Contents

Preface - V
Dependence chart - XI
Index of notation - XIII
1 Robert Brown's new thing - 1
2 Brownian motion as a Gaussian process - 7
2.1 The finite dimensional distributions - 7
2.2 Brownian motion in $\mathbb{R}^{d}-11$
2.3 Invariance properties of Brownian motion 14
3 Constructions of Brownian motion - 20
3.1 A random orthogonal series - 20
3.2 The Lévy-Ciesielski construction 22
3.3 Wiener's construction - 26
3.4 Lévy's original argument 28
3.5 Donsker's construction - 34
3.6 The Bachelier-Kolmogorov point of view 36
4 The canonical model 39
4.1 Wiener measure - 394.2 Kolmogorov's construction- 43
5 Brownian motion as a martingale - 48
5.1 Some "Brownian" martingales - 48
5.2 Stopping and sampling - 52
5.3 The exponential Wald identity - 56
6 Brownian motion as a Markov process - 6
6.1 The Markov property - 62
6.2 The strong Markov property 65
6.3 Desiré André's reflection principle 69
6.4 Transience and recurrence - 74
6.5 Lévy's triple law -76
6.6 An arc-sine law 79
6.7 Some measurability issues - $\mathbf{8 0}$
$7 \quad$ Brownian motion and transition semigroups - 87
7.1 The semigroup - 87
7.2 The generator - 92
7.3 The resolvent - 96
7.4
The Hille-Yosida theorem and positivity - $\mathbf{1 0 3}$
7.5 The potential operator 107
7.6
Dynkin's characteristic operator - 114
8 The PDE connection 124
8.1 The heat equation - $\mathbf{1 2 5}$
8.2 The inhomogeneous initial value problem 128
8.3 The Feynman-Kac formula - $\mathbf{1 3 0}$
8.4 The Dirichlet problem 138
9 The variation of Brownian paths 152
9.1 The quadratic variation - 153
9.2 Almost sure convergence of the variation sums 154
9.3 Almost sure divergence of the variation sums 158
9.4 Lévy's characterization of Brownian motion 161
10 Regularity of Brownian paths - 167
10.1 Hölder continuity - 167
10.2 Non-differentiability - 170
10.3 Lévy's modulus of continuity 171
11 Brownian motion as a random fractal 177
11.1 Hausdorff measure and dimension 177
11.2 The Hausdorff dimension of Brownian paths 180
11.3 Local maxima of a Brownian motion - $\mathbf{1 8 7}$
11.4 On the level sets of a Brownian motion 189
11.5 Roots and records 191
12 The growth of Brownian paths 198
Khintchine's law of the iterated logarithm 198
12.1Chung's "other" law of the iterated logarithm206
Strassen's functional law of the iterated logarithm 212
1313.1The Cameron-Martin formula - 213
13.2 Large deviations (Schilder's theorem) 220
13.3 The proof of Strassen's theorem 225
14
Skorokhod representation 232

15 Stochastic integrals: L 2-Theory - $\mathbf{2 4 4}$

15.1 Discrete stochastic integrals - 244
15.2 Simple integrands - 248
15.3 Extension of the stochastic integral to $\mathcal{L}_{T}^{2}-\mathbf{2 5 2}$
15.4 Evaluating Itô integrals - 256
15.5 What is the closure of \mathcal{S}_{T} ? $-\mathbf{2 6 0}$
15.6 White noise integrals - 263

16 Stochastic integrals: localization - 273

17 Stochastic integrals: martingale drivers - $\mathbf{2 8 3}$
17.1 The Doob-Meyer decomposition - $\mathbf{2 8 3}$
17.2 The Itô integral driven by L^{2} martingales - $\mathbf{2 8 9}$
17.3 The Itô integral driven by local martingales - 291

18 Itô's formula - 297
18.1 Itô processes and stochastic differentials - 297
18.2 The heuristics behind Itô's formula - 299
18.3 Proof of Itô's formula (Theorem 18.1) - $\mathbf{3 0 0}$
18.4 Itô's formula for stochastic differentials - 303
18.5 Itô's formula for Brownian motion in $\mathbb{R}^{d}-\mathbf{3 0 7}$
18.6 The time-dependent Itô formula - 309
18.7 Tanaka's formula and local time - 311

19 Applications of Itô's formula - 317
19.1 Doléans-Dade exponentials - 317
19.2 Lévy's characterization of Brownian motion - 321
19.3 Girsanov's theorem - $\mathbf{3 2 3}$
19.4 Martingale representation - 1-327
19.5 Martingale representation - 2-329
19.6 Martingales as time-changed Brownian motion - 332
19.7 Burkholder-Davis-Gundy inequalities - 334
19.8 Local times and Brownian excursions - 338

20 Wiener Chaos and iterated Wiener-Itô integrals - 361
20.1 Multiple vs. iterated stochastic integrals - 361
20.2 An interlude: Hermite polynomials - 367
20.3 The Wiener-Itô theorem —— 371
20.4 Calculating Wiener-Itô decompositions - $\mathbf{3 7 7}$

21 Stochastic differential equations - 383
21.1 The heuristics of SDEs - 383
Some examples - 38
21.3 The general linear SDE 388
21.4 Transforming an SDE into a linear SDE 390
21.5 Existence and uniqueness of solutions 393
21.6 Further examples and counterexamples 398
21.7 Solutions as Markov processes 403
21.8 Localization procedures 404
21.9 Dependence on the initial values 407
22 Stratonovich's stochastic calculus 417
The Stratonovich integral 417
22.2 Solving SDEs with Stratonovich's calculus 421
On diffusions 427Kolmogorov's theory - 429
Itô's theory 434
23.2
Drift transformations revisited 439
23.3First steps towards the martingale problem445
Simulation of Brownian motion by Björn Böttcher - 460
Introduction 460
24.1
Normal distribution 464
24.2
466
24.3 Brownian motion

\qquad 46
24.4
Multivariate Brownian motion 467
24.5 Stochastic differential equations 469
24.6
A Appendix - 474
A. 1 Kolmogorov's existence theorem 474
A. 2 A property of conditional expectations 478
A. 3 From discrete to continuous time martingales 479
A. 4 Stopping times 485
A. 5 Optional sampling - 488
A. 6 Remarks on Feller processes 491
A. 7 The monotone class theorem 492
A. 8 BV functions and Riemann-Stieltjes integrals 493
A. 9 Frostman's theorem: Hausdorff measure, capacity and energy 497
A. 10 Gronwall's lemma 500
A. 11 Completeness of the Haar functions 501
Bibliography 503
Index - 514

Dependence chart

As we have already mentioned in the preface, there are at least three paths through this book which highlight different aspects of Brownian motion: Brownian motion and Itô calculus, Brownian motion as a Markov process, and Brownian motion and its sample paths. Below we suggest some fast tracks " C ", " M " and " S " for each route, and we indicate how the other topics covered in this book depend on these fast tracks. This should help you to find your own personal sample path. Starred sections (in the grey ovals) contain results which can be used without proof and without compromising too much on rigour.

Getting started

For all three fast tracks you need to read Chapters 1 and 2 first. If you are not too much in a hurry, you should choose one construction of Brownian motion from Chapter 3. For the beginner we recommend either Sections 3.1, 3.2 or Section 3.4.

Basic stochastic calculus (C)

Basic Markov processes (M)

Basic sample path properties (S)

Dependence to the sections 5.1-23.2

The following list shows which prerequisites are needed for each section. A star as in 4^{*} or 6.7^{*} indicates that some result(s) from Chapter 4 or Section 6.7 are used which may be used without proof and without compromising too much on rigour. Starred sections are mentioned only where they are actually needed, while other prerequisites are repeated to indicate the full line of dependence. For example,
6.6: M or \mathbf{S} or $\mathbf{C}, 6.1-3$ indicates that the prerequisites for Section 6.6 are covered by either "M" or " S " or "C if you add 6.1, 6.2, 6.3". Since we do not refer to later sections with higher numbers, you will need only those sections in " M ", " S ", or "C and 6.1, 6.2, 6.3" with section numbers below 6.6.
19.1: C, 18.4-5, 17* means that 19.1 requires "C" plus the Sections 18.4 and 18.5. Some results from 17 are used, but they can be quoted without proof.
5.1: \quad Cor Mor S
5.2: \quad Cor M or S
5.3: \quad Cor Mor S
6.1: $\quad \mathrm{M}$ or S or C
6.2: $\quad \mathrm{M}$ or S or $\mathrm{C}, 6.1$
6.3: M or S or C, 6.1-2
6.4: M or S or C, 6.1-3
6.5: M or S or C, 6.1-3
6.6: $\quad \mathrm{M}$ or S or $\mathrm{C}, 6.1-3$
6.7: M or S or C, 6.1-3
7.1: M, 4.2*or C, 6.1, 4.2*
7.2: \quad M or $\mathrm{C}, 6.1,7.1$
7.3: \quad M or $\mathrm{C}, 6.1,7.1-2$
7.4: \quad M or $\mathrm{C}, 6.1,7.1-3$
7.5: \quad M or $\mathrm{C}, 6.1,7.1-4$
7.6: \quad M or C, 6.1, 7.1-5
8.1: \quad M or C, 6.1, 7.1-3
8.2: M, 8.1 or C, 6.1, 7.1-3, 8.1
8.3: \quad M, 8.1-2 or

C, 6.1, 7.1-4, 8.1-2
8.4: $\quad \mathrm{M}, 6.7^{*}, 8.1-3^{*}$ or C, 6.1-4, 7, 6.7 ${ }^{*}$ 8.1-3*
9.1: $\quad \mathrm{S}$ or C or M
9.2: \quad S or C or $\mathrm{M}, 9.1$
9.3: $\quad \mathrm{S}$ or C or $\mathrm{M}, 9.1$
9.4: \quad S or C or M, 9.1
10.1: S or C or M
10.2: S or C or M
10.3: S or C or M
11.1: \quad S or M or C
11.2: $S, 11.1,10.3^{*}$ or

M, 11.1, 10.3* or
C, 11.1, 10.3*
11.3: S or M or $\mathrm{C}, 6.1-3$
11.4: S or M or C, 6.1-3
11.5: $S, 11.3-4,11.2^{*}$ or M, 11.3-4, 11.2* or C, 6.1-3, 11.3-4, 11.2*
12.1: $\mathrm{S}, 10.3^{*}$ or $\mathrm{C}, 10.3^{*}$ or M, 10.3*
12.2: S or $\mathrm{C}, 12.1$ or $\mathrm{M}, 12.1$
13.1: S
13.2: $S, 13.1$
13.3: $\mathrm{S}, 13.1-2,4^{*}$

14: $\quad \mathrm{S}$ or C or M
15.1: C or M
15.2: C, 6.7^{*} or M, 15.1, 6.7*
15.3: C or M, 15.1-2
15.4: C or M, 15.1-3, 9.1*
15.5: C, 6.7*
15.6: C, 15.5

16: C or M, 15.1-4
17.1: C
17.2: C, 15.5, 17.1*
17.3: C, 17.2, 15.5*, 17.1*
18.1: C
18.2: C
18.3: C
18.4: C
18.5: C, 18.4
18.6: C, 18.4-5
18.7: C
19.1: C, 18.4-5, 17*
19.2: C, 18.4-5
19.3: C, 18.4-5, 19.1
19.4: C, 18.4-5
19.5: C, 15.5, 17, 18.4-5, 19.2
19.6: C, 18.4-5, 19.2
19.7: C, 18.4-5
19.8: C, 18.7, 11.4-5, 19.2*, 19.7*, 10.1*

20: C, 18.4, 18.5
21.1: \quad -
21.2: C, 21.1
21.3: C, 21.1
21.4: C, 21.1-3
21.5: C, 18.4-5, 21.1
21.6: C, 18.4, 18.7, 19.2-3, 21.1-5
21.7: C, 6.1, 18.4-5, 21.1, 21.5
21.8: C, 18.4-5, 21.1, 21.5-6
21.9: C, 18.4-5, 21.1, 21.5-6, 10.1*, 19.7*
22.1: C, 18.6
22.2: C, 18.6, 21.1, 21.5, 22.1
23.1: M or C, 6.1, 7
23.2: C, 6.1, 7, 18.4-5, 21, 23.1
23.3: C, 18.4-5, 19.1, 19.3, 21, 23.1-2, 8^{*}
23.4: C, 16, 17, 18.4-5, 21, 23.1-3, 19.2*, 19.4*, 19.5*

René L. Schilling

Brownian Motion

A Guide to Random Processes and Stochastic Calculus With a Chapter on Simulation by Björn Böttcher

3rd Edition

Mathematics Subject Classification 2020

Primary: 60-01, 60J65; Secondary: 60H05, 60H10, 60J35, 60G46, 60J60, 60J25.

Author

Prof. Dr. René L. Schilling
Technische Universität Dresden
Institut für Mathematische Stochastik
D-01062 Dresden
Germany
rene.schilling@tu-dresden.de
https://tu-dresden.de/mn/math/stochastik/schilling

Online Resources

www.motapa.de/brownian_motion

Book Cover

The cover shows a photograph of the Quantum Cloud sculpture by Antony Gormley in London, almost directly on the Greenwich Meridian ($51^{\circ} 30^{\prime} 6.48^{\prime \prime} \mathrm{N}$ and $0^{\circ} 00^{\prime} 32.76^{\prime \prime} \mathrm{E}$). It is approximately 30 metres high and portrays a figure appearing in a cloud of tetrahedron-shaped metal pieces; the cloud around the figure was constructed with the help of a random walk algorithm.

ISBN 978-3-11-074125-4
e-ISBN (PDF) 978-3-11-074127-8
e-ISBN (EPUB) 978-3-11-074149-0

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Cover image: Anthony Gormley Figure; Tony Hisgett from Birmingham, UK, CC BY 2.0
Typesetting: Typeset by the author
Printing and binding: CPI buch bücher.de GmbH, Birkach
© Printed on acid-free paper
Printed in Germany
www.degruyter.com

