence of test functions (un)n ⊂ C∞c

such that ∥un − u∥(2) → 0. Thus, un → u uniformly and A(un − um) → 0 uniformly. The

closedness now gives u ∈D(A).

∎∎

Problem 23.4. Solution: Let u,φ ∈ C∞c (Rd). Then

⟨Lu,φ⟩L2 =∑
i,j
∫
Rd
aij∂i∂ju ⋅ φdx +∑

j
∫
Rd
bj∂ju ⋅ φdx + ∫

Rd
cu ⋅ φdx

int by=
parts

∑
i,j
∫
Rd
u ⋅ ∂i∂j(aijφ)dx −∑

j
∫
Rd
u ⋅ ∂j(bjφ)dx + ∫

Rd
u ⋅ cφdx

= ⟨u,L∗φ⟩L2

where

L∗(x,Dx)φ(x) =∑
ij

∂i∂j(aij(x)φ(x)) −∑
j

∂j(bj(x)φ(x)) + c(x)φ(x).
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Now assume that we are in (t, x) ∈ [0,∞) ×Rd—the case R ×Rd is easier, as we have no

boundary term. Consider L + ∂t = L(x,Dx) + ∂t for sufficiently smooth u = u(t, x) and

φ = φ(t, x) with compact support in [0,∞) ×Rd. We find

∫
∞

0
∫
Rd

(L + ∂t)u(t, x) ⋅ φ(t, x)dxdt

= ∫
∞

0
∫
Rd
Lu(t, x) ⋅ φ(t, x)dxdt + ∫

∞

0
∫
Rd
∂tu(t, x) ⋅ φ(t, x)dxdt

= ∫
∞

0
∫
Rd
Lu(t, x) ⋅ φ(t, x)dxdt + ∫

Rd
∫

∞

0
∂tu(t, x) ⋅ φ(t, x)dt dx

= ∫
∞

0
∫
Rd
u(t, x) ⋅L∗φ(t, x)dxdt + ∫

Rd
(u(t, x)φ(t, x)∣

∞

t=0
− ∫

∞

0
u(t, x) ⋅ ∂tφ(t, x)dt)dx

= ∫
∞

0
∫
Rd
u(t, x) ⋅L∗φ(t, x)dxdt − ∫

Rd
(u(0, x)φ(0, x) + ∫

∞

0
u(t, x) ⋅ ∂tφ(t, x)dt)dx.

This shows that (L(x,Dx) + ∂t)∗ = L∗(x,Dx) − ∂t − δ(0,x).

∎∎

Problem 23.5. Solution: Using Lemma 7.10 we get for all u ∈ C∞c (Rd)
d

dt
Ttu(x) = TtL(⋅,D)u(x)

Ô⇒ d

dt
∫ p(t, x, y)u(y)dy = ∫ p(t, x, y)L(y,Dy)u(y)dy

Ô⇒ ∫
d

dt
p(t, x, y)u(y)dy = ∫ p(t, x, y)L(y,Dy)u(y)dy.

The change of differentiation and integration can easily be justified by a routine application

of the differentiation lemma (e.g. Schilling [18, Theorem 12.5]): under our assumptions

we have for all ε ∈ (0,1) and R > 0

sup
t∈[ε,1/ε]

sup
∣x∣⩽R

∣ d
dt
p(t, x, y)u(y)∣ ⩽ C(ε,R) ∣u(y)∣ ∈ L1(Rd).

Inserting the expression for the differential operator L(y,Dy), we find for the right-hand

side

∫ p(t, x, y)L(y,Dy)u(y)dy

= 1

2

d

∑
j,k=1

∫ p(t, x, y) ⋅ ajk(y)
∂2u(y)
∂yj∂yk

dy +
d

∑
j=1
∫ p(t, x, y) ⋅ bj(y)

∂u(y)
∂yj

dy

int. by=
parts

1

2

d

∑
j,k=1

∫
∂2

∂yj∂yk
(ajk(y) ⋅ p(t, x, y))u(y)dy +

d

∑
j=1
∫

∂

∂yj
(bj(y) ⋅ p(t, x, y))u(y)dy

= ∫ L∗(y,Dy)p(t, x, y)u(y)dy

and the claim follows since u ∈ C∞c (Rd) is arbitrary.

∎∎

Problem 23.6. Solution: Problem 6.5 shows that Xt is a Markov process. The continuity of

the sample paths is obvious and so is the Feller property (using the form of the transition

function found in the solution of Problem 6.5).
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Let us calculate the generator. Set It = ∫ t0 Bs ds. The semigroup is given by

Ttu(x, y) = Ex,y u(Bt, It) = Eu (Bt + x, ∫ t0 (Bs + x)ds + y) = Eu(Bt + x, It + tx + y).

If we differentiate the expression under the expectation with respect to t, we get with the

help of Itô’s formula

du(Bt + x, It + tx + y) = ∂xu(Bt + x, It + tx + y)dBt
+ ∂yu(Bt + x, It + tx + y)d(It + tx)

+ 1

2
∂2
xu(Bt + x, It + tx + y)dt

= ∂xu(Bt + x, It + tx + y)dBt
+ ∂yu(Bt + x, It + tx + y)(Bt + x)dt

+ 1

2
∂2
xu(Bt + x, It + tx + y)dt

since dBs dIs = 0. So,

Eu(Bt + x, It + tx + y) − u(x, y) = ∫
t

0
E [∂yu(Bs + x, Is + sx + y)(Bs + x)]ds

+ 1

2
∫

t

0
E [∂2

xu(Bs + x, Is + sx + y)]ds.

Dividing by t and letting t→ 0 we get

Lu(x, y) = x∂yu(x, y) +
1

2
∂2
xu(x, y).

∎∎

Problem 23.7. Solution: We assume for a) and b) that the operator L is more general than

written in (23.1), namely

Lu(x) = 1

2

d

∑
i,j=1

aij(x)
∂2u(x)
∂xi∂xj

+
d

∑
j=1

bj(x)
∂u(x)
∂xj

+ c(x)u(x)

where all coefficients are continuous functions.

a) If u has compact support, then Lu has compact support. Since, by assumption, the

coefficients of L are continuous, Lu is bounded, hence Mu
t is square integrable.

Obviously, Mu
t is Ft measurable. Let us establish the martingale property. For this

we fix s ⩽ t. Then

Ex (Mu
t ∣ Fs) = Ex (u(Xt) − u(X0) − ∫

t

0
Lu(Xr)dr ∣Fs)

= Ex (u(Xt) − u(Xs) − ∫
t

s
Lu(Xr)dr ∣Fs)

+ u(Xs) − u(X0) − ∫
s

0
Lu(Xr)dr

= Ex (u(Xt) − u(Xs) − ∫
t−s

0
Lu(Xr+s)dr ∣Fs) +Mu

s
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Markov=
property

EXs (u(Xt−s) − u(X0) − ∫
t−s

0
Lu(Xr)dr) +Mu

s .

Observe that Ttu(y) = Ey u(Xt) is the semigroup associated with the Markov process.

Then

Ey (u(Xt−s) − u(X0) − ∫
t−s

0
Lu(Xr)dr)

= Tt−su(y) − u(y) − ∫
t−s

0
Ey (Lu(Xr))dr = 0

by Lemma 7.10, see also Theorem 7.30. This shows that Ex (Mu
t ∣ Fs) = Mu

s , and

we are done.

b) Fix R > 0, x ∈ Rd, and pick a smooth cut-off function χ = χR ∈ C∞c (Rd) such that

χ∣B(x,R) ≡ 1. Then for all f ∈ C2(Rd) we have χf ∈ C2
c(Rd) and it is not hard to see

that the calculation in part a) still holds for such functions.

Set τ = τxR = inf{t > 0 ∶ ∣Xt − x∣ ⩾ R}. This is a stopping time and we have

f(Xτ
t ) = χ(Xτ

t )f(Xτ
t ) = (χf)(Xτ

t ).

Moreover,

L(χf) = 1

2
∑
i,j

aij∂i∂j(χf) +∑
i

bi∂i(χf) + cχf

= 1

2
∑
i,j

aij(f∂i∂jχ + χ∂i∂jf + ∂iχ∂jf + ∂if∂jχ) +∑
i

bi(f∂iχ + χ∂if) + cχf

= χLf + fLχ +∑
i,j

aij∂iχ∂jf − cχf

where we used the symmetry aij = aji in the last step.

This calculation shows that L(χf) = Lf on B(x,R).

By optional stopping and part a) we know that (Mχf
t∧τR ,Ft)t⩾0 is a martingale. More-

over, we get for s ⩽ t

Ex (Mf
t∧τR ∣ Fs) = Ex (Mχf

t∧τR ∣ Fs)

=Mχf
s∧τR

=Mf
s∧τR .

Since (τR)R is a localizing sequence, we are done.

c) A diffusion operator L satisfies that c = 0. Thus, the calculation for L(χf) in part

b) shows that

L(uφ) − uLφ − φLu =∑
ij

aij∂iu∂jφ = ∇u(x) ⋅ a(x)∇φ(x).

This proves the second equality in the formula of the problem.
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For the first we note that d⟨Mu,Mφ⟩t = dMu
t dM

φ
t (by the definition of the bracket

process) and the latter we can calculate with the rules for Itô differentials. We have

dXj
t =∑

k

σjk(Xt)dBk
t + bj(Xt)dt

and, by Itô’s formula,

du(Xt) =∑
j

∂ju(Xt)dXj
t + dt-terms =∑

j,k

∂ju(Xt)σjk(Xt)dBk
t + dt-terms.

By definition,

dMu
t = du(Xt) −Lu(Xt)dt =∑

j,k

∂ju(Xt)σjk(Xt)dBk
t + dt-terms.

Thus, using that all terms containing (dt)2 and dBk
t dt are zero, we get

dMu
t dM

φ
t =∑

j,k

∑
l,m

∂ju(Xt)∂lφ(Xt)σjk(Xt)σlm(Xt)dBk
t dB

m
t

=∑
j,k

∑
l,m

∂ju(Xt)∂lφ(Xt)σjk(Xt)σlm(Xt) δkm dt

=∑
j,l

∂ju(Xt)∂lφ(Xt)∑
k

σjk(Xt)σlk(Xt) dt

=∑
j,l

∂ju(Xt)∂lφ(Xt)ajl dt

= ∇u(Xt) ⋅ a(Xt)∇φ(Xt)

where ajl = ∑k σjk(Xt)σlk(Xt) = (σσ⊺)jl. (x ⋅ y denotes the Euclidean scalar product

and ∇ = (∂1, . . . , ∂d)⊺.)

Alternative proof of the first equality: Let u ∈ C∞c (Rd), x ∈ Rd. Without loss of

generality we may assume u(x) = 0. The equality

u2(Xt) = (Mu
t + ∫

t

0
Lu(Xr)dr)

2

implies

(Mu
t )2 = u2(Xt) − 2Mu

t ∫
t

0
Lu(Xr)dr − (∫

t

0
Lu(Xr)dr)

2

.

Part a) shows that

u2(Xt) − ∫
t

0
L(u2)(Xr)dr

is a martingale. Moreover, since (Mu
t )t⩾0 is a martingale, we obtain by the tower

property

Ex (2Mu
t ∫

t

0
Lu(Xr)dr ∣ Fs)

= 2Ex(Mu
t ∣Fs)∫

s

0
Lu(Xr)dr + 2∫

t

s
Ex (Ex(Mu

t Lu(Xr) ∣Fr) ∣Fs)dr

= 2Mu
s ∫

s

0
Lu(Xr)dr + 2Ex (∫

t

s
Mu
r Lu(Xr)dr ∣ Fs) . (*)
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By the definition of Mu
t ,

2∫
t

s
Mu
r Lu(Xr)dr

= 2∫
t

s
u(Xr)Lu(Xr)dr − 2∫

t

s
∫

r

0
Lu(Xv)dv Lu(Xr)dr

= 2∫
t

s
u(Xr)Lu(Xr)dr − 2∫

t

s
∫

s

0
Lu(Xv)Lu(Xr)dv dr

− 2∫
t

s
∫

r

s
Lu(Xv)Lu(Xr)dv dr

= 2∫
t

s
u(Xr)Lu(Xr)dr − (∫

t

0
Lu(Xr)dr)

2

+ (∫
s

0
Lu(Xr)dr)

2

(**)

using that

2∫
t

s
∫

r

s
Lu(Xv)Lu(Xr)dv dr = (∫

t

s
Lu(Xr)dr)

2

.

Combining (*) and (**), we see that

2Mu
t ∫

t

0
Lu(Xr)dr + (∫

t

0
Lu(Xr)dr)

2

− 2∫
t

0
u(Xr)Lu(Xr)dr

is a martingale. Consequently,

⟨Mu⟩t = ∫
t

0
(L(u2) − 2uLu)(Xr)dr.

This proves the first equality for u = φ. The formula for the quadratic covariation

⟨Mu,Mφ⟩ follows by using polarization, i.e.

⟨Mu,Mφ⟩t =
1

4
(⟨Mu +Mφ⟩t − ⟨Mu −Mφ⟩t) =

1

4
(⟨Mu+ϕ⟩t − ⟨Mu−ϕ⟩t).

∎∎

Problem 23.8. Solution: We assume, without loss of generality, that d = 1. If d > 1 this is

just a matter of notation and the use of the chain rule. Thus, we assume that ∣b(x)∣ +
∣b′(x)∣ + ∣b′′(x)∣ ⩽ c(1 + ∣x∣).

We begin with ξ(t, x). By assumption, we get for all t ∈ [0, T ]

∣ξ(t, x)∣ ⩽ ∣x∣ + ∫
t

0
∣b(ξ(s, x))∣ds

⩽ ∣x∣ + c∫
t

0
(1 + ∣(ξ(s, x))∣)ds

⩽ (cT + ∣x∣) + c∫
t

0
∣(ξ(s, x))∣ds

From Gronwall’s inequality (Theorem A.42) we see that

∣ξ(t, x)∣ ⩽ (cT + ∣x∣)ecT ⩽ CT (1 + ∣x∣).

Define η(t, x) ∶= d
dxξ(t, x). Since η(t, x) satisfies the formally differentiated ODE, we know

that

η(t, x) = 1 + ∫
t

0
b′(ξ(s, x))η(s, x)dt,
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and so

∣η(t, x)∣ ⩽ 1 + ∫
t

0
∥b′∥∞∣η(s, x)∣ds ⩽ 1 + c∫

t

0
∣η(s, x)∣ds.

Again with Gronwall we get ∣η(s, x)∣ ⩽ CT (1 + ∣x∣). Finally, set θ(t, x) ∶= d2

dx2 ξ(t, x) =
d
dxη(t, x). This function satisfies the ODE

θ(t, x) = ∫
t

0
(b′′(ξ(s, x))η2(s, x) + b′(ξ(s, x))θ(s, x))ds

which we can estimate by

∣θ(t, x)∣ ⩽ ∫
t

0
(∥b′′∥∞(1 + ∣x∣)2 + ∥b′∥∞∣θ(s, x)∣)ds

⩽ cT (1 + ∣x∣2) + c∫
t

0
∣θ(s, x)∣ds.

This leads to the estimate ∣θ(t, x)∣ ⩽ CT (1 + ∣x∣2).

Remark: We have to assume Lipschitz continuity of the second derivatives in order to

guarantee that the formally differentiated solution of order two satisfies the formally dif-

ferentiated ODE, see e.g. Coddington & Levinson [40, Theorem I.7.5].

∎∎

Problem 23.9. Solution:

a) If we start with the expression on the r.h.S. of the equality in the statement, then

we use indeed Itô’s formula for c(Bt) etc. etc. In fact, this is a bit unfair as it

presupposes the knowledge of the r.h.S., arguing top–down. In this solution we

prefer the following bottom–up approach.

We have Xt = Bt + ∫ t0 ∇c(Xs)ds. Using Girsanov’s theorem (and the notation used

there, use f = −∇c and t = T , we have

qt = exp(−∫
t

0
∇c(Xs)dBs −

1

2
∫

t

0
∣∇c(Xs)∣2 ds)

(attention: vector notation: ∇c(Xs)dBs = ∑dj=1 ∂jc(Xs)B(j)
s !!) and Girsanov’s the-

orem says that X is under the measure EQ(. . . ) = E(eqt . . . ) a Brownian motion.

Thus,

Eφ(Xt) = E (qtq−1
t φ(Xt))

= EQ (q−1
t φ(Xt))

= EQ (exp [∫
t

0
∇c(Xs)dBs +

1

2
∫

t

0
∣∇c(Xs)∣2 ds∣]φ(Xt))

We want to express everyting under EQ by x, so we need to get rid of the B. To

do so, use Itô’s formula for c(Xt) — this is the difference to the above-mentioned

top–down approach, i.e.

c(Xt) − c(x) = ∫
t

0
∇c(Xs)dXs +

1

2
∫

t

0
∆c(Xs)d⟨X⟩s
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= ∫
t

0
∇c(Xs)dBs + ∫

t

0
∣∇c(Xs)∣2 ds +

1

2
∫

t

0
∆c(Xs)ds

and we can solve this for the stochastic integral and replace the integral in the first

calculation. This shows

Eφ(Xt)

= EQ (exp [c(Xt) − c(x) −
1

2
∫

t

0
∆c(Xs)ds − ∫

t

0
∣∇c(Xs)∣2 ds +

1

2
∫

t

0
∣∇c(Xs)∣2 ds]φ(Xt))

= EQ (exp [c(Xt) − c(x) −
1

2
∫

t

0
∆c(Xs)ds −

1

2
∫

t

0
∣∇c(Xs)∣2 ds]φ(Xt))

= EQ (exp [−1

2
∫

t

0
V (Xs)ds]φ(Xt)ec(Xt)−c(x))

and now replace EQ by E and X by a Brownian motion B to get

= E(exp [−1

2
∫

t

0
V (Bs)ds]φ(Bt)ec(Bt)−c(x)) .

b) This part is more of an interpretation issue. We know from the Feynman–Kac formula

(see § 8.3) that

Ptφ(x) = w(t, x) = Ex φ(Bt)e∫
t

0 γ(Bs)ds

is a semigroup solving the PDE

∂tw(t, x) − 1

2
∆xw(t, x) = γ(x)w(t, x), w(0, x) = φ(x).

The semigroup Pt defines s stochastic process. In our case we have

TXt φ(x) = Pt(φec)(x) = T Yt (φec)(x) = e−c(x)Ex (φ(Bt)ec(Bt)e∫
t

0 (−V (Bs))ds) .

∎∎

Problem 23.10. Solution: By stopping we can assume that M is a vector of L2-martingales.

By definition, (M (j))2−⟨M (j)⟩ is a martingale, and so E[(M (j))2
t −⟨M (j)⟩t] = E[(M (j))2

0−
⟨M (j)⟩0] = 0. This proves that M = 0 a.s.

∎∎

Problem 23.11. Solution: Throughout the proof we fix t ⩽ T and we take a partion Π = {0 =
s0 < ⋅ ⋅ ⋅ < sn = T} of [0, T ]; By Taylor’s series we have

u(Nt) − u(N0) =∑
Π

[u(Nsk∧t) − u(Nsk−1∧t)]

=∑
Π

u′(Nsk−1∧t) (Nsk∧t −Nsk−1∧t)

=∶I(Π)

+ 1

2
∑
Π

u′′(ξk) (Nsk∧t −Nsk−1∧t)
2

=∶ 1
2

J(Π)

.

The Taylor remainder term u′′(ξk) = ∫ 1
0 u

′′(Nsk−1∧t+r(Nsk∧t−Nsk−1∧t))(1−r)dr is clearly

measurable.
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From Problem 17.6 we know that

I(Π) ucpÐÐÐ→
∣Π∣→0

∫
t

0
u′(Ns)dNs.

Let us now deal with J(Π). We write

J(Π) =∑
Π

u′′(Nsk−1∧t) (Nsk∧t −Nsk−1∧t)
2 +∑

Π

(u′′(ξk) − u′′(Nsk−1∧t)) (Nsk∧t −Nsk−1∧t)
2

=∶ J1(Π) + J2(Π).

We begin with J2. Set m(Π) ∶= maxk ∣u′′(ξk) − ∂i∂ju(Nsk−1∧t)∣ ÐÐÐ→∣Π∣→0
0 a.s. and in P

because of the continuity of t↦ u(Nt). Thus,

J2(Π) ⩽m(Π)∑
Π

(Nsk∧t −Nsk−1∧t)
2 ucpÐÐÐÐÐÐÐ→

Problem 17.3
0 × ⟨N⟩t = 0;

alternatively you could refer to Theorem 17.1 and use a stopping argument.

Write

fΠ(t) =∑
Π

f(sk−1)1[sk−1,sk)(t) and ⟨U,V ⟩Π
t =∑

Π

(Usk∧t −Usk−1∧t)(Vsk∧t − Vsk−1∧t).

With these notations we see that

J1(Π) = ⟨(u′′(N))Π ●N,N⟩Π
t ÐÐÐ→∣Π∣→0

⟨(u′′(N)) ●N,N⟩t = ∫
t

0
u′′(Ns)d⟨N,N⟩s

where we argue as in the second part of the proof of Theorem 17.15. Since ⟨N,N⟩ = ⟨N⟩
and since there is (see calculation above) also a factor 1

2 in front of J = J1 + J2, the proof

is complete.

∎∎

Problem 23.12. Solution: Obviously, the continuity of the sample paths ensures that ∣Nt∧τn ∣ ⩽
n. We have to show the localizing property. Since the paths t ↦ Nt are continuous, they

are locally bounded, and so limn τn = ∞. To see the martingale property, fix s < t and

F ∈ Fs and pick a localizing sequence σk (which must exist, by definition). Then, by

optional stopping,

E [Nt∧τn∧σk1F ] = E [Ns∧τn∧σk1F ] .

Both sides are bounded for fixed n. Thus we can let k →∞ to get

E [Nt∧τn1F ] = E [Ns∧τn1F ] .

and this means that the sequence (τn)n is already localizing.

∎∎
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Problem 23.13. Solution: Without loss of generality we take d = 2 and assume that (Bt,Wt)t,
B0 = W0 = 0, is a two-dimensional Brownian motion. Note that B á W . From the one-

dimensional theory we know already that B2
t − t and W 2

t − t are martingales. Fix s < t and

F ∈ Fs. By independence,

E[(WtBt −WsBs)1F ]

= E[(Wt −Ws)(Bt −Bs)1F ] +E[(Bt −Bs)Ws1F ] +E[(Wt −Ws)Bs1F ]

= E(Wt −Ws)E(Bt −Bs)E1F +E(Bt −Bs)E[Ws1F ] +E(Wt −Ws)E[Bs1F ]

where we use that (Wt −Ws), (Bt − Bs) á F , Wt −Ws á Bt − Bs for the first term and

(Bt −Bs) áWs, F , resp., (Wt −Ws) á Bs, F for the second and third terms, respectively.

This shows that (WtBt)t⩾0 is a martingale, hence ⟨W,B⟩t = 0 b/o the uniqueness of the

compensator.

Alternatively, we could use polarization and check 4⟨W,B⟩t = ⟨B+W ⟩t−⟨B−W ⟩t = 2t−2t =
0. But this is, essentially, the same calculation.

∎∎
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