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Preface

These lecture notes are an extended version of my lectures on Lévy and Lévy-type
processes given at the Second Barcelona Summer School on Stochastic Analysis
organized by the Centre de Recerca Matemàtica (CRM). The lectures are aimed
at advanced graduate and PhD students. In order to read these notes, one should
have sound knowledge of measure theoretic probability theory and some back-
ground in stochastic processes, as it is covered in my books Measures, Integals
and Martingales [54] and Brownian Motion [56].

My purpose in these lectures is to give an introduction to Lévy processes,
and to show how one can extend this approach to space inhomogeneous processes
which behave locally like Lévy processes. After a brief overview (Chapter 1) I in-
troduce Lévy processes, explain how to characterize them (Chapter 2) and discuss
the quintessential examples of Lévy processes (Chapter 3). The Markov (loss of
memory) property of Lévy processes is studied in Chapter 4. A short analytic
interlude (Chapter 5) gives an introduction to operator semigroups, resolvents
and their generators from a probabilistic perspective. Chapter 6 brings us back to
generators of Lévy processes which are identified as pseudo-differential operators
whose symbol is the characteristic exponent of the Lévy process. As a by-product
we obtain the Lévy–Khintchine formula.

Continuing this line, we arrive at the first construction of Lévy processes in
Chapter 7. Chapter 8 is devoted to two very special Lévy processes: (compound)
Poisson processes and Brownian motion. We give elementary constructions of both
processes and show how and why they are special Lévy processes, indeed. This
is also the basis for the next chapter (Chapter 9) where we construct a random
measure from the jumps of a Lévy process. This can be used to provide a further
construction of Lévy processes, culminating in the famous Lévy–Itô decomposition
and yet another proof of the Lévy–Khintchine formula.

A second interlude (Chapter 10) embeds these random measures into the
larger theory of random orthogonal measures. We show how we can use random
orthogonal measures to develop an extension of Itô’s theory of stochastic integrals
for square-integrable (not necessarily continuous) martingales, but we restrict our-
selves to the bare bones, i.e., the L2-theory. In Chapter 11 we introduce Feller
processes as the proper spatially inhomogeneous brethren of Lévy processes, and
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4 Preface

we show how our proof of the Lévy–Khintchine formula carries over to this set-
ting. We will see, in particular, that Feller processes have a symbol which is the
state-space-dependent analogue of the characteristic exponent of a Lévy process.
The symbol describes the process and its generator. A probabilistic way to cal-
culate the symbol and some first consequences (in particular the semimartingale
decomposition of Feller processes) is discussed in Chapter 12; we also show that
the symbol contains information on global properties of the process, such as con-
servativeness. In the final Chapter 13, we summarize (mostly without proofs) how
other path properties of a Feller process can be obtained via the symbol. In order
to make these notes self-contained, we collect in the appendix some material which
is not always included in standard graduate probability courses.

It is now about time to thank many individuals who helped to bring this
enterprise on the way. I am grateful to the scientific board and the organizing
committee for the kind invitation to deliver these lectures at the Centre de Recerca
Matemàtica in Barcelona. The CRM is a wonderful place to teach and to do
research, and I am very happy to acknowledge their support and hospitality. I
would like to thank the students who participated in the CRM course as well
as all students and readers who were exposed to earlier (temporally & spatially
inhomogeneous. . . ) versions of my lectures; without your input these notes would
look different!

I am greatly indebted to Ms. Franziska Kühn for her interest in this topic; her
valuable comments pinpointed many mistakes and helped to make the presentation
much clearer.

And, last and most, I thank my wife for her love, support and forbearance
while these notes were being prepared.

Dresden, September 2015 René L. Schilling
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Preface

These notes aim to introduce the reader to aspects of the theory of parabolic
stochastic partial differential equations (SPDEs, for short). As an example of the
type of object that we wish to study, let us consider the following boundary value
problem: we aim to find a real-valued space-time function (t , x) �→ ut(x), where
t � 0 and x ∈ [0 , 1], such that⎡⎢⎣ u̇t(x) = u′′

t (x) + σ(ut(x))ξt(x) for t > 0 and 0 < x < 1,

u0(x) = sin(2πx) for 0 < x < 1,

ut(0) = ut(1) = 0 for all t > 0.

(13.1)

Figure 13.1: A numerical evaluation of the heat equation, where σ(u) ≡ 0.

We have written ut(x) in place of the more commonplace notation u(t , x), as
it is more natural in the probabilistic context. Thus, ut designates the map t �→ u
and not the time derivative ∂u/∂t.

If σ : �→ � and ξ : [0 ,∞)×�→ � are sufficiently smooth then the preced-
ing is a classical problem of the theory of heat flow, the solution exists, is unique,
and has good regularity properties; see, for instance, Evans [17, Chapter 2, §2.3].
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(a) A simulation of the stochastic heat
equation where σ(u) = u.

(b) A simulation of the stochastic heat
equation where σ(u) = 1.

(c) A simulation of the stochastic heat
equation where σ(u) = 10u.

(d) A simulation of the stochastic heat
equation where σ(u) = 10.

(e) A simulation of the stochastic heat
equation where σ(u) = 50u.

(f) A simulation of the stochastic heat
equation where σ(u) = 50.

Figure 13.2: The left column consists of simulations of (13.1) where σ(u) = λu,
and the right column is for σ(u) = λ, as λ ranges in {1 , 10 , 50}.
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Consider an ideal rod of length one unit, and identify the rod with the interval
[0 , 1]. Suppose the rod is heated at time t = 0 such that the heat density at every
point x ∈ [0 , 1] (x units along the rod) is sin(2πx). Then it can be argued using
Fourier’s law of thermal conduction that, under ideal conditions, the heat density
ut(x) at place x ∈ [0 , 1] and at time t > 0 solves the linear heat equation u̇ = νu′′,
subject to u0(x) = sin(2πx). Here, ν is a physical constant and is sometimes called
“thermal conductivity”, in this context.

We can always scale the problem so that ν = 1. Indeed, if u̇ = νu′′ then
Ft(x) := ut/ν(x) solves the heat equation Ḟ = F ′′, subject to the same initial and
boundary conditions as u. In this way, we arrive at (13.1) with σ := ξ := 0.

Suppose that the rod also feels external density ξt(x) of heat (or cold, if
ξt(x) < 0) at the point (t , x). Then, the heat density solves u̇ = u′′ + ξ. That is,
(13.1) with σ(u) ≡ 1.

The general form of (13.1) arises when the external heating/cooling source
interacts with the heat flow on the rod due to the presence of one or more feedback
systems. In that case, the function σ models the nature of the feedback mechanism.

The main goal of these notes is to study the heat-flow problem (13.1) in the
case whereξ denotes “space-time white noise” (a notion defined carefully below).
For the time being, we can think of the ξt(x)’s as a collection of independent
mean-zero normal random variables. In this sense, (13.1) describes heat flow in a
random environment.

We plan to study how the solution depends on the nonlinearity σ. In order
to motivate this, consider the simplest case that σ ≡ 0. In that case, we can solve
u explicitly, and find that ut(x) = exp(−4π2t) sin(2πx) for all t � 0 and x ∈ [0 , 1],
when σ(u) ≡ 0.

Figure 13.1 shows a numerical evaluation of the solution for time values
t ∈ [0 , 10−3]. Figures 13.2(a) and 13.2(b) show typical simulations of the solution
for σ(u) = u and σ(u) = 1, respectively. Figures 13.2(c) and 13.2(d) do the same
thing for σ(u) = 10u and σ(u) = 10, respectively. And Figures 13.2(e) and 13.2(f)
for σ(u) = 50u and σ(u) = 50. A quick inspection of these suggests that the behav-
ior of the solution to (13.1) depends critically on the properties of the nonlinearity
σ. In the last chapter of these notes, an answer on how this phenomenon can arise
will be provided.

These notes are based on lectures given in the summer of 2014 at the Second
Summer School on Stochastic Analysis held at the Centre de Recerca Matemàtica
(CRM) in Barcelona. I would like to thank the CRM for their generous hospitality.
Many hearty thanks are owed to the organizing and scientific committee, David
Applebaum, Robert Dalang, L�luis Quer-Sardanyons, Marta Sanz-Solé, Frederic
Utzet, and Josep Vives for their kind invitation.

The material of these notes is based on my collaborations with Kunwoo
Kim [33, 34], as well as Mathew Joseph and Carl Mueller [30]. I thank all three
for many years of extremely enjoyable scientific discourse. Many thanks are due to
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Pavel Bezdek, who pointed out a number of misprints and one error in an earlier
draft. The remaining errors and misprints are of course mine.

My research was made possible thanks in part to a number of grants by the
United States’ National Science Foundation, in particular, DMS-1307470.

Salt Lake City (Utah), August, 2014 Davar Khoshnevisan




